Solar System Exploration and Research on Icy Moons at the German Aerospace Center Oliver Funke

Total Page:16

File Type:pdf, Size:1020Kb

Solar System Exploration and Research on Icy Moons at the German Aerospace Center Oliver Funke DLR.de • Chart 1 > PPOSS 2017 > Funke > 23.01.2017 Solar system exploration and research on icy moons at the German Aerospace Center Oliver Funke DLR - German Aerospace Center Space Administration | Navigation DLR.de • Chart 2 > PPOSS 2017 > Funke > 23.01.2017 Sketch of DLR and given constraints Germany’s national aeronautics and space research centre DLR aeronautics space energy transport security R&D Space Space DLR Space Administration (Bonn): planning and implementation Administration of the German space programme representation of Germany‘s interests at ESA research funding agency BMWi Federal Ministry of Economic Affairs Funding of DLR R&D and Energy not allowed ! DLR.de • Chart 3 > PPOSS 2017 > Funke > 23.01.2017 DLR Space Administration Dept. of Navigation: Overview DLR.de • Chart 4 > PPOSS 2017 > Funke > 23.01.2017 DLR Space Administration Dept. of Navigation: Programme lines 1. GNSS applications and new services (RTK receiver, RAIM technologies) 2. Space segment and payload (Galileo next generation technologies) 3. Innovative new technologies for navigation: autonomous navigation (AI), sensor fusion, … development of key technologies for navigation required for future space missions: inititation of projects (also on basis of own ideas) at least 60% navigation context up to 40% other required aspects (e.g. adequate technology carrier, …) generation of terrestrial spin off applications DLR.de • Chart 5 > PPOSS 2017 > Funke > 23.01.2017 Jupiter‘s and Saturn‘s Icy Moons • Jupiter‘s moon Europa: global water ocean beneath thick (up to several 10 km) layer of ice • Technical challenge: How to access and explore the ocean? First approach suggestion by Zimmerman et al. (NASA/JPL): Cryobot: An Ice Penetrating Robotic Vehicle for Mars and Europa Published in: Aerospace Conference, 2001, IEEE Proceedings. (Volume:1) Artists impression of Europa‘s ocean. Credit: NASA/JPL-Caltech DLR.de • Chart 6 > PPOSS 2017 > Funke > 23.01.2017 Cryobot and Hydrobot Prototype of the Cryobot Credit: NASA/JPL Artists impression of cryobot and hydrobot in Europa exploration scenario. Credit: NASA/JPL DLR.de • Chart 7 > PPOSS 2017 > Funke > 23.01.2017 Two category IV future missions: EurEx and EnEx Feasibility analysis and first developments initiated and funded by DLR Space Administration DLR.de • Chart 8 > PPOSS 2017 > Funke > 23.01.2017 EurEx – Europa Explorer GPHS RTG within surface lander, Initial project phase 2012 - 2015 energy to Teredo is transmitted by cable connection Legend to image on the right: 0 Melting Probe (MP) IceShuttle „Teredo“ 1 Autonomous Underwater Vehicle (AUV) „Leng“ 2 decend of AUV 3 acoustic navigation concept and exploration phase of sea ground 4 ascending phase of AUV, returning to Teredo base 5 data communication to Teredo Early stage EurEx mission concept. Credit: DFKI DLR.de • Chart 9 > PPOSS 2017 > Funke > 23.01.2017 EurEx Status after initial phase first prototypes of Teredo and Leng docking mechanism acoustic navigation with Microgliders advances in autonomy first mission analysis and visualization by simulation tool appropriate landing sites discussed follow up phase „EurEx Phase 2“ planned: further steps in navigation + autonomy miniaturization of AUV and MP proof of concept in Arctic field test Credit: DFKI DLR.de • Chart 10 > PPOSS 2017 > Funke > 23.01.2017 EurEx Landing sites Thera Macula: supposed subglacial lake on Europa Ivanov, M.; et al., Landforms of Europa and selection of landing sites, Advances in Space Research: 661-677, 2011 Direct access to Europa‘s ocean