Meyan) Cinsinin Revizyonu

Total Page:16

File Type:pdf, Size:1020Kb

Meyan) Cinsinin Revizyonu T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TÜRKİYE’DE YAYILIŞ GÖSTEREN GLYCYRRHIZA L. (MEYAN) CİNSİNİN REVİZYONU Özlem ÇETİN DOKTORA TEZİ Biyoloji Anabilim Dalı Nisan-2015 KONYA Her Hakkı Saklıdır ÖZET DOKTORA TEZİ TÜRKİYE’DE YAYILIŞ GÖSTEREN GLYCYRRHIZA L. (MEYAN) CİNSİNİN REVİZYONU Özlem ÇETİN Selçuk Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Danışman: Prof. Dr. Ahmet DURAN 2015, 305 Sayfa Jüri Prof. Dr. Ahmet DURAN Prof. Dr. Hüseyin DURAL Prof. Dr. Yavuz BAĞCI Doç. Dr. Esra MARTİN Doç. Dr. Ekrem DÜNDAR Bu çalışmada, ülkemizde doğal olarak yayılış gösteren Glycyrrhiza L. (Fabaceae) cinsi taksonları morfolojik, sitotaksonomik, palinolojik, moleküler ve nümerik çalışmalara dayalı veriler kullanılarak revizyonu gerçekleştirildi. Tüm taksonların daha kullanışlı teşhis anahtarları ve kapsamlı betimleri yapıldı. Ayrıca habitat özellikleri, yayılış haritaları ve fotoğrafları verildi. Hayat formu ve IUCN kategorileri değerlendirildi. Glycyrrhiza taksonlarının kromozom sayıları belirlendi. G. asymetrica türünün somatik kromozom sayısı 2n=14, Glycyrrhiza glabra, G. echinata subsp. echinata, G. echinata subsp. macedonica, G. flavescens subsp. flavescens, G. flavescens subsp. antalyensis, G. asymmetrica taksonlarının somatik kromozom sayısı ise 2n=16’dır. Görüntü Analiz Sistemi (Bs200ProP) aracılığı ile karyotip analizleri yapıldı. Tohum yüzey ornemantasyonu taramalı elektron mikroskobu ile incelendi. Ayrıca polenler ışık ve elektron mikroskobu ile incelendi. Farklı lokalitelerden toplanan örneklerinden DNA izolasyonları yapıldı. ISSR verileri, ITS ve trnL-F bölgelerine ait sekans dizileri kullanılarak filogenetik analizleri yapıldı ve dendrogramları oluşturuldu. Glycyrrhiza cinsinin nümerik sınıflandırılmasında ise morfolojik çalışmalardan sağlanan veriler NTSYS programında analiz edilerek fenogramları oluşturuldu. Morfolojik, mikromorfolojik ve moleküler çalışmalardan sağlanan veriler Glycyrrhiza cinsinin üç alt cins (subgen. Glycyrrhiza, subgen. Liquiritia, subgen. nov. Glycyrrhizopsis) olarak ayrılmasını destekledi. Glycyrrhiza echinata subsp. macedonica taksonu Türkiye Florası için yeni kayıt olarak eklendi. Glycyrrhiza iconica hibrit bir bitki olarak tespit edildi. Beta amyrin-11 oxidase geninin intron ve ekzon bölgelerini belirlemek için Glycyrrhiza glabra ve Glycyrrhiza echinata subsp. echinata türleri kullanıldı. RNA izolasyonları yapıldıktan sonra cDNA sentezlendi. cDNA ve genomik DNA örnekleri Beta amyrin oxidase geni için sentezlenmiş primerler ile çoğaltıldı ve sekans analizi yapıldı. Yine Glycyrrhiza taksonlarında türler arasındaki polimorfizmi belirlemek amacıyla da intron ve ekzon karışımı bir bölge seçilerek PCR çalışmaları iv yapılmıştır. Bu bölge değerlendirilerek filogenetik bir ağaç oluşturulmuştur. Beta amyrin oxidase gen dizisi ile oluşturulan filogenetik ağaç ISSR, ITS ve trnL-F verileri ile oluşturulan ağaçlar ile korelasyon göstermektedir. Anahtar Kelimeler: Glycyrrhiza, ITS, ISSR, kromozom, Fabaceae, Leguminosae, polen, Sem, β-amyrin 11-oxidase, revizyon v ABSTRACT Ph.D THESIS REVISION OF THE GENUS GLYCYRRHIZA L. DISTRIBUTED IN TURKEY ÖZLEM ÇETİN THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE OF SELÇUK UNIVERSITY THE DEGREE OF DOCTOR OF BIOLOGY Advisor: Prof. Dr. Ahmet DURAN 2015, 305 Pages Jury Prof. Dr. Ahmet DURAN Prof. Dr. Hüseyin DURAL Prof. Dr. Yavuz BAĞCI Assoc. Prof. Dr. Esra MARTİN Assoc. Prof. Dr. Ekrem DÜNDAR In this study, a revision of Glycyrrhiza L. (Fabaceae) taxa naturally distributed in Turkey was conducted with respect to morphology, sitotaxonomy, pollenology, molecular biology and numerical taxonomy. More practical diagnosis keys and comprehensive descriptions were also accomplished along with habitat properties, distribution maps and photographs. Life