Freudenberg-NOK, High Quality Plastics Division, Findlay, Ohio

Total Page:16

File Type:pdf, Size:1020Kb

Freudenberg-NOK, High Quality Plastics Division, Findlay, Ohio NIOSH HEALTH HAZARD EVALUATION REPORT HETA #2003-0351-2972 Freudenberg-NOK High Quality Plastics Division Findlay, Ohio June 2005 DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health PREFACE The Hazard Evaluation and Technical Assistance Branch (HETAB) of the National Institute for Occupational Safety and Health (NIOSH) conducts field investigations of possible health hazards in the workplace. These investigations are conducted under the authority of Section 20(a)(6) of the Occupational Safety and Health (OSHA) Act of 1970, 29 U.S.C. 669(a)(6) which authorizes the Secretary of Health and Human Services, following a written request from any employers or authorized representative of employees, to determine whether any substance normally found in the place of employment has potentially toxic effects in such concentrations as used or found. HETAB also provides, upon request, technical and consultative assistance to federal, state, and local agencies; labor; industry; and other groups or individuals to control occupational health hazards and to prevent related trauma and disease. Mention of company names or products does not constitute endorsement by NIOSH. ACKNOWLEDGMENTS AND AVAILABILITY OF REPORT This report was prepared by Gregory Burr, Daniel Habes, and Richard Driscoll of HETAB, Division of Surveillance, Hazard Evaluations and Field Studies (DSHEFS). The industrial hygiene field investigation was conducted by Ann Krake of HETAB. Analytical support was provided by Data Chem. Desktop publishing was performed by Robin Smith, and editorial assistance was provided by Ellen Galloway. Copies of this report have been sent to employee and management representatives at Freudenberg-NOK and the OSHA Regional Office. This report is not copyrighted and may be freely reproduced. The report may be viewed and printed from the following internet address: http://www.cdc.gov/niosh/hhe. Single copies of this report will be available for a period of three years from the date of this report. To expedite your request, include a self-addressed mailing label along with your written request to: NIOSH Publications Office 4676 Columbia Parkway Cincinnati, Ohio 45226 800-356-4674 After this time, copies may be purchased from the National Technical Information Service (NTIS) at 5825 Port Royal Road, Springfield, Virginia 22161. Information regarding the NTIS stock number may be obtained from the NIOSH Publications Office at the Cincinnati address. For the purpose of informing affected employees, copies of this report shall be posted by the employer in a prominent place accessible to the employees for a period of 30 calendar days. ii Highlights of Health Hazard Evaluation Highlights of the NIOSH Health Hazard Evaluation (HHE) Evaluation of Ring Seals In August 2003 the National Institute for Occupational Safety and Health (NIOSH) received a confidential HHE request from employees at Freudenberg-NOK G.P., High Quality Plastics Division (HQP) Findlay, Ohio. They were concerned about potential exposure to airborne particles and fumes from the manufacturing of thermoplastic and polytetrafluroethylene (PTFE) ring seals. Some workers were experiencing non-specific respiratory symptoms and itchy skin. What NIOSH Did Some workers reported muscle fatigue in the arms and low back from lifting heavy loads into We took air samples for chemicals that may be the ovens. present in Teflon® fumes. We saw some physically demanding work that We took samples for glass fibers, metals, and may be improved by redesigning parts containers respirable dust. and handles. We spoke to workers who asked to be interviewed about their health concerns and their What High Quality Plastics work area. Managers Can Do We looked at employee injury and illness records. Redesign the mandrel containers so a full one We observed work practices for ergonomic weighs less than 25 pounds. problems. Redesign the handle on the mandrel containers. We suggest slightly oval-shaped handles about 2 What NIOSH Found inches in diameter and 4 to 6 inches in length. Provide more vacuums to clean machinery and We did not find any overexposures to chemicals discourage the use of compressed air. that may be present in Teflon fumes. Check how well the existing vacuums capture We measured very low levels of metals and dust, and replace with better vacuums or higher respirable dust. efficiency air filters if necessary. Most workers we spoke with did not have symptoms they associated with working What the High Quality Plastics conditions at HQP. Some interviewed workers complained of dry Employees Can Do itchy skin they associated with exposure to fibrous glass in the plastic mix. Do not use compressed air to clean machinery. Instead, use a vacuum. What To Do For More Information: We encourage you to read the full report. If you would like a copy, either ask your health and safety representative to make you a copy or call 1-513-841-4252 and ask for HETA Report #2003-0351-2972 iii Health Hazard Evaluation Report 2003-0351-2972 Freudenberg-NOK High Quality Plastics Division, Findlay, Ohio June 2005 Gregory Burr, CIH Daniel Habes, MSE, CPE Richard Driscoll, PhD, MPH Ann Krake, MS SUMMARY In August 2003 the National Institute for Occupational Safety and Health (NIOSH) received a confidential request for a health hazard evaluation (HHE) from employees at Freudenberg-NOK G.P., High Quality Plastics Division (HQP) in Findlay, Ohio. Employees were concerned with potential exposure to airborne particles and fumes created during the manufacture of polytetrafluroethylene (PTFE, Teflon®) and thermoplastic rotating ring seals. The initial request noted that workers were