not envisaged due to technical limitations: power supply transmittance refreezing melting hole cable connection got to be implemented into MP strong Thera Macula limitation for cable length! Credit: NASA DLR.de • Chart 11 > PPOSS 2017 > Funke > 23.01.2017 Cassini at Enceladus Saturn‘s moon Enceladus. Credit: NASA/JPL/Space Science Institute 2005: discovery of active cryovolcanism ! Ice particles blown into space several 100 km Passing through ejected ice particles revealed presence of organic compounds within! Ice fountains originate from subglacial ocean Thickness of surface ice crust up to 35 km Artists impression of Enceladus‘ ocean. Credit: NASA/JPL-Caltech DLR.de • Chart 12 > PPOSS 2017 > Funke > 23.01.2017 EnEx – Enceladus Explorer Initial project phase 2012 - 2015 Basic idea: sampling of upwelling water in a cryovolcano feeding crevasse at a depth of 100 to 200 m Project tasks: utilisation of a melting probe with fully 3D maneuverability the IceMole of FH Aachen development of 3D navigation in-situ decontamination sampling ability preliminary first mission design field test validation in First prototype of the IceMole Credit: FH Aachen terrestrial “Enceladus-similar” environment DLR.de • Chart 13 > PPOSS 2017 > Funke > 23.01.2017 The Joint Project EnEx Feb 2012 – Mar 2015 Partners: • FH Aachen • Universität der Bundeswehr München • TU Braunschweig • Universität Bremen • RWTH Aachen • Bergische Universität Wuppertal Associated collaboration with MIDGE project (J. Mikucki, S. Tulaczyk): Minimally Invasive Direct Glacial Exploration (NSF funded) Successive field tests at Swiss Alps, 2013 first test on Canada glacier, Antarctica Final field test in Antarctica Nov/Dec 2014 DLR.de • Chart 14 > PPOSS 2017 > Funke > 23.01.2017 The EnEx-IceMole DLR.de • Chart 15 > PPOSS 2017 > Funke > 23.01.2017 Blood Falls, Antarctica A terrestrial Enceladus like Scenario Credit: NSF DLR.de • Chart 16 > PPOSS 2017 > Funke > 23.01.2017 Concept of Field Test Blood Falls at Taylor glacier, Antarctica Dachwald et al. in Annals of Glaciology 2014 (modified slightly by Funke) DLR.de • Chart 17 > PPOSS 2017 > Funke > 23.01.2017 Clean Sampling Preparation of EnEx-IceMole in Lab before shipping to Antarctica Photos courtesy of Ilya Digel, FH Aachen/Jülich DLR.de • Chart 18 > PPOSS 2017 > Funke > 23.01.2017 Green light for Blood Falls field test DLR.de • Chart 19 > PPOSS 2017 > Funke > 23.01.2017 S U C C E S S First ever extraction of samples from Blood Falls Photos courtesy of EnEx field test team, FH / RWTH Aachen DLR.de • Chart 20 > PPOSS 2017 > Funke > 23.01.2017 Technical Conclusions and Continuation EnEx-IceMole prooved basic mission concept Localization and navigation capability successfully demonstrated In-situ decontamination successful in terrestrial field test Continuance phase started in 2015 with variety of single projects Focus on full autonomy of probe enhanced sensor ranges high level computer simulation Photo courtesy of EnEx field test team, FH / RWTH Aachen HW tests in vacuum miniaturization of EnEx-IceMole DLR.de • Chart 21 > PPOSS 2017 > Funke > 23.01.2017 The „EnEx – Enceladus Explorer Initiative“ • Coordination and funding of the individual projects by DLR Space Administration • Close internal collaboration across departments: Navigation Microgravity Research and Life Sciences Human Spaceflight, ISS and Exploration General Technologies and Robotics www.dlr.de/rd/EnEx Purpose: Demonstrate technical feasibility and propose EnEx and/or EurEx like missions to ESA EurEx is part of the (time horizon for mission at target: 204x) EnEx Initiative DLR.de • Chart 22 > PPOSS 2017 > Funke > 23.01.2017 PPOSS relevant results and open questions Lessons learnt (+ positive / – negative) (+) Project results indicate that collection of