forms and IUCN categories were reviewed and revised. The number of chromosomes of Glycyrrhiza L. species was determined as G. asymetrica had 2n = 14 while the , Glycyrrhiza glabra, G. echinata subsp. echinata, G. echinata subsp. macedonica, G. flavescens subsp. flavescens, G. flavescens subsp. antalyensis, G. asymmetrica displayed 2n = 16. Karyotype and idiogram analyses were conducted through Image Analysis System (Bs200Pro). Seed surface ornamentations and pollens were investigated via electron microscope while the pollens were also studied under light microscope. ISSR results and ITS and trnL-F sequences of the taxa were used to construct phylogenetic trees. For numerical taxonomy, morphological features were scored and converted to phenograms using NTSYS program. The data obtained from morphology, micromorphology and molecular analyses suggested Glycyrrhiza organize in three sub genera as subgen. Glycyrrhiza, subgen. Liquiritia, subgen. nov. Glycyrrhizopsis. Glycyrrhiza echinata subsp. macedonica was added new record for flora of Turkey. Glycyrrhiza iconica was determined as a hybrid plant. Glycyrrhiza glabra and Glycyrrhiza echinata were used to determine the intron size of Beta-amyrin-11 oxydase. For this, cDNA synthesis following total RNA isolation were conducted. Beta amyrin-11 oxydase fragments from genomic DNA and cDNA samples were amplified via nested primers desinged for this purpose. The vi amplified fragments were sequenced using the same primers used for amplification. To determine the polymorphism of beta amynrin oxydase among Glycrrhiza species, a region of the gene including introns and exons was amplified from all the species and sequenced. The sequences were utilized to construct a phylogenetic tree which were in accordance with the trees generated using ISSR and ITS data. Keywords: chromosome, Glycyrrhiza, ITS, ISSR, Fabaceae, Leguminosae, pollen, SEM, β-amyrin 11-oxidase vii ÖNSÖZ Doktora tez çalışmam esnasında her zaman yardımlarını ve desteklerini esirgemeyen değerli danışman hocam Prof. Dr. Ahmet DURAN’a teşekkür ederim. Arazi çalışmalarında ve örneklerin temini konusunda yardım eden başta danışman hocam Prof. Dr. Ahmet DURAN’a, Doç. Dr. Ramazan Süleyman GÖKTÜRK’e, Doç. Dr. Bekir DOĞAN’a, Yard. Doç. Dr. Özge ÇETİN’e, Uzman Mustafa ÇELİK’e, Yasemin GÜRBÜZ’e, Naile ÇETİN’e ve Selçuk ÇETİN’e teşekkür ederim. Balıkesir Üniversitesi, Fen Fakültesi Araştırma Laboratuarında çalışmama imkan sağlayan, görüş ve deneyimlerini benden esirgemeyen Doç. Dr. Ekrem DÜNDAR’a teşekkür ederim. Ayrıca Balıkesir Üniversitesi, Fen Fakültesi Araştırma Laboratuarında yardımcı olan Araş. Gör. Dr. Görkem SÖNMEZ’e, Araş. Gör. Taner ÖZCAN’a, Özge TOK’a teşekkür ederim. Görüş ve deneyimlerinden faydalandığım Prof. Dr. Mustafa KÜÇÜKÖDÜK’e, Prof. Dr. Münevver PINAR’a ve Doç. Dr. Esra MARTİN’e, Doç. Dr. Tuncay DİRMENCİ’ye teşekkür ederim. Oxytropis örneklerinin temin edilmesinde bütün içtenliği ile yardım eden Yard. Doç. Dr. Seher Karaman ÖZKUL’a teşekkür ederim. Herbaryum materyallerinin incelenmesinde imkan sağlayan KNYA, GAZI, HUB, ANK, HUB, EGE, ISTF, ISTE, ISTO, AKDU, W herbaryumları yetkililerine teşekkür ederim. Selçuk Üniversitesi, Fen Fakültesi Bitki Biyolojisi Araştırma Laboratuvarındaki çalışmalarım esnasında benden yardımlarını esirgemeyen Doç. Dr. Evren YILDIZTUGAY’a, Elif GEZER’e, Fahim ALTINORDU’ya, Büşra TOSUN’a, Şerife ATİKER’e teşekkür ederim. Eğitim hayatım boyunca benden maddi-manevi desteğini esirgemeyen canım anneme ve babama teşekkür ederim Ayrıca,Tez çalışmalarım için maddi destek sağlayan TUBİTAK’a ve bu tez çalışmasına maddi destek sağlayan Selçuk Üniversitesi Bilimsel Araştırmalar Projeleri Koordinatörlüğü (BAP)’ne maddi desteklerinden dolayı teşekkür ederim. Özlem ÇETİN KONYA-2015 viii İÇİNDEKİLER ÖZET .............................................................................................................................. iv