Design and Deployment of a 3D Autonomous Subterranean Submarine Exploration Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

Design and Deployment of a 3D Autonomous Subterranean Submarine Exploration Vehicle DESIGN AND DEPLOYMENT OF A 3D AUTONOMOUS SUBTERRANEAN SUBMARINE EXPLORATION VEHICLE William C. Stone, Stone Aerospace / PSC, Inc. 3511 Caldwell Lane, Del Valle, TX 78617, Ph: (512) 247-6385, [email protected] ABSTRACT likely include the following components: The NASA Deep Phreatic Thermal Explorer • the parent spacecraft, which will remain in orbit (DEPTHX) project is developing a fully autonomous either about Jupiter or about Europa and which will underwater vehicle intended as a prototype of primarily serve as a data relay back to Earth from the the Europa lander third stage that will search for Lander. microbial life beneath the ice cap of that Jovian • the Lander, which will be a 3-stage device: moon. DEPTHX has two principal objectives: First, to develop and test in an appropriate environment Stage 1: the physical landing system that will contain the ability for an un-tethered robot to explore into propulsion systems, power, and data relay systems to unknown 3D territory, to make a map of what it sees, communicate with the orbiter, and which will control and to use that map to return home; and second, to and carry out the descent and automated landing on demonstrate that science autonomy behaviors can the moon. identify likely zones for the existence of microbial life, to command an autonomous maneuvering Stage 2: the “cryobot” second stage, which will melt platform to move to those locations, conduct localized a hole through up to ten kilometers of ice cap before searches, and to autonomously collect microbial reaching the sub-surface liquid ocean. Although the life in an aqueous environment. The concept and design is far from completely defi ned, the concept will prototypes are being tested in an unusual terrestrial most likely involve a nuclear powered thermal melter analog that presents many of the likely morphologic that will be attached to the bottom of the third stage. It regimes where life may exist on Europa: the 300- is highly likely that the second stage will also deploy meter-deep (or more) hydrothermal cenote of Zacatón, an armored fi ber optic bundle behind it as it melts Mexico, which contains diverse microbial mats, but deeper. The fi ber bundle will be frozen into the ice remains uncharted, both spatially and biologically. after the melter passes through with the third stage and In this presentation we summarize the fi nal vehicle will provide the communications link to the surface architecture and control systems approach to lander; autonomous exploration in fully 3D environments Stage 3: by far the most sophisticated element of in which apriori knowledge of the environment is the entire mission will be the lander third stage. In non-extant and for which there exists no external fact, the lander third stage will likely be a multi- navigation system. The latest fi eld work at Cenote stage device itself, roughly along the following lines: La Pilita will be presented describing the February 5, the melter tip from the second stage -- really just 2007 mission during which DEPTHX became the fi rst a shield and a sophisticated heat exchanger -- will fully autonomous cave exploring robot. likely be jettisoned upon reaching the subsurface ocean. The remaining vehicle will detach from the 1. Overview fi ber optic system and will leave behind a powerful communications and navigation beacon as well as a DEPTHX is a prototype AUV (autonomous rechargeable power pack. At that point what remains underwater vehicle) for developing and testing two is the lander third stage proper: a novel, fast-moving of the most critical capabilities that will be needed cylindrical-shaped AUV that will be propelled by by the Europa lander third stage. These two advances the nuclear power plant . The “fast mover” will carry are essential to the success of the Europa mission. To a collection of redundant, electrically powered self- review quickly, the Europa mission architecture will mobile smart sub-payloads that are sensor-rich devices capable of not only mapping into unknown territory 2. DEPTHX Vehicle Design and bringing the fast mover back to the navigation beacon at the bottom of the melt hole, but also able The vehicle design morphed dramatically during the to “sniff” for indicators of environmental variables course of the project and it will be worthwhile here that might indicate the presence of microbial life and to summarize how we arrived at the fi nal design. steer the combined 3rd stage vehicle towards those Initially, the thinking had been to canabalize a com- sites. At that point one of the smart sub-payloads mercial ROV chassis and add science and navigation will be deployed and will “fl y” off in pursuit of instrumentation to that platform, mainly to