englacial samples for microbiological analysis is feasible with melting probes. (+) Successful retrieval of uncontaminated subglacial samples will provide an important example for the clean exploration of icy environments on Earth and their potential for the use of this technology for future icy body exploration missions. (-) The method of recovering microorganisms from different solid surfaces is critical for reliability and objectivity of sampling and microbiological risk assessment. Today, sampling by cotton or rayon swabs is undeservedly considered the “gold standard”. In our study, traditional swab-based methods were found to be inaccurate, time consuming and prone to significant variations due to uncontrollable contribution from multiple factors, including (a) operator qualification; (b) sampling room conditions; (c) swab material; (d) microorganism’s type and (e) surface roughness. There is a necessity in development of alternative sampling methods, corresponding fulfilling to the current requirements to efficacy, accuracy and reproducibility. DLR.de • Chart 23 > PPOSS 2017 > Funke > 23.01.2017 PPOSS relevant results and open questions Lessons learnt (+ positive / – negative) (-) Even in the absence of viable microorganisms after microbiological disinfection was done, some of their biochemical components persistently remain on the treated surfaces. In particular, lipopolysaccharides (LPS) represent an extremely problematic component of the remaining bioload. Can the EnEx concept be expanded for implementation of GPHS-RTG power supply unit into EnEx-IceMole? Can be considered to implement GPHS-RTG into EurEx-AUV? If so, safety requirements and other constraints have to be defined and evaluated.
Recommended publications
  • Comparative Saturn-Versus-Jupiter Tether Operation
    Journal of Geophysical Research: Space Physics Comparative Saturn-Versus-Jupiter Tether Operation J. R. Sanmartin1 ©, J. Pelaez1 ©, and I. Carrera-Calvo1 Abstract Saturn, Uranus, and Neptune, among the four Giant Outer planets, have magnetic field B about 20 times weaker than Jupiter. This could suggest, in principle, that planetary capture and operation using tethers, which involve B effects twice, might be much less effective at Saturn, in particular, than at Jupiter. It was recently found, however, that the very high Jovian B itself strongly limits conditions for tether use, maximum captured spacecraft-to-tether mass ratio only reaching to about 3.5. Further, it is here shown that planetary parameters and low magnetic field might make tether operation at Saturn more effective than at Jupiter. Operation analysis involves electron plasma density in a limited radial range, about 1-1.5 times Saturn radius, and is weakly requiring as regards density modeling. 1. Introduction All Giant Outer planets have magnetic field B and corotating plasma, allowing nonconventional exploration. Electrodynamic tethers, which are thermodynamic (dissipative) in character, can 1. provide propellantless drag both for deorbiting spacecraft in Low Earth Orbit at end of mission and for planetary spacecraft capture and operation down the gravitational well, and 2. generate accompanying, useful electrical power, or store it to later invert tether current (Sanmartin et al., 1993; Sanmartin & Estes, 1999). At Jupiter, tethers could be effective because its field B is high (Sanmartin et al., 2008). Tethers would allow a variety of science applications (Sanchez-Torres & Sanmartin, 2011). The Saturn field is 20 times smaller, however, and tether operation involves field B twice, which makes that thermodynamic character manifest: 1.
    [Show full text]
  • Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
    Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.