ABSTRACT .................................................................................................................... vi ÖNSÖZ ......................................................................................................................... viii İÇİNDEKİLER .............................................................................................................. ix ŞEKİLLER LİSTESİ ................................................................................................... xii ÇİZELGELER LİSTESİ ............................................................................................. xv SİMGELER VE KISALTMALAR ............................................................................ xvi 1. GİRİŞ ........................................................................................................................... 1 1.1. Glycyrrhiza cinsinin ülkemizdeki ve dünyadaki genel taksonomik problemleri .. 8 2. KAYNAK ARAŞTIRMASI ..................................................................................... 10 2.1. Fabaceae familyasının dünyadaki ve ülkemizdeki durumu ................................. 10 2.2. Papilionoideae alt familyası ve Galegeae tribusu hakkında genel bilgi .............. 22 2.3. Glycyrrhiza cinsi hakkında genel bilgi ................................................................ 25 2.3.1. Glycyrrhiza cinsinin dünyadaki ve ülkemizdeki genel durumu ................... 25 2.3.2. Glycrrhiza cinsinin biyolojik aktivitesi ile ilgili yapılan çalışmalar ............. 29 2.3.3. Glycyrrhiza cinsi üzerine yapılan moleküler çalışmalar ............................... 34 2.3.4. Fabaceae familyası ve Glycyrrhiza cinsi üzerine yapılan mikromorfolojik çalışmalar ................................................................................................................ 36 2.3.5. Glycyrrhiza cinsi üzerine yapılan karyolojik
Recommended publications
  • Characterization of UDP-Glucose Dehydrogenase Isoforms in the Medicinal Legume Glycyrrhiza Uralensis
    Plant Biotechnology 38, 205–218 (2021) DOI: 10.5511/plantbiotechnology.21.0222a Original Paper Characterization of UDP-glucose dehydrogenase isoforms in the medicinal legume Glycyrrhiza uralensis Ayumi Kawasaki, Ayaka Chikugo, Keita Tamura, Hikaru Seki, Toshiya Muranaka* Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan * E-mail: [email protected] Tel: +81-6-6879-7423 Fax: +81-6-6879-7426 Received June 15, 2020; accepted February 22, 2021 (Edited by S. Takahashi) Abstract Uridine 5′-diphosphate (UDP)-glucose dehydrogenase (UGD) produces UDP-glucuronic acid from UDP- glucose as a precursor of plant cell wall polysaccharides. UDP-glucuronic acid is also a sugar donor for the glycosylation of various plant specialized metabolites. Nevertheless, the roles of UGDs in plant specialized metabolism remain poorly understood. Glycyrrhiza species (licorice), which are medicinal legumes, biosynthesize triterpenoid saponins, soyasaponins and glycyrrhizin, commonly glucuronosylated at the C-3 position of the triterpenoid scaffold. Often, several different UGD isoforms are present in plants. To gain insight into potential functional differences among UGD isoforms in triterpenoid saponin biosynthesis in relation to cell wall component biosynthesis, we identified and characterized Glycyrrhiza uralensis UGDs (GuUGDs), which were discovered to comprise five isoforms, four of which (GuUGD1–4) showed UGD activity in vitro. GuUGD1–4 had different biochemical properties, including their affinity for UDP-glucose, catalytic constant, and sensitivity to feedback inhibitors. GuUGD2 had the highest catalytic constant and highest gene expression level among the GuUGDs, suggesting that it is the major isoform contributing to the transition from UDP-glucose to UDP-glucuronic acid in planta.
