Capsizing and Turtling! Oh My!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safety and Rescue
SAFETY AND RESCUE Ventilation and Fueling everyone on your boat knows the location of the fire the tide changes direction is known as “slack water.” extinguisher and its use. Operation of a fire extinguish- “High tide” is the highest level a tide reaches during Gasoline fumes are heavier than air and will er is rather simple. Just remember PASS. ascending waters, and “low tide” is the lowest level a settle to the lowest part of the boat’s interior hull, tide reaches during descending waters. the bilge. All motorboats, except open boats, must The tidal cycle is the high tide followed approxi- have at least two ventilator ducts with cowls (intake Running Aground mately 6 hours later by low tide (two highs and two and exhaust). Exhaust blowers are part of most boat Keep a sharp lookout when traveling on waters lows per day). The tidal range is the vertical distance ventilation systems. Permanently installed fuel that have shallow areas to avoid running aground. between high and low tides. The tidal range varies tanks must be vented. Navigational charts, buoys, and depth finders can from 1 to 11 feet in Pennsylvania on the Delaware Most boat explosions occur from improper fuel- assist in this task. If you run aground and the impact River. Boaters should consult tide tables for times of ing. Portable gas tanks should be filled on the dock does not appear to cause a leak, follow these steps to high and low tides. or pier, not on board. The vent on the tank should refloat the boat: be closed and the gas pumped carefully, maintain- • Do not put the boat in reverse. -
Dinghy14a 011419.Odt
CSC DINGHY SAILING MANUAL January 2019 Introduction Thereʹs no substitute for actual sailing if you want to learn to sail. This booklet is only intended as a technical reference, to reinforce sailing lessons. If youʹre new to sailing, relax—youʹre in good company. Most new members of the Cal Sailing Club do not know how to sail when they join. Put this book down until later, and go sailing. Credits Editor: John Bongiovani Author: John Bergmann Change History Anonymous. First published Edition. The club began about a century ago as an offshoot of a loose association of UC students and professors who were interested in sailing. Perhaps there was a manual—who knows? A manual for sailing was put together using a typewriter and hand drawn pictures, distributed in booklet format. The most memorable part was a cartoon telling how to get onto a Lido from the water, showing a shark. Fi.ing conveniently in a pocket, most copies were turned into pulp during the new owners first lesson. Sometime in the 1970s. 4arious minor changes stemming from disputes over gybing and other pe.ifoggery. Sometime during the disco era. The advent of the computer in revising the manual, but keeping the same organization. Major discovery: pdfs dont fit in pockets. Sometime in the Clinton era. Major revisions to re6ect the end of the Lido, which had served the club 7poorly8 since 1959. Sometime in the Bush II years 411. Joel Brandt June, 2011 Dinghy Manual. Cal Sailing Club January 2019 Page 2 412 John Bergmann, updated content and format, added detail on the R 4entures, March, 2016 413 Made corrections, added content on Quests, added more figures, and added a table of figures. -
SAFETY PRACTICES a BASIC GUIDE Adopted January 2002 Amended October 2014
INTERSCHOLASTIC SAILING ASSOCIATION SAFETY PRACTICES A BASIC GUIDE Adopted January 2002 Amended October 2014 Special thanks to our sister organization, the Intercollegiate Sailing Association of North America, for allowing us to use this Safety Guide, modeled after their own. TABLE OF CONTENTS General Safety Practices ..................................................... 1 Personal Equipment ............................................................ 2 Personal Training ................................................................ 4 Capsizes ............................................................................... 4 Safety Boats ........................................................................ 5 Safety Boat Crew Training ................................................... 6 Head Injury Awareness ....................................................... 9 References .......................................................................... 9 Foreword: Interscholastic (high school) sailing requires competitors to be safety conscious. It is our obligation to maintain the positive safety record that Interscholastic Sailing Association has enjoyed over the past 85 years. This is a BASIC GUIDE for Member Schools and District Associations to follow in regard to SAFETY PRACTICES during regattas, and instructional and recreational sailing. George H. Griswold As amended by Bill Campbell for ISSA 1. GENERAL SAFETY PRACTICES You sail because you enjoy it. In order to enhance and guarantee your enjoyment, there are a number of general -