    [Show full text]
  • Enceladus Explorer: Next Steps in the Development and Testing of a Steerable Subsurface Ice Probe for Autonomous Operation
    Enceladus and the Icy Moons of Saturn (2016) 3031.pdf ENCELADUS EXPLORER: NEXT STEPS IN THE DEVELOPMENT AND TESTING OF A STEERABLE SUBSURFACE ICE PROBE FOR AUTONOMOUS OPERATION. B. Dachwald1, J. Kowalski2, F. Baader1, C. Espe1, M. Feldmann1, G. Francke1, E. Plescher1, 1Faculty of Aerospace Engineering, FH Aachen University of Applied Sciences, Hohenstaufenallee 6, 52064 Aa- chen, Germany, [email protected], 2Aachen Institute for Advanced Study in Computational Engineering Sci- ence, RWTH Aachen University, Germany Introduction: Direct access to subsurface liquid flexibly organized initiative with sub-projects focused material for in-situ analysis at Enceladus' South Polar on key research and development areas. The sub- Terrain is very difficult and requires advanced access project at FH Aachen is called EnEx-nExT (Environ- technology with a high level of cleanliness, robustness, mental Experimental Testing). Since the EnEx- and autonomy. A new technological approach has been IceMole was quite large (15 x 15 x 200 cm) and heavy developed as part of the collaborative research project / (60 kg), a much smaller (8 x 8 x 40 cm) and light- initiative “Enceladus Explorer” (EnEx) [1]. Within weight (< 5 kg) probe is currently developed within EnEx, the required technology for a potential Encela- EnEx-nExT. In the next two years, this smaller probe dus lander mission [2] is developed, evaluated, and will be tested in a vacuum chamber under simulated tested, with a strong focus on a steerable subsurface ice space conditions (pressure < 6 mbar, temperature probe. The EnEx probe shall autonomously navigate < 100 K) to prove the applicability of combined drill- through the ice and find a location where a liquid water ing and melting probes under more Enceladus-like sample can be taken and analyzed in situ.
    [Show full text]
  • The Europa and Enceladus Explorer Mission Designs. K
    Workshop on the Habitability of Icy Worlds (2014) 4043.pdf TOWARDS AN ASTROBIOLOGICAL VISION FOR THE OUTER SOLAR SYSTEM: THE EUROPA AND ENCELADUS EXPLORER MISSION DESIGNS. K. Konstantinidis1, C. L. Flores Martinez2, M. Hildebrandt3, and R. Förstner1, 1Bundeswehr University Munich, Institute for Space Technology and Space Applications, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Bavaria, Germany, e-mail:[email protected] 2University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 234, 69120 Heidelberg, Baden- Wurttemberg, Germany, e-mail: [email protected], 3German Research Institute for Artificial Intelligence (DFKI), Robert-Hooke-Straße 5, 28359, Bremen, Germany, e-mail: [email protected] Introduction: The firmly astrobiologically in-situ analysis of ice and subglacial liquids. The EnEx oriented exploration of the Solar System promises to mission concept under development at the Institute for revolutionize our understanding of how and where life Space Technology and Space Applications (ISTA) of in the Universe can originate, evolve and develop. In the Bundeswehr University Munich is comprised of a case organisms, which arose independently from Lander carrying a nuclear reactor providing 5 kW of terrestrial life, can be discovered beyond Earth, general electrical power, and the IceMole, and an Orbiter with notions of evolutionary biology, planetary science and the main function to act as a communications relay even cosmology will undergo revision in light of more between the Lander and Earth. After launch, the widespread biological activity throughout the Cosmos. combined spacecraft uses the on-board nuclear reactor In more practical terms the great hypothesis of a living to power electric thrusters and eventually capture Universe can only be verified, or falsified, via around Enceladus.