experiencing non-specific respiratory symptoms, itchy skin, and “oven fever” (presumably from exposure to PTFE fumes generated during the manufacturing process). In subsequent conversations with the requesters concerns involving heavy lifting and repetitive movement were also mentioned. Personal breathing zone (PBZ) and general area (GA) sampling was performed for hydrogen fluoride, carbonyl fluoride, glass fibers, elements (cobalt, zirconium, tin, and chromium), and respirable particulate. PBZ and GA air samples were collected from Work Cells 1, 3, 3N, 5, 6, 7, 8, and 10. Workers who requested to speak with NIOSH representatives were interviewed to determine the extent and severity of their health concerns. We also reviewed Occupational Safety and Health (OSHA) Illness and Injury logs for the years 1999-2003. The ergonomics evaluation consisted of a walk through of the plant to view the variety of job tasks workers perform to produce PTFE and thermoplastic seals, subassembly systems, and plastic mating components. No overexposures to fibrous glass, gaseous and particulate fluorides, respirable dust, or metals were found, based on PBZ and GA air samples collected on the days of this evaluation. Most interviewed workers did not have symptoms they attributed to working conditions at HQP. However, some interviewed workers complained of dry, itchy skin that they associated with exposure to fibrous glass in the plastic mix, and three workers reported muscle fatigue in the arms and low back from lifting heavy loads into the ovens. We observed some physically demanding work that may be improved by redesigning parts containers and handles. NIOSH investigators conclude that a health hazard does not exist at this facility. However, some work is physically demanding and improvements can be made to the containers used to handle the mandrels. Recommendations have been provided to redesign a container used to transport mandrels around the plant. iv Keywords: SIC 3053/NAICS 339991 (Gaskets, Packing, and Sealing Devices, Manufacturing), Teflon®, PTFE, polymer fume fever, glass fiber, hydrogen fluoride, carbonyl fluoride, cobalt, zirconium, tin, chromium, respirable particulate, ergonomics. v Table of Contents Preface..........................................................................................................................................................ii Acknowledgments and Availability of Report..........................................................................................ii Highlights of Health Hazard Evaluation .................................................................................................iii Summary.....................................................................................................................................................iv Introduction.................................................................................................................................................1 Background .................................................................................................................................................1 Facility Description.................................................................................................................................1 Methods........................................................................................................................................................1 Industrial Hygiene ..................................................................................................................................1 Epidemiology...........................................................................................................................................1 Ergonomics ..............................................................................................................................................2
Recommended publications
  • The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 124
    1998:12 The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 124. Thermal Degradation Products of Polyethylene, Polypropylene, Polystyrene, Polyvinylchloride and Polytetrafluoroethylene in the Processing of Plastics Antti Zitting Nordic Council of Ministers arbete och hälsa vetenskaplig skriftserie ISBN 91–7045–472–8 ISSN 0346–7821 http://www.niwl.se/ah/ah.htm National Institute for Working Life National Institute for Working Life The National Institute for Working Life is Sweden's center for research and development on labour market, working life and work environment. Diffusion of infor- mation, training and teaching, local development and international collaboration are other important issues for the Institute. The R&D competence will be found in the following areas: Labour market and labour legislation, work organization and production technology, psychosocial working conditions, occupational medicine, allergy, effects on the nervous system, ergonomics, work environment technology and musculoskeletal disorders, chemical hazards and toxicology. A total of about 470 people work at the Institute, around 370 with research and development. The Institute’s staff includes 32 professors and in total 122 persons with a postdoctoral degree. The National Institute for Working Life has a large international collaboration in R&D, including a number of projects within the EC Framework Programme for Research and Technology Development. ARBETE OCH HÄLSA Redaktör: Anders Kjellberg Redaktionskommitté: Anders Colmsjö och Ewa Wigaeus Hjelm © Arbetslivsinstitutet & författarna 1998 Arbetslivsinstitutet, 171 84 Solna, Sverige ISBN 91–7045–472–8 ISSN 0346-7821 Tryckt hos CM Gruppen Preface The Nordic Council is an intergovernmental collaborative body for the five countries, Denmark, Finland, Iceland, Norway and Sweden.