cut costs microorganisms. To fi nd them it will have to employ and speed schedule. This initial design [Stone et al, a multi-stage (hierarchical) detection system that 2005 UUST05] involved the use of clustered banks of improves the odds of fi nding something at each stage. sonar transducers with three clusters of 8 serving as Ultimately, using these tools, and if successful, it will forward, port, and starboard obstacle avoidance arrays detect and characterize microorganisms (most likely and a single lateral-looking barrel sensor that was to Bacteria or Archaea) in the Europan ocean and return be used for map building. A commercial ROV is not to the fast mover, which will then drive it back to the a very hydrodynamic device and an exterior “hydro- navigation beacon whereupon it will upload what it shell” was envisioned to cover the active components fi nds to the surface lander, which will then relay the to both reduce drag and to minimize the likelihood of info back to the orbiter, which will then relay it back a snagged vehicle during actual exploration in a lay- to Earth. bryinthine overhead environment of the type that was anticipated at the Cenote Zacaton test site as well as in DEPTHX, then, is a prototype for the smart sub- the ice cracks in the surface crust of Europa. Figure payload of the 3rd stage fast mover. 1 shows the “potato”, a second-generation concept The purpose of DEPTHX was to test the following in which the sonar clusters are un-grouped and the two hypotheses: discrete transducers are mounted on the surface of the hydroshell, with shielded co-ax cables carrying 1) can we design a fully autonomous underwater the signal to a common digital signal processor array. vehicle that can explore into completely unknown This design began to approach the idea of a fl exibly- territory, create maps of that unknown territory in deployed low profi le sensor system in which the bot three dimensions, and use those just-created maps could approach near 4π steradian viewing. The op- to return itself “home” without any other navigation aids? 2) can we design a fully autonomous science system that will seek out places where there is a high likelihood of microbial life and make a decision to collect samples that will demonstrate, unambiguously, that science autonomy is feasible on Europa. Specifi cally, can we demonstrate that by tracking environmental sub-aqueous variable gradients (temperature, chemical concentrations etc), along with spectral (color) differentiation, we can improve the likelihood of machine detection of microbial life. These two capabilities form the fundamental underpinning of the success of the Europa mission, and thus became the focus of the DEPTHX fi eld missions, the results of which will be described below. Figure 1: The “potato” hydroshell. Gray disks represent discrete sonar elements. erative word is “near”. In the potato design there still was actually going to work on an exploration mission. had to be a propulsion system and this occupied the The Drop Sonde developed for the May 2005 expedi- stern of the craft, as in traditional ROV design, since tion [Stone et al, 2005 UUST05] utilized the original in fact we were still thinking of an ROV chassis on the barrel scanner concept for map building. The data inside of the potato shell. coming in from Zacaton, however, began to evidence weaknesses in the line of sight limits for a purely pla- This remained the design through the spring of 2005 nar array in attempting to provide real-time maps in as hardware and code preparations for the May 2005 3D of the vehicle environment. A number of potential fi eld campaign to Zacaton dominated work on the array concepts - spring boarding off the breakthrough project. The express purpose of that expedition was potato skin idea - were sketched out at Zacaton. All to obtain early real (noisey) data from Zacaton in a of the sketches had the common concept of providing format that would allow testing of the crucial SLAM true 4π steradian viewing (for the moment we left out algorithm in the context of a vehicle-created 3D point the issue of propulsion). Later simulation in the con- cloud from the actual test site. While at Zacaton there text of the SLAM algorithm [see Fairfi eld et al 2005, were a number of discussions about how the system 2006, 2007] in representative 3D labryinthine envi- ronments favored one design that came to be called the “three Great Circle” concept. On paper there were three orthogonal, intersecting planes and one could envision the intersection of those three planes lying at the center of a sphere. The lines on the sphere penetrated by the planes produced the “Great Circles” and it was on those lines that the discrete sonar ele- ments would be placed. In this design the concept of “mapping” and “obstacle avoidance” sonar became blurred and all sensors could be piped to both code segments through a publish-subscribe data system.