    [Show full text]
  • Dienstag, 15. März 2016 Vorträge/Poster
    Dienstag, 15. März 2016 Vorträge/Poster 45 DIENSTAG, 15.03.2016 15.03.2016, DIENSTAG 09:30–09:45 3-B.003 6-B Geophysical Methods – Oral Session 2 – Seismik Seismotectonics of the Pamir and the 1911/2015 M7 Sarez earthquake doublet Schurr, B., Kulikova, G., Krüger, F., Metzger, S., Zhang, Y., Ratschbacher, L., Yuan, X. Dienstag, 15. März 2016 | 09:00–10:30 | Raum: HS1 Moderation: Stefanie Donner 09:45–10:00 3-B.004 Imaging the deep structure of the northeastern and eastern margins of the Tibet 09:00–09:15 6-B.001 plateau Data-driven near-surface velocity analysis Mechie, J., Qian, H., Karplus, M., Feng, M., Li, H., Zhao, W. Guntern, C., Schwarz, B., Gajewski, D. 10:00–10:15 3-B.005 09:15–09:30 6-B.002 Seismische Streuung und Dämpfung am Vulkan Ätna Wavefront-based joint passive source location and velocity inversion Zieger, T., Sens-Schönfelder, C., Ritter, J.R.R. Schwarz, B., Bauer, A., Gajewski, D. 10:15–10:30 3-B.006 09:30–09:45 6-B.003 1-D and 3-D velocity analysis of the West Bohemia seismic zone A new filter function for diffraction separation with finite-offset CRS Kieslich, A., Alexandrakis, C., Calò, M., Vavryčuk, V., Buske, S. Wissmath, S., Vanelle, C., Schwarz, B., Gajewski, D. 09:45–10:00 6-B.004 Improved stacking workflow for diffraction imaging Walda, J., Schwarz, B., Gajewski, D. 2-B Exploration and Monitoring – Oral Session 2 – Monitoring/Geothermal 10:00–10:15 6-B.005 Utilizing diffractions: wavefront-based tomography revisited Dienstag, 15.
    [Show full text]
  • Bare-Tether Missions Paradigm for Exploration of Oceanworlds in Plumes of Icy Moons Enceladus, Europa, and Triton
    Bare-Tether Missions Paradigm for Exploration of OceanWorlds in Plumes of Icy Moons Enceladus, Europa, and Triton Juan R. Sanmartin 34 + 910675922 Universidad Politécnica de Madrid / Emerito Real Academia de Ingeniería [email protected] I.- Introduction The case of Ice Giants, which only received flyby missions, is of particular interest as regards exploration. There are multiple issues of interest in exploring Uranus and Neptune as different from Gas Giants: Composition is definitely different; rocky mass-percent is much larger; both planetary dynamics and magnetic structures present striking differences (quite relevant for tether interaction); exoplanet statistics suggests Ice types are well more abundant than Gas types. This raises questions about exomoons and exomagnetics… As regards considering tethers for a Neptune mission, beyond just a flyby, there would seem to exist a basic problem with standard methods. The Introduction section of NASA’s “Ice Giants” Pre-Decadal Mission Study Report, JPL D-100520, June 2017 (529 pp), in Sec.2.3.3, recalls the multiple studies, over the last half-century, on mission design options for exploration of Uranus and Neptune, ranging from just chemical propulsion to electric propulsion, both with and without gravity assists, and a variety of mission architectural concepts. First, such faraway missions appear quite costly. In the Report the estimated cost of a Flagship Neptune mission was $1.972B, $300M less for Uranus, whereas total budget for both planets was $2B. Secondly, available solar power is practically nil in a large part of the trip, spacecraft capture by chemical propulsion leading to high wet-mass, with scientific load limited to a small mass fraction, and orbital maneuvers quite reduced after capture.