Know About Boating Before You Go Floating
Know About Boating Before You Go Floating KEY TERMS All-around white light: Navigation light that Gunwale: Upper edge of a boat’s side. is visible in all directions around the boat from Hull: The main body of a boat. 2 miles away. Port: The left side of a boat. Bow: The front part of a boat. Propeller: A device with two or more blades Buoy: An object that floats on the water in that turn quickly and cause a boat to move. a bay, river, lake or other body of water and Sidelights: Red (port side) and green provides information to boats. (starboard side) navigation lights on a boat, Capsize: To turn a craft upside down in visible from 1 mile away. the water. Skipper: The person who commands a boat. Cleat: A wooden or metal fitting on the deck Starboard: The right side of a boat. of a boat. It has two projecting horns around which a rope or line may be tied. Stern: The back part of a boat. OBJECTIVES After completing this lesson, students will be able to: zz Name the main parts of a boat. zz Explain some boating terms. zz Describe some important safety equipment that should be on a boat. zz Demonstrate putting on a life jacket. zz Explain how to board a boat. zz Understand how to balance a boat. zz Explain what to do if a boat capsizes (turns over). MATERIALS, EQUIPMENT AND SUPPLIES zz Poster: Know About Boating Before You Go Floating zz Several Type II and/or Type III life jackets (in the various sizes that would fit the students) zz Mat or tape to create outline of boat zz Chairs (6) zz Watch or clock with a second hand zz Crayons, markers -
J/22 Sailing MANUAL
J/22 Sailing MANUAL UCI SAILING PROGRAM Written by: Joyce Ibbetson Robert Koll Mary Thornton David Camerini Illustrations by: Sally Valarine and Knowlton Shore Copyright 2013 All Rights Reserved UCI J/22 Sailing Manual 2 Table of Contents 1. Introduction to the J/22 ......................................................... 3 How to use this manual ..................................................................... Background Information .................................................................... Getting to Know Your Boat ................................................................ Preparation and Rigging ..................................................................... 2. Sailing Well .......................................................................... 17 Points of Sail ....................................................................................... Skipper Responsibility ........................................................................ Basics of Sail Trim ............................................................................... Sailing Maneuvers .............................................................................. Sail Shape ........................................................................................... Understanding the Wind.................................................................... Weather and Lee Helm ...................................................................... Heavy Weather Sailing ...................................................................... -
The Geography of Fishing in British Honduras and Adjacent Coastal Areas
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1966 The Geography of Fishing in British Honduras and Adjacent Coastal Areas. Alan Knowlton Craig Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Craig, Alan Knowlton, "The Geography of Fishing in British Honduras and Adjacent Coastal Areas." (1966). LSU Historical Dissertations and Theses. 1117. https://digitalcommons.lsu.edu/gradschool_disstheses/1117 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been „ . „ i i>i j ■ m 66—6437 microfilmed exactly as received CRAIG, Alan Knowlton, 1930— THE GEOGRAPHY OF FISHING IN BRITISH HONDURAS AND ADJACENT COASTAL AREAS. Louisiana State University, Ph.D., 1966 G eo g rap h y University Microfilms, Inc., Ann Arbor, Michigan THE GEOGRAPHY OP FISHING IN BRITISH HONDURAS AND ADJACENT COASTAL AREAS A Dissertation Submitted to the Graduate Faculty of the Louisiana State university and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geography and Anthropology by Alan Knowlton Craig B.S., Louisiana State university, 1958 January, 1966 PLEASE NOTE* Map pages and Plate pages are not original copy. They tend to "curl". Filmed in the best way possible. University Microfilms, Inc. AC KNQWLEDGMENTS The extent to which the objectives of this study have been acomplished is due in large part to the faithful work of Tiburcio Badillo, fisherman and carpenter of Cay Caulker Village, British Honduras. -
Full-Scale Ship Collision, Grounding and Sinking Simulation Using Highly Advanced M&S System of FSI Analysis Technique