Recommended publications
  • Underwater Speleology Journal of the Cave Diving Section of the National Speleological Society
    Underwater Speleology Journal of the Cave Diving Section of the National Speleological Society INSIDE THIS ISSUE: Making the “Holy Grail” Connection: Mexico’s Gran Acuífero Maya Project Realigning Training Requirements for Cave Divers A Look at the 2019 International Cave Diving Conference Abe Davis, Nicholson, and Exley Awards Presented Volume 46 Number 3 July/August/September 2019 DEMA 2019 Orlando, FL by Renée Power DEMA is right around the corner…literally! DEMA is Diving Equipment and Marketing Association. If you’re an industry professional, this is your time to come and inquire about the latest and greatest in diving products, education, safety, and travel. You can purchase passes at www.demashow.com. NSS-CDS members have joined forces to staff our booth. This year’s show will be held at the Orange County Convention Center West Concourse in Orlando from November 13- 16, 2019. The NSS-CDS booth is upping its game with new merchandise, new training, and a new look. A big shout out to everyone who’s volunteering time to support our organization at this annual industry event. Please stop by booth #2621 in the Technical Diving Resource Center. NSS-CDS BOARD OF DIRECTORS Underwater Speleology Volume 46 Number 3 CHAIRMAN July/August/September 2019 TJ Muller (732) 674-6550 [email protected] VICE CHAIRMAN Brett Floren [email protected] contents TREASURER Jason Black (386) 466-2113 [email protected] featured stories SECRETARY Renée Power [email protected] Cave Diving’s Holy Grail: The Sac Actun-Dos Ojos Connection DIRECTORS
    [Show full text]
  • Maya Settlement Patterns and Land Use in Buena Vista, Cozumel, México
    FAMSI © 2004: Adolfo Iván Batún Alpuche Maya Settlement Patterns and Land Use in Buena Vista, Cozumel, México Research Year: 2003 Culture: Maya Chronology: Post Classic Location: Cozumel, México Site: Buena Vista Table of Contents Abstract Resumen Introduction Project Goals Research Design and Methods Preliminary Results Microenvironmental Zones Main Transects Transects Limiting Quadrants Selected Areas Soil Profiles Summary and Conclusion Acknowledgments List of Figures Sources Cited Abstract The Buena Vista Archaeological Project is a study of postclassic Maya settlement patterns and land use on the island of Cozumel, México. Field work carried out in the site during the months of June–August 2003 was sponsored by the Foundation for the Advancement of Mesoamerican Studies, Inc., (FAMSI). Previous archaeological research in Buena Vista had focused in a central area of seven hectares and reported the existence of an extensive wall system and platforms at the site which was interpreted as a storage center for exchange and resupply transactions. In this interpretation, the platforms supported perishable structures used to store trade commodities, and the wall system was built to protect these trade goods from possible pirate attacks (Sabloff and Rathje 1975, Freidel and Sabloff 1984). However, the nature and extension of the wall system around the central area had not been investigated in detail. The research objectives of this project were to analyze the Buena Vista settlement pattern following a settlement ecology model (Stone 1996, Killion 1992), which seeks to understand the relationship between population and agricultural practices in an ecological setting. The project followed a program of surface survey and mapping of the wall system, related structures, and natural features located in an area of 4 km2 around the center of the site.