    [Show full text]
  • Final Report Template
    Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • C10 Beano2.Gen-Wis
    LEGUMINOSAE PART DEUX Papilionoideae, Genista to Wisteria Revised May the 4th 2015 BEAN FAMILY 2 Pediomelum PAPILIONACEAE cont. Genista Petalostemum Glycine Pisum Glycyrrhiza Psoralea Hylodesmum Psoralidium Lathyrus Robinia Lespedeza Securigera Lotus Strophostyles Lupinus Tephrosia Medicago Thermopsis Melilotus Trifolium Onobrychis Vicia Orbexilum Wisteria Oxytropis Copyrighted Draft GENISTA Linnaeus DYER’S GREENWEED Fabaceae Genista Genis'ta (jen-IS-ta or gen-IS-ta) from a Latin name, the Plantagenet kings & queens of England took their name, planta genesta, from story of William the Conqueror, as setting sail for England, plucked a plant holding tenaciously to a rock on the shore, stuck it in his helmet as symbol to hold fast in risky undertaking; from Latin genista (genesta) -ae f, the plant broom. Alternately from Celtic gen, or French genet, a small shrub (w73). A genus of 80-90 spp of small trees, shrubs, & herbs native of Eurasia. Genista tinctoria Linnaeus 1753 DYER’S GREENWEED, aka DYER’S BROOM, WOADWAXEN, WOODWAXEN, (tinctorius -a -um tinctor'ius (tink-TORE-ee-us or tink-TO-ree-us) New Latin, of or pertaining to dyes or able to dye, used in dyes or in dyeing, from Latin tingo, tingere, tinxi, tinctus, to wet, to soak in color; to dye, & -orius, capability, functionality, or resulting action, as in tincture; alternately Latin tinctōrius used by Pliny, from tinctōrem, dyer; at times, referring to a plant that exudes some kind of stain when broken.) An escaped shrub introduced from Europe. Shrubby, from long, woody roots. The whole plant dyes yellow, & when mixed with Woad, green. Blooms August. Now, where did I put that woad? Sow at 18-22ºC (64-71ºF) for 2-4 wks, move to -4 to +4ºC (34-39ºF) for 4-6 wks, move to 5-12ºC (41- 53ºF) for germination (tchn).
    [Show full text]
  • Ethnobotanical Uses of Alien and Native Plant Species of Yeşilırmak Delta, Samsun, Turkey
    Ethnobotanical uses of alien and native plant species of Yeşilırmak Delta, Samsun, Turkey Ümmügülsüm MUMCU1*, Hasan KORKMAZ2 1Department of Microbiology, Faculty of Medicine, Ondokuz Mayıs University, Kurupelit, Samsun, Turkey. 2Department of Biology, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit, Samsun, Turkey. *Corresponding author: [email protected] Abstract: Plants produce chemicals, known as secondary metabolites, have a variety of ecophysiological functions e.g. defense against herbivory/pathogen attacks and competitor plants, attracting pollinators and symbionts, protection against abiotic stresses, etc. These metabolites also have potential medicinal effects on humans. The Yeşilırmak Delta, Samsun, Turkey, is the second largest delta plain of Turkey. Among the plants distributed in different habitats of the delta, medically important species and their usage were investigated based on the literature. It has been determined 160 species and infraspecific taxa belonging 61 families and 141 genera which can be used for medicinal purposes in the research area. Our aim is to provide a database in relation to medicinal plants distributed naturally in such a region that 65.4% of which is assigned as agricultural area. Keywords: Ethnomedicine, Toxic effect, Yeşilırmak Delta. Introduction identification (Briskin, 2000). Food and medicines are integral part of human life (Datir While primary metabolites (such as carbohydrates, and Bhore, 2017) and the plants we have consumed are lipids, proteins, heme, chlorophyll,
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • The Alien Vascular Flora of Tuscany (Italy)