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 173 ( 2017 ) 1507 – 1514 11th International Symposium on Plasticity and Impact Mechanics, Implast 2016 Full-Scale Ship Collision, Grounding and Sinking Simulation using Highly Advanced M&S System of FSI Analysis Technique Sang-Gab Leea*, Jae-Seok Leeb, Hwan-Soo Leeb, Ji-Hoon Parkb and Tae-Young Jungb a Professor & a President, b Graduate Student, Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime & Ocean University, Marine Safety Technology, 727 Taejong-Ro, Yeongdo-Gu, Busan, 49112, Korea Abstract To ensure an accurate and reasonable investigation of marine accident causes, full-scale ship collision, grounding, flooding, capsizing, and sinking simulations would be the best approach using highly advanced Modeling & Simulation (M&S) system of Fluid-Structure Interaction (FSI) analysis technique of hydrocode LS-DYNA. The objective of this paper is to present the findings from full-scale ship collision, grounding, flooding, capsizing, and sinking simulations of marine accidents, and to demonstrate the feasibility of the scientific investigation of marine accident causes and for the systematic reproduction of accident damage procedure. © 2017 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license © 2016 The Authors. Published by Elsevier Ltd. (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of Implast 2016. Peer-review under responsibility of the organizing committee of Implast 2016 Keywords: Highly Advanced Modeling & Simulation (M&S) System; Fluid-Structure Interaction (FSI) Analysis Technique; Full-Scale Ship Collision, Grounding, Flooding, Capsizing and Sinking Simulations; LS-DYNA code. -
Aerated Water
Science of Sport: Sailing Can you adjust the sails to make the boats follow the tracks? Do - Think - Learn Move the sails so that the boats follow the tracks. What did you have to do to make the boats follow the tracks? Were you successful? The Science Bit The physics of sailing involves the interaction of the wind and sails and the interaction of the water and keel. To propel a sailing boat the force of the wind needs to be deflected, resulting in the boat travelling in the desired direction and not capsizing. The sails act as aerofoils which deflect the flow of the wind. The keel of the boat stops the boat moving sideways by pushing on the water. Sails propel the boat in one of two ways: 1. When the boat is going in the direction of the wind (i.e. downwind) the sails may be set merely to trap the air as it flows by. The wind pushes on the sail propelling the boat forwards. 2. When sailing towards the wind (upwind) the sails act as aerofoils to propel the boat by redirecting the wind coming in from the side and pushing it towards the rear. By Newton’s 3rd law (action and reaction are equal and opposite) the boat is pushed forwards. Also as the wind flows over the sail, the pressure difference generated by the shape of the sail results in forces on sails including drag and lift. Curriculum Links Forces Identify the effects of air resistance, water resistance and friction that act between moving surfaces Forces and Motion Forces being needed to cause objects to stop or start moving, or to change their speed or direction of motion . -
Lesson from Saturday = Be Big and Hike Till It Hurts, Then Hike Harder
Week 6: Lesson from Saturday = be big and hike till it hurts, then hike harder First of all, thank you to Andrew Scrivan for breaking your top section and thank you to Steve Fisk for giving him a leaky boat to use after that. Also thank you to Mike Matan for capsizing at the gybe mark in race 5. These are just a few of the many pieces had to fall in to place for my result to end up as well as it did. There were a lot of fast boats out there and most people had a very consistent day, making for plenty of excitement and close racing. I don't think anyone was upset by the postponement before racing, so good job to the race committee for keeping us out of the rain, which would have made it uncomfortable, and keeping us out of the lightning, which would have been unsafe. The breeze followed the forecast of blowing hard all morning and then picking up even more in the afternoon. Courses were another plus for the race committee. Perfect length and many fun (and stable) reaches, along with the weather mark being sheltered by the island to allow us to take a deep breath before being drowned in spray on the reaches. Thanks again. Now on to the sailing. In addition to being a tall person and incredibly fit, sail controls were exceptionally important. Before the first race, I pulled my outhaul until the hook that attaches it to the sail was touching the eye on the boom. -
Excerpts from a Sailor's Wind Journal