    [Show full text]
  • Stone Aerospace Saves 12 Weeks in Cabling Design by Implementing a Digital Design Process
    SUCCESS STORY ® Zuken’s software solution for electrical wiring, control systems and fluid engineering. Stone Aerospace saves 12 weeks in cabling design by implementing a digital design process “We achieved substantial productivity gains because engineers had a very clear picture of what one another were doing, and because of the automated checks performed by the software.“ John Harman, Electrical Engineer, Stone Aerospace ZUKEN - The Partner for Success SUCCESS STORY Stone Aerospace saves 12 weeks in cabling design by implementing a digital design process Stone Aerospace faced the pressure of a tight schedule in designing Results a one-of-a-kind underwater autonomous vehicle (AUV) capable • Elimination of $20,000 in cable of traveling 15km under the Antarctic ice shelf. The AUV acts as a rework and expedited delivery costs testing ground to validate an aircraft-mounted radar system that • Design cycle reduction by 12 weeks will be used in a space mission. The time needed to design the wiring • Ability to view the electrical and harness for the AUV was reduced by around 12 weeks and $20,000 physical design of the entire craft in was saved by using E3.series to automate many aspects of the design a single hierarchical view process, while integrating the logical and physical design on a single • E ective design team collaboration platform. created common nomenclature improving quality and cutting errors The search for life in space aspects such as temperature, depth and water current velocities, and to identify • Automated checks ensured correct Scientists believe that underneath the microbiological communities. connector selections. icy surface of Europa, one of Jupiter’s moons, is a vast ocean thought to be the Cable design challenges most likely location for finding life in our solar system.
    [Show full text]
  • Complete Issue
    EDITORIAL EDITORIAL Indexing the Journal of Cave and Karst Studies: The beginning, the ending, and the digital era IRA D. SASOWSKY Dept. of Geology and Environmental Science, University of Akron, Akron, OH 44325-4101, tel: (330) 972-5389, email: [email protected] In 1984 I was a new graduate student in geology at Penn NSS. The effort took about 2,000 hours, and was State. I had been a caver and an NSS member for years, published in 1986 by the NSS. and I wanted to study karst. The only cave geology course I With the encouragement of Editor Andrew Flurkey I had taken was a 1-week event taught by Art Palmer at regularly compiled an annual index that was included in Mammoth Cave. I knew that I had to familiarize myself the final issue for each volume starting in 1987. The with the literature in order to do my thesis, and that the Bulletin went through name changes, and is currently the NSS Bulletin was the major outlet for cave and karst Journal of Cave and Karst Studies (Table 1). In 1988 I related papers (Table 1). So, in order to ‘‘get up to speed’’ I began using a custom-designed entry program called SDI- undertook to read every issue of the NSS Bulletin, from the Soft, written by Keith Wheeland, which later became his personal library of my advisor, Will White, starting with comprehensive software package KWIX. A 5-year compi- volume 1 (1940). When I got through volume 3, I realized lation index (volumes 46–50) was issued by the NSS in that, although I was absorbing a lot of the material, it 1991.
    [Show full text]
  • Development of Nereid-UI: a Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice
    Development of Nereid-UI: A Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice Presented at the 9th Annual Polar Technology Conference, 2-4 April 2013 Louis L. Whitcomb1,2,Andrew D. Bowen1, Dana R. Yoerger1, Christopher German1, James C. Kinsey1, Larry Mayer1,3, Michael V. Jakuba1, Daniel Gomez-Ibanez1, Christopher L. Taylor1, Casey Machado1, Jonathan C. Howland1, Carl Kaiser1, Matthew Heintz1 1Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution 2Department of Mechanical Engineering, Johns Hopkins University 3Center for Coastal and Ocean Mapping, University of New Hampshire Photo courtesy S. McPhail, NOC Woods Hole Oceanographic Institution World’s largest private ocean research institution ~900 Employees, 143 Scientific Staff $160M Annual Budget • Biology • Chemistry • Geology • Physical Oceanography • Engineering • Marine Policy Deep Ocean Oceanography: The D.S.V. Alvin 4500m Submersible Image Credit: Rod Catenach © WHOI Catenach Credit: Rod Image Crew: 3 = 1 pilot + 2 scientist Depth: 4500m (6,500m soon) Endurance: 6-10 Hours Speed: 1 m/s Mass: 7,000 Kg Length: 7.1m Power: 81 KWH Life Support: 72 Hours x 3 Persons Ph.D. Student James Kinsey Dives: >4,700 (since 1964) Passengers: >14,000 (since 1964) Jason II ROV Specifications: Size: 3.2 x 2.4 x 2.2 m Weight 3,300 kg Depth 6,500 m Power 40 kW (50 Hp) Payload: 120 Kg (1.5 Ton) First Dive: 2002 Dives: >600 Dive Time: >12,500 Hours* Bottom Time: >10,600 Hours* Longest Dive: 139 Hours* Deepest Dive: 6,502 m* Distance: >4,800 km* * As of Feb, 2012 Electric thrusters, twin hydraulic manipulator arms.