    [Show full text]
  • Products Evolved During Hot Gas Welding of Fluoropolymers
    Health and Safety Executive Products evolved during hot gas welding of fluoropolymers Prepared by the Health and Safety Laboratory for the Health and Safety Executive 2007 RR539 Research Report Health and Safety Executive Products evolved during hot gas welding of fluoropolymers Chris Keen BSc CertOH Mike Troughton BSc PhD CPhys MInstP Derrick Wake BSc, Ian Pengelly BSc, Emma Scobbie BSc Health and Safety Laboratory Broad Lane Sheffield S3 7HQ This report details the findings of a research project which was performed as a collaboration between the Health and Safety Executive (HSE) and The Welding Institute (TWI). The project aim was to identify and measure the amounts of products evolved during the hot gas welding of common fluoropolymers, to attempt to identify the causative agents of polymer fume fever. Carbonyl fluoride and/or hydrogen fluoride were detected from certain fluoropolymers when these materials were heated to their maximum welding temperatures. Significant amounts of ultrafine particles were detected from all of the fluoropolymers investigated when they were hot gas welded. The report concludes that fluoropolymers should be hot gas welded at the lowest possible temperature to reduce the potential for causing polymer fume fever in operators. If temperature control is not sufficient to prevent episodes of polymer fume fever, a good standard of local exhaust ventilation (LEV) should also be employed. This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy. HSE Books © Crown copyright 2007 First published 2007 All rights reserved.
    [Show full text]
  • Safety Assessment of Fluoropolymers As Used in Cosmetics
    Safety Assessment of Fluoropolymers as Used in Cosmetics Status: Draft Report for Panel Review Release Date: February 9, 2018 Panel Date: March 5-6, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Wilbur Johnson, Jr. Senior Scientific Analyst Date: February 9, 2018 Subject: Draft Report on Fluoropolymers A Scientific Literature Review (SLR) on Fluoropolymers was issued on January 8, 2018. The attached use concentration data (fluoro032018data1 and fluoro032018data2) that are included in this draft report were received from the Personal Care Products Council (Council) prior to issuance of the SLR. Data relating to the skin irritation and sensitization potential and ocular irritation potential of formulas containing PTFE (fluoro032018data3) and report comments (fluoro032018pcpc1) were received from the Council after the SLR was issued. These data are included in the draft report, and the Council’s comments have been addressed. Additionally, a memorandum with report comments (fluoro032018pcpc2) was received from the Cosmetic Ingredient Review (CIR) Science and Support Committee of the Council.
    [Show full text]
  • Toxic Hazards to Fire Fighters, Including Effects of Fire Retardants, During Fires and Post-Fire Investigation Activities
    David Purser Fire Retardants and their Potential Impact on Fire Fighter Health National Institute of Standards and Technology, Gaithersburgh MD September 30th 2009 Toxic Hazards to Fire Fighters, Including Effects of Fire Retardants, During Fires and Post-Fire Investigation Activities Prof. David Purser Hartford Environmental Research Hatfield, United Kingdom HER David Purser Issues • What are potential health hazards to fire fighters from exposure to toxic fire effluents? • What features of burning materials and fire conditions give rise to these hazards? • What effect do fire retardants have on toxic fire hazards? HER David Purser Role of fire retardant treatments Benefits of fire retardant treatments: 1. Reduce probability that a heat or ignition source will initiate a growing spreading fire – Reduce initial ignition probability – If ignition does occur may result in self- extinction/failure of propagation – Thereby essentially eliminate the toxic and environmental hazards from fires prevented 2. If the initial ignition resistance is overcome may reduce the rate of fire growth – May result in a period of very slow growth up to a critical fire size – Or may provide a slower t2 fire growth curve – In such cases may reduce the rate of toxic hazard development and increase the time available for escape or fire fighting HER David Purser BS7974 fire growth rate curves t^2 fire growth curves 10000 9000 8000 7000 6000 5000 4000 Slow 3000 Medium Heat release rate (Kilowatts) 2000 Fast Ultrafast 1000 Explosion 0 0 100 200 300 400 500 600 Time (s) HER David Purser BS7974 fire growth rate curves CBUF chairs HER David Purser Limitations of fire retardant treatments • Do not provide non-combustibility, but ignition resistance to a heat source up to a design limit.