A Fine Reach Home: Excerpts from a Sailor’s Wind Journal Lynn Fels English Bay, 1976, International 14 We surface amidst sodden sails, shouting in surprise and haste. “Are you okay?” “Where are you?” “Hang on to the gunwale, no wait, swim the bow into the wind, now swim over here, we’ll bring her up together.” Martin and I, skipper and crew, throw our weight onto the centerboard. The boat reluc- tantly responds, the mast tilting skyward, rising from the sea. I taste the salt of ocean spray that catches me unaware after so many years of sailing fresh-waters. Equilibrium restored, seawater emptying through the automatic bailers, our sailboat moves across the water in ecological tension between human, craft, wind, and geography. Martin tends to the navigation, attentive weight- ing of hand on tiller, as I set the jib and cleat the sheet. Shifting body weight, secured by the trapeze,I feel the arc of body, an embodied inter- pretation of movement in response to the wind’s presence in the tautness of the sails. Sailing in the various conditions of wind requires an instinctive chore- ography of release and defiance, surrender and embrace, by skipper and crew. 180 Canadian Journal of Environmental Education, 13 (2), 2008 This is what holds me to task, as I swing in and out of the boat secured to the mast by the trapeze wire that holds me in place. “Wind’s coming! Trapeze!” Martin yells, but I am already in concert with the wind, welcoming its arrival, anticipating its departure. Sailing, a harnessing of wind with canvas to propel a sailboat across dis- tances of water, in winds shaped by landforms, airflow and temperature, requires constant renegotiation by skipper and crew in response to the wind’s changeable presence. -
Final Section Demonstrates the Actual Application of the System to an On-Water Trial
Journal of Sailing Technology, Article 2017-02. © 2017, The Society of Naval Architects and Marine Engineers. DEVELOPMENT OF A SAILING-SPECIFIC POSE CAPTURE METHOD TO MEASURE DYNAMIC SAILOR LOADINGS J. C. Taylor; J. Banks; D. Taunton; S. R. Turnock; D. Hudson Fluid Structure Interactions Group, University of Southampton Manuscript received January 23, 2017; revision received April 6, 2017; accepted April 29, 2017. Abstract: Research into the dynamics of sailing vessels, most notably yachts, has led to the development of sophisticated models including the unsteady aero and hydrodynamics Downloaded from http://onepetro.org/jst/article-pdf/2/01/1/2205407/sname-jst-2017-02.pdf by guest on 02 October 2021 and even sailor's tactics. However, the time-varying loadings caused by a sailor’s motions have typically been neglected in velocity prediction programs (VPPs). When applied to the assessment of sailing dinghy performance, the position and motions of the crew are significant but impractical to measure mechanically. A sailing-specific pose capture method to determine the sailor loadings using orientation sensors and a model of the sailor’s mass distribution is presented. The accuracy of the hiking moment estimate was evaluated using laboratory-based measurements. The estimated hiking moment exhibits excellent dynamic tracking of the measured moment. The method is used to measure on- water hiking moment for the first time and the results are discussed. The proposed method provides a platform to analyze and model how sailor-generated forces interact with the sailboat to affect boat speed. This can be used alongside realistic modelling of the wind and wave loadings to extend existing time-domain dynamic velocity prediction programs (DVPPs). -
A Reference for Rigging, Storing, and Troubleshooting RS Quests
Questland A Reference for Rigging, Storing, and Troubleshooting RS Quests Developed by Benjamin Geffken Last Updated: July 1, 2018 2 Table of Contents Rigging 4 Sails 5 Jib 5 Spinnaker 5 Attaching the Tackline (1 of 2) 6 Check Spin Halyard goes up to Port of Everything, comes down to Starboard 8 Attaching the Head of the Spinnaker (1 of 2) 9 Locating the Downhaul 11 Leading the Downhaul through the Bow Opening 12 Leading the Downhaul up through the Silver Ring 13 Leading the Downhaul up to the Canvas X 14 Tying the Downhaul to the Canvas X 15 Attaching the Spin Sheets to the Clew - Luggage Tag 16 Leading a Spin Sheet through its Block 18 Tying the Spin Sheets Together - Water Knot (1 of 4) 19 Rigged Spinnaker 24 Mainsail 25 Steps of Reefing 25 Rigging the Tack Strap 26 Rigged Outhaul 27 Rigged Cunningham 28 Tying a Bobble Knot (1 of 2) 29 Line Control 31 Rigged Reefing Outhaul (1 of 2) 32 Starboard View of Reefed Quest 34 Port View of Reefed Quest 35 Blades 35 Centerboard 36 Rudder 36 3 Derigging 37 Sails 37 Jib 37 Spinnaker 38 Mainsail 38 Rolling the Mainsail (1 of 2) 39 Attaching the Jib Sock 41 Blades 42 Storage 43 Charlestown 44 Jamaica Pond 45 Quest-specific Quirks 46 Roller Furler 47 Gnav 47 Beam Drainage Hole 49 Rudder Safety Release 50 Popping a Rudder Back into Place (1 of 2) 50 The Three Rudder Positions: Sailing, Beaching, Beached 52 Maintenance 53 Forestay Tension Clip - Self-Destructive (1 of 2) 54 Solution 55 The Rig Tension Problem 56 Current Compromise 56 Taping the Forestay Swivel 57 Caulked Seam near Spinnaker Sleeve on Bow 58 Using the Drop Nose Pins 59 Controlling the Extension of the Bowsprit 60 Distance between the Base of the Bowsprit and the Hull 61 Fusing the Lines 62 Adding Rudder Safety Lines 63 Masthead Floats 64 Bent Reefing Tack-Hook Pins 65 Notes on Maintenance 66 4 Rigging 5 Sails Jib Jibs are normally left furled around the forestay, covered by a jib sock.