    [Show full text]
  • Visionary Counting on Unmanned Vehicles
    Visionary Counting on Unmanned Vehicles By Rich Tuttle Bill Stone, the founder of Stone Aerospace, has a vision—several visions, in fact—and unmanned vehicles play a part in a number of them. His Austin, Texas-based company developed and built the DEPTHX robot that last May conducted the first comprehensive exploration of the world’s deepest sink hole, El Zacaton in Mexico. It brought back enough data to keep scientists enthralled for some time. An unmanned system based on DEPTHX (DEep Phreatic—meaning underwater cave—THermal eXplorer) will be tested in Antarctica beginning next year to help determine the suitability of such a device to meet, in about 20 years, what’s been called the ultimate robotic challenge: exploring the ice- covered ocean of Europa, a moon of Jupiter. Scientists believe there’s a high probability of detecting the first life off Earth in that remote and ancient sea. That's one vision. The challenges would fill a book: melting through many kilometers of ice just to get to the ocean, for instance. That will be addressed in the Antarctica experiments. But DEPTHX does seem to have demonstrated the possibility of clearing two other key hurdles—surviving in a three-dimensional, unexplored environment without external navigation aids; and carrying out science experiments autonomously. DEPTHX's abilities are two generations beyond those of the Spirit and Opportunity rovers on Mars right now, Stone says in an interview. Every move of the Mars vehicles is based on a carefully prepared script. But, Stone says, “in the case of Europa, it can’t be that way.” The computer brain of a Europa probe would have to be wired to achieve “global” objectives, he says.
    [Show full text]
  • Understanding Zacaton: Exploration and Initial
    Karst Frontiers Gary 141 Karst WatersInstitute SpecialPublication 7 UNDERSTANDING ZACATON: EXPLORATION AND INITIAL INTERPRET A TION OF THE WORLDS DEEPEST KNOWN PHREATIC SINKHOLE AND RELATED KARST FEA TURES SOUTHERN T AMA ULIP AS, MEXICO Marcus Gary The University of Texasat Austin/ United StatesGeological Survey 8027 ExchangeDrive Austin, TX 78754 [email protected] A system of water-filled sinkholes (known as cenotes) this extreme karst system have taken place, and it has only exists in southern Tamaulipas, Mexico (Figure 1), and is been limited work within the past two years that theories the result of a unique combination of speleogenetic factors. relating to the speleogenesishave been formed. Microbial This system is composed of 18 different karst features that interaction seems likely to affect karstification processes, are on or near a large cattle ranch known as Rancho La and significant travertine structures appear to have a direct Azufrosa. Zacat6n, the deepest cenote in this system has influence on the hydraulic connectivity between the bodies been measured to over 350 meters deep, (Figure 1) and is of water. Years of future research are being planned to the site of the world-record SCUBA dive (284 meters) by document the extent of karstification in this deep Jim Bowden in 1994 (Gilliam, 1994). This makes it the hydrothermal system and interpret the geological history deepest known water-filled pit that has been explored by that has develope~ such an impressive example of humans in the world. No previous scientific studies of hypogenetic karst. Figure 1: Generalized cross section of the cenotes of Rancho La Azufrosa.