    Quad. Mus. St. Nat. Livorno, 26: 43-78 (2015-2016) 43 The alien vascular fora of Tuscany (Italy): update and analysis VaLerio LaZZeri1 SUMMARY. Here it is provided the updated checklist of the alien vascular fora of Tuscany. Together with those taxa that are considered alien to the Tuscan vascular fora amounting to 510 units, also locally alien taxa and doubtfully aliens are reported in three additional checklists. The analysis of invasiveness shows that 241 taxa are casual, 219 naturalized and 50 invasive. Moreover, 13 taxa are new for the vascular fora of Tuscany, of which one is also new for the Euromediterranean area and two are new for the Mediterranean basin. Keywords: Vascular plants, Xenophytes, New records, Invasive species, Mediterranean. RIASSUNTO. Si fornisce la checklist aggiornata della fora vascolare aliena della regione Toscana. Insieme alla lista dei taxa che si considerano alieni per la Toscana che ammontano a 510 unità, si segnalano in tre ulteriori liste anche i taxa che si ritengono essere presenti nell’area di studio anche con popolazioni non autoctone o per i quali sussistono dubbi sull’effettiva autoctonicità. L’analisi dello status di invasività mostra che 241 taxa sono casuali, 219 naturalizzati e 50 invasivi. Inoltre, 13 taxa rappresentano una novità per la fora vascolare di Toscana, dei quali uno è nuovo anche per l’area Euromediterranea e altri due sono nuovi per il bacino del Mediterraneo. Parole chiave: Piante vascolari, Xenofte, Nuovi ritrovamenti, Specie invasive, Mediterraneo. Introduction establishment of long-lasting economic exchan- ges between close or distant countries. As a result The Mediterranean basin is considered as one of this context, non-native plant species have of the world most biodiverse areas, especially become an important component of the various as far as its vascular fora is concerned.
    [Show full text]
  • Specificity in Legume-Rhizobia Symbioses
    International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga).
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Конспект Родини Fabaceae У Флорі України. II. Підродина Faboideae (Триби Galegeae, Hedysareae, Loteae, Cicereae) Микола М
    Систематика, флористика, географія рослин Plant Taxonomy, Geography and Floristics https://doi.org/10.15407/ukrbotj75.04.305 Конспект родини Fabaceae у флорі України. II. Підродина Faboideae (триби Galegeae, Hedysareae, Loteae, Cicereae) Микола М. ФЕДОРОНЧУК, Сергій Л. МОСЯКІН Інститут ботаніки ім. М.Г. Холодного НАН України вул. Терещенківська, 2, Київ 01004, Україна Fedoronchuk M.M., Mosyakin S.L. A synopsis of the family Fabaceae in the flora of Ukraine. II. Subfamily Faboideae (tribes Galegeae, Hedysareae, Loteae, and Cicereae). Ukr. Bot. J., 2018, 75(4): 305–321. M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska Str., Kyiv 01004, Ukraine Abstract. The article provides a synopsis of tribes Galegeae, Hedysareae, Loteae, Cicereae of Fabaceae subfam. Faboideae in the flora of Ukraine, with nomenclatural citations, types, and main synonyms. It is based on critical analysis of available data of taxonomic, morphological, and molecular phylogenetic studies. Tribe Galegeae is best represented in the flora of Ukraine, comprising 10 genera, including the most species-rich genus Astragalus (48 species). However, the number of genera in the tribe will be probably changed due to further results of morphological and molecular phylogenetic studies which already indicate possible inclusion of Calophaca and Halimodendron in Caragana s. l.; however, these data require confirmation. Tribe Loteae is accepted here in a wide circumscription, including Coronilleae, which is in accordance with results of new morphological and molecular studies. There are 9 genera (or 7, in a wider circumscription) in the tribe, but the number of natural genera in that group will be clarified after further studies.