    [Show full text]
  • Enceladus -Home of Extraterrestrial Life? Pia Friend*, Alex Kyriacou
    Enceladus -home of extraterrestrial life? Pia Friend*, Alex Kyriacou Astroparticle School 2018 Obertrubach-Bärnfels October 3rd -11th 1 Just one of Saturn’s icy moons? Credit: John Spencer With a position at 10 AU, Enceladus is far outside the habitable zone! [email protected] Enceladus 09.10.2018 2 …but as we all know, aliens must exist.... Credit: John Spencer Credit: Image.google.de [email protected] Enceladus 09.10.2018 3 So, let’s have a closer look: §Diameter of about 500 km §Surface temperature of about -200 °C §Very high albedo -> Due to young icy surface -> Geologically active body §Moment of inertia = 0.335 (0.4 for homogenous rocks) -> Enceladus is a differentiated body Enhanced colour image from Cassini. Credit: NASA [email protected] Enceladus 09.10.2018 4 Differentiation of planetary bodies §Accretion of “random” material in young solar system §Heating after accretion due to decay of short-lived (now distinct) isotopes - e.g. 26Al -> Bodies large and old enough to inherited sufficient short-lived isotopes got melted and have separated Crust lighter Mantle elements heavier Core elements Undifferentiated body Redistribution of elements Differentiated body Increasing temperature [email protected] Enceladus 09.10.2018 5 Differentiation of planetary bodies Earth: bulk density of ~5.5 g/cm3 Enceladus: bulk density of ~1.6 g/cm3 Mantle: Crust: H O (liquid and solid) O, Si, Al, Ca, Na 2 Core: metals and Mantle: silicates Si, Fe, Mg Core: Fe, Ni No crust Credit: ubisafe.org Credit: hagablog.co.uk [email protected] Enceladus 09.10.2018 6 Cassini’s discoveries I 2005: south polar plume (cryovulcanism) on Enceladus discovered by distant high phase imaging -> Enceladus unite liquid water with thermal energy Enhanced pseudocolour image from Cassini.
    [Show full text]
  • Design and Deployment of a 3D Autonomous Subterranean Submarine Exploration Vehicle
    DESIGN AND DEPLOYMENT OF A 3D AUTONOMOUS SUBTERRANEAN SUBMARINE EXPLORATION VEHICLE William C. Stone, Stone Aerospace / PSC, Inc. 3511 Caldwell Lane, Del Valle, TX 78617, Ph: (512) 247-6385, [email protected] ABSTRACT likely include the following components: The NASA Deep Phreatic Thermal Explorer • the parent spacecraft, which will remain in orbit (DEPTHX) project is developing a fully autonomous either about Jupiter or about Europa and which will underwater vehicle intended as a prototype of primarily serve as a data relay back to Earth from the the Europa lander third stage that will search for Lander. microbial life beneath the ice cap of that Jovian • the Lander, which will be a 3-stage device: moon. DEPTHX has two principal objectives: First, to develop and test in an appropriate environment Stage 1: the physical landing system that will contain the ability for an un-tethered robot to explore into propulsion systems, power, and data relay systems to unknown 3D territory, to make a map of what it sees, communicate with the orbiter, and which will control and to use that map to return home; and second, to and carry out the descent and automated landing on demonstrate that science autonomy behaviors can the moon. identify likely zones for the existence of microbial life, to command an autonomous maneuvering Stage 2: the “cryobot” second stage, which will melt platform to move to those locations, conduct localized a hole through up to ten kilometers of ice cap before searches, and to autonomously collect microbial reaching the sub-surface liquid ocean. Although the life in an aqueous environment.