    [Show full text]
  • Cenote Calavera's Geohistory Isabella Fernandez Cenotes Are Arguably
    Cenote Calavera’s Geohistory Isabella Fernandez Cenotes are arguably the most popular natural wonders of Mexico’s Yucatan peninsula and understandably so. Cenotes are sinkholes that result from collapsed limestone bedrock to reveal groundwater and underground caves that home various forms of life. One of the most popular cenotes is Cenote Calavera or “Skull Cave,” named aptly after it’s skull-shaped opening. Cenote Calavera is an anchialine system in that groundwater is land-based but has subterranean connections to the ocean making it a part of a coastal aquifer system where entering rainwater floats upon saline water. With this system, various flora and fauna can survive in the caves. Cenote Calavera also holds incredible cultural importance as ancient Mayans believed that cenotes were gateways to the afterlife and considered them sacred wells where religious ceremonies were held. Cenote Calavera is especially recognizable because of the qualities that make its resources preservable. Sites that allow for groundwater recharge and stormwater management are particularly eligible for preservation (International Union for Conservation of Nature). Opportunity for tourism and recreation also contributes to a site's preservability as it brings revenue to that location (United Nations Environment Programme). Cenote Calavera’s complex water system and support of life-forms as well as open diving tours make it particularly unique. Of course a site's significance comes partly from other aspects of its value. The condition of its resources is an important factor as well as overall aesthetic and rarity. Cultural importance also plays an important role as mentioned above. Tourism rates help greatly, too, and Cenote Calavera is abundant in tourists looking to explore the caves.
    [Show full text]
  • Dr. Ann and the Zacatón Explorers
    They start down together, dropping like rocks through down from above tells her that Bowden is catching up, the blood-warm water. Knees bent and streamlined for and a few moments later, he slides into view. speed, Dr. Ann Kristovich and Jim Bowden are going Three hundred ninety, 400, 410. Kristovich deep just as fast as they can. has just broken the women's world deep-scuba record, Above, twin bubble trails rise toward the brightness of set four years earlier by Mary Ellen Eckoff. She and the surface. Below, there's nothing but space, shading off Bowden continue to drop, falling in tandem toward into a darkness that easily swallows their lights, giving up another ledge, this one at 500 feet. Now Bowden pulls nothing in return. Between the two, a descent line away, his lights fading down into the black just before speeds by at a hundred feet a minute, the only available Kristovich reaches the 500-foot ledge. point of reference. For a moment, a sulfur cloud obscures Kristovich is all alone in the dark again, dropping the line—a byproduct of the geothermal pressure cooker deeper and deeper into one of the most hostile environ­ that feeds this place—and the darkness closes in. ments ever penetrated by a human being. The weight of But, just as quickly, they pierce the cloud's bottom into clear the water above her is terrifying, crushing down with a pressure sev­ water, and Kristovich begins to pull away from Bowden, falling enteen times what her body was designed to take.
    [Show full text]
  • Geometric Control Theory and Its Application To
    GEOMETRIC CONTROL THEORY AND ITS APPLICATION TO UNDERWATER VEHICLES A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN OCEAN & RESOURCES ENGINEERING DECEMBER 2008 By Ryan N. Smith Dissertation Committee: Monique Chyba, Chairperson Song K. Choi R. Cengiz Ertekin Geno Pawlak George R. Wilkens We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Ocean & Resources Engineering. DISSERTATION COMMITTEE —————————————— Chairperson —————————————— —————————————— —————————————— —————————————— —————————————— ii c 2008, Ryan Neal Smith. All rights reserved. iii To Neal iv Acknowledgments Of this entire dissertation, this single section has proven to be the most painful and difficult to write. Of course, after committing two-hundred and some odd pages to the discussion of my research over the last five years, I have few words left for the one section that will probably be read the most of any other in this dissertation. Additionally, recounting the memories of all the love and support which I have received from so many people brings tears to my eyes every time I have tried to work on this section. My cup runneth over. I have written this acknowledgments section one hundred forty-three times; yes, I have been counting. I can not simply list every person who has participated in the success of this work, as the list would be longer than the dissertation itself. So, I must restrict myself to acknowledging only those whom have truly made this all possible, and at times, very worthwhile.