    [Show full text]
  • Riparian Vegetation of the River Murray COVER: Healthy Red Gum in the Kex)Ndrook State Forest Near Barham N.S.W
    Riparian Vegetation of The River Murray COVER: Healthy red gum in the Kex)ndrook State Forest near Barham N.S.W. Background, black box silhouette. PHOTO: D. Eastburn ISBN 1 R75209 02 6 RIVER MURRAY RIPARIAN VEGET ION STUDY PREPARED FOR: MURRAY-DARLING BASIN COMMISSION BY: MARGULES AND PARTNERS PTY LTD PAND J SMITH ECOLOGICAL CONSULTANTS DEPARTMENT OF CONSERVATION FORESTS AND LANDS VICTORIA January 1990 SUMMARY AND CONCLUSIONS The River Murray Riparian Vegetation Survey was initiated by the Murray­ Darling Basin Commission t9 assessJhe present status ofthe vegetationalong the Murray, to identify causes ofdegradation, and to develop solutions for its rehabilitation and long term stability. The study area was the floodplain of the Murray River and its anabranches, including the Edward-Wakool system, from below Hume Dam to the upper end of Lake Alexandrina. The components of the study were: · Literature Review A comprehensive bibliography was compiled on the floodplain vegeta­ tion, its environment and the impact ofman's activities. The literature was reviewed and summarised. · Floristic Survey A field survey was carried out, visiting 112 sites throughout the study area and collecting vegetation data from 335 plots. Data collected were the species present, their relative abundance, the condition of the eucalypts, the amount ofeucalypt regeneration and indices ofgrazing pressure. Brief studies were made of the effects of river regulation and salinisation at specific sites. Thirty-seven plant communities were identified from a numerical analyis ofthe floristic survey data. The differences reflect environmental changes both along the river and across the floodplain. The most important factors were identified as soil salinity levels and flooding frequency.
    [Show full text]
  • Reconstructing the Deep-Branching Relationships of the Papilionoid Legumes
    SAJB-00941; No of Pages 18 South African Journal of Botany xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Reconstructing the deep-branching relationships of the papilionoid legumes D. Cardoso a,⁎, R.T. Pennington b, L.P. de Queiroz a, J.S. Boatwright c, B.-E. Van Wyk d, M.F. Wojciechowski e, M. Lavin f a Herbário da Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil b Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH5 3LR Edinburgh, UK c Department of Biodiversity and Conservation Biology, University of the Western Cape, Modderdam Road, \ Bellville, South Africa d Department of Botany and Plant Biotechnology, University of Johannesburg, P. O. Box 524, 2006 Auckland Park, Johannesburg, South Africa e School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA f Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA article info abstract Available online xxxx Resolving the phylogenetic relationships of the deep nodes of papilionoid legumes (Papilionoideae) is essential to understanding the evolutionary history and diversification of this economically and ecologically important legume Edited by J Van Staden subfamily. The early-branching papilionoids include mostly Neotropical trees traditionally circumscribed in the tribes Sophoreae and Swartzieae. They are more highly diverse in floral morphology than other groups of Keywords: Papilionoideae. For many years, phylogenetic analyses of the Papilionoideae could not clearly resolve the relation- Leguminosae ships of the early-branching lineages due to limited sampling.
    [Show full text]
  • BSBI News Back Panel of Referees and Specialists Catalogue with Google
    CONTENTS Notes from the Receiving Editor............. 2 Vascular plant Red Data List: year 5 amendments Editorial..................................................... 3 ................ S.J. Leach & K.J. Walker 51 Marsh Botany Awards.............................. 4 New Flora of RHS Wisley and the Diary.......................................................... 4 host range of Lathraea clandestina Notes..................................................... 5-59 .........................................J. Armitage 57 Alopecurus aequalis at the Great Fen, Honorary membership..........T.G. Evans 59 Huntingdonshire. P. Stroh & M. Burton 5 Aliens.................................................. 60-78 Utricularia bremii in the New Forest Indian Balsam – triffid or treat? ...............................................M. Rand 8 .........................................J. Presland 60 Mire and wet heath restoration and Sedum kamtschaticum var. ellacombianum in management in Burnham Beeches. Johnston (v.c.45)..... S.D.S. Bosanquet 69 ....A.R. Westgarth-Smith, A. McVeigh Epilobium tournefortii...........M. Wilcox 70 .......................................& H.J. Read 10 Red Arum................................A. Galton 11 Focus on Apium leptophyllum Population structure and conservation of Genista .......................................E.J. Clement 76 anglica.....................................P.A. Vaughan 12 No future for Prunus mahaleb in Britain? Wild flower twitching.............C. Jacobs 17 .......................................E.J. Clement
    [Show full text]