    [Show full text]
  • Rest of the Solar System” As We Have Covered It in MMM Through the Years
    As The Moon, Mars, and Asteroids each have their own dedicated theme issues, this one is about the “rest of the Solar System” as we have covered it in MMM through the years. Not yet having ventured beyond the Moon, and not yet having begun to develop and use space resources, these articles are speculative, but we trust, well-grounded and eventually feasible. Included are articles about the inner “terrestrial” planets: Mercury and Venus. As the gas giants Jupiter, Saturn, Uranus, and Neptune are not in general human targets in themselves, most articles about destinations in the outer system deal with major satellites: Jupiter’s Io, Europa, Ganymede, and Callisto. Saturn’s Titan and Iapetus, Neptune’s Triton. We also include past articles on “Space Settlements.” Europa with its ice-covered global ocean has fascinated many - will we one day have a base there? Will some of our descendants one day live in space, not on planetary surfaces? Or, above Venus’ clouds? CHRONOLOGICAL INDEX; MMM THEMES: OUR SOLAR SYSTEM MMM # 11 - Space Oases & Lunar Culture: Space Settlement Quiz Space Oases: Part 1 First Locations; Part 2: Internal Bearings Part 3: the Moon, and Diferent Drums MMM #12 Space Oases Pioneers Quiz; Space Oases Part 4: Static Design Traps Space Oases Part 5: A Biodynamic Masterplan: The Triple Helix MMM #13 Space Oases Artificial Gravity Quiz Space Oases Part 6: Baby Steps with Artificial Gravity MMM #37 Should the Sun have a Name? MMM #56 Naming the Seas of Space MMM #57 Space Colonies: Re-dreaming and Redrafting the Vision: Xities in
    [Show full text]
  • Arxiv:1803.04883V1 [Physics.Flu-Dyn] 13 Mar 2018
    Melting probe technology for subsurface exploration of extraterrestrial ice – Critical refreezing length and the role of gravity K. Sch¨uller, J. Kowalski∗ AICES Graduate School, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany. Abstract The ’Ocean Worlds’ of our Solar System are covered with ice, hence the water is not directly accessible. Using melting probe technology is one of the promising technological approaches to reach those scientifically interesting water reservoirs. Melting probes basically consist of a heated melting head on top of an elongated body that contains the scientific payload. The traditional engineering approach to design such melting probes starts from a global energy balance around the melting head and quantifies the power necessary to sustain a specific melting velocity while preventing the probe from refreezing and stall in the channel. Though this approach is sufficient to design simple melting probes for terrestrial applications, it is too simplistic to study the probe’s performance for environmental conditions found on some of the Ocean’s Worlds, e.g. a lower value of the gravitational acceleration. This will be important, however, when designing exploration technologies for extraterrestrial purposes. We tackle the problem by explicitly modeling the physical processes in the thin melt film between the probe and the underlying ice. Our model allows to study melting regimes on bodies of different gravitational acceleration, and we explicitly compare melting regimes on Europa, Enceladus and Mars. In addition to that, our model allows to quantify the heat losses due to convective transport around the melting probe. We discuss to which extent these heat losses can be utilized to avoid the necessity of a side wall heating system to prevent stall, and introduce the notion of the ’Critical Refreezing Length’.
    [Show full text]
  • J. R. Sanmartin, J. Pelaez, H. B. Garrett, & I. Carrera
    On Use of Electrodynamic Tethers for Saturn Missions II J. R. Sanmartin1 , J. Pelaez1, H. B. Garrett,2 & I. Carrera1 (1) E. T. S. I. A. E. , Universidad Politécnica de Madrid. (2) J. P. L./ California Institute of Technology. 1. Saturn versus Jupiter in Tether Operations 2. Can a tether at Saturn capture a S/C with mass ratio of 3? All Giant Planets have plasma & magnetic field B allowing non-conventional explorations: For aluminum, ≈ 0.0083 for Saturn and 2.11 for Jupiter. A gravity-assist from Jupiter in a Hohmann route to Saturn could shorten the trip and reduce v∞, increasing by a 4.8 factor. Electrodynamic tethers (thermodynamic in character) can a) provide propellant-less drag for planetary capture and operation down the gravitational well, 1) Averaging over angle between tether and Em in wd, arises from tether spin introduced for Jupiter to and b) generate accompanying power, or store it to later invert tether current limit tether bowing [2]. For the Saturn weak-field no spin is required, wd increasing by about 2. Tethers are effective at Jupiter because its field B is high, 2) Work wd involves length-averaged tether current Iav, normalized with the short-circuit value but the Saturn field is 20 times smaller and tether operation involves field B twice: iav (L/L*) ≡ Iav / σtEmwh Length L* gauges ohmic & 1. The S/C velocity v’ relative to the magnetized planetary plasma induces in it a motional electric OML-collection impedances: iav field Em = v’B, in the S/C reference frame (a XIX century, Faraday effect) 2.
    [Show full text]
  • 1 WILLIAM C. STONE, Phd, PE CEO, Stone Aerospace / PSC, Inc. 3511
    M R OP R OP R R R OP M O POPOP R R R R .
    [Show full text]