    [Show full text]
  • Get Membership Form
    SAVE SAVE SOCIETY OF AKUMAL’S VITAL ECOLOGY, A.C. SOCIETY OF AKUMAL’S VITAL ECOLOGY, A.C. ANNUAL MEMBERSHIP LOT 35 C AVENTURAS AKUMAL _____$250 Ocean QUINTANA ROO, MX 77736 WWW.SAVERIVIERAMAYA.ORG _____$25 Jungle [email protected] _____$500 Turtle + (52) 984-87-59204 _____$50 Mangrove _____$1,000 Cenote $25 Jungle: Membership Card, Aguas Con Los Cenote Sticker _____$100 Reef $50 Mangrove: Membership Card, Aguas Con Los Cenote _____Other $$ Eco-Warrior Sticker, T-shirt Your contribution is tax deductible per Mexican and U.S. Federal Tax Codes. $100 Reef: Membership Card, Aguas Con Los Cenote Sticker, Aguas Con Los Cenote Poster Name: _______________________________________ $250 Ocean: Membership Card, Aguas Con Los Cenote Sticker, Address: _____________________________________ T-shirt & Poster City, State: ___________________________________ $500 Turtle: Membership Card, Aguas Con Los Cenote Sticker, Website Listing, T-shirt & Poster Country, Zip: _______________________________ $1,000 Cenote: Membership Card, Aguas Con Los Cenote Phone: ______________________________________ Sticker, Website Listing, “Cenotes of the Yucatan Peninsula” by Steve Gerrard Email: _________________________________ FOR SAVE USE ONLY The Society of Akumal’s Vital Ecology, A.C. (SAVE) is a Mexican non‐profit organization. We have been Payment Information working on environmental issues in the Central ___Please charge my credit card Quintana Roo coastal zone since 1998. The focus of our efforts is stopping the ecological devastation American Express Visa Mastercard underway in the Riviera Maya region of the Yucatan Peninsula. A fragile inter‐connected ecosystem Card # _____________________________Exp._______ includes the spectacular water filled caves and cenotes, the thriving mangroves, the beach bluff, and the world’s second largest coral reef, the Signature: _____________________________________ Mesoamerican Reef System.
    [Show full text]
  • Rest of the Solar System” As We Have Covered It in MMM Through the Years
    As The Moon, Mars, and Asteroids each have their own dedicated theme issues, this one is about the “rest of the Solar System” as we have covered it in MMM through the years. Not yet having ventured beyond the Moon, and not yet having begun to develop and use space resources, these articles are speculative, but we trust, well-grounded and eventually feasible. Included are articles about the inner “terrestrial” planets: Mercury and Venus. As the gas giants Jupiter, Saturn, Uranus, and Neptune are not in general human targets in themselves, most articles about destinations in the outer system deal with major satellites: Jupiter’s Io, Europa, Ganymede, and Callisto. Saturn’s Titan and Iapetus, Neptune’s Triton. We also include past articles on “Space Settlements.” Europa with its ice-covered global ocean has fascinated many - will we one day have a base there? Will some of our descendants one day live in space, not on planetary surfaces? Or, above Venus’ clouds? CHRONOLOGICAL INDEX; MMM THEMES: OUR SOLAR SYSTEM MMM # 11 - Space Oases & Lunar Culture: Space Settlement Quiz Space Oases: Part 1 First Locations; Part 2: Internal Bearings Part 3: the Moon, and Diferent Drums MMM #12 Space Oases Pioneers Quiz; Space Oases Part 4: Static Design Traps Space Oases Part 5: A Biodynamic Masterplan: The Triple Helix MMM #13 Space Oases Artificial Gravity Quiz Space Oases Part 6: Baby Steps with Artificial Gravity MMM #37 Should the Sun have a Name? MMM #56 Naming the Seas of Space MMM #57 Space Colonies: Re-dreaming and Redrafting the Vision: Xities in
    [Show full text]