    [Show full text]
  • DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS
    criteria for a recommended standard . occupational exposure to DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE criteria for a recommended standard... OCCUPATIONAL EXPOSURE TO DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health September 1977 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DHEW (NIOSH) Publication No. 77-193 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommendations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epidemiologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on the decomposition products of fluorocarbon polymers by members of the NIOSH staff and the valuable constructive comments by the Review Consultants on the Decomposition Products of Fluorocarbon Polymers and by Robert B.
    [Show full text]
  • 10.5 Polymerization Reactions—Monomers And
    Extension 12. (a) (b) Animal hides decompose quickly unless they are cured to remove the water from the skin. The hide is first soaked in water to remove water-soluble substances, and hair is removed by soaking in a mixture of lime and water, followed by an enzyme mixture. The hair and any remaining tissue are removed by machine and the hide is washed and treated with tannic acid. The tannic acid displaces water from the spaces between the protein fibres of the hide, allowing the fibres to cement together to form a strong, water-resistant leather. 13. (a) First molecule: one cis and two trans Second molecule: two cis and two trans (b) Transfats increase the level of low-density lipoprotein (LDL) or “bad” cholesterol in the bloodstream, which contributes to clogging of the arteries. As arteries clog, the risk of stroke and heart attack increases. 10.5 POLYMERIZATION REACTIONS—MONOMERS AND POLYMERS Web Activity: Web Quest—Teflon: Healthy or Hazardous? (Page 448) [Students’ presentations may cover some of the following material.] Production of Teflon To produce polytetrafluoroethylene (PTFE or Teflon®), the manufacturer first needs a steady supply of tetrafluoroethylene (TFE). To produce the required TFE, three main ingredients, fluorspar, hydrofluoric acid, and chloroform are combined in a reaction chamber and heated to between 590 ˚C and 900 ˚C. The gas produced is cooled and then distilled to remove impurities. A possible sequence of reactions is: CaF2(s) + H2SO4(aq) o CaSO4(s) + 2 HF(aq) CH4(g) + 3 Cl2(g) o CHCl3(g) + 3 HCl(g) CHCl3(g) + 2 HF(g) o CHClF2(g) + 2 HCl(g) 2 CHClF2(g) o CF2CF2(g) + 2 HCl(g) 374 Unit 5 Solutions Manual Copyright © 2007 Thomson Nelson One method of producing PTFE from the TFE is by suspension polymerization.
    [Show full text]
  • Summer 2015 Newsletter
    OF NORTHEAST WISCONSIN j C ELEBRATING 30 YEARS OF WORKING TO PROTECT PUBLIC HEALTH AND THE ENVIRONMENT IN N ORTHEAST W ISCONSIN i SUMMER 2015 Protecting Your Family from Toxins in the Home and Environment Introduction by CWAC President Dean Hoegger silence still surrounds the link between chemicals in our environments and their impact on human health. Dr. cientific research shows a strong link between Sandra Steingraber, who spoke at CWAC’s Health Forum Sunregulated chemicals and the health problems in May, 2014, noted the degree to which our environment that plague American families. Public concern about that has been contaminated. “From dry-cleaning fluids to link has driven positive change in state policies, in the pesticides, harmful substances have trespassed into the marketplace, and among America’s trading partners, states landscape and have also woven themselves, in trace the Safer Chemicals and Healthy Families Organization. amounts, into the fibers of our bodies.” In 2009, Lisa Jackson, Director of the U.S. Without the EPA requiring testing of the ever- Environmental Protection Agency (EPA), agreed with increasing number of chemicals found in American the research when she announced her intent to reform homes, consumers will be left guessing about the safe use the 33-year-old federal law, the Toxic Substances Control of these products. Steingraber emphasized that testing Act (TSCA), governing the manufacture of hazardous should also include a look at the long-term effects: “This substances, noting the law had failed to protect public much we know with certainty. It is not only reasonable but health. When Congress passed the TSCA in 1976, there essential that we should understand the lifetime effects of were already more than 62,000 synthetic chemicals in use, these incremental accumulations.
    [Show full text]
  • Krytox GPL-22X and GPL-52X Series Fluorinated Grease
    MSDS No. 3829PP ---------------------------------------------------------------------- "KRYTOX" GPL-22X and GPL-52X Series Fluorinated Grease 3829PP Revised 5-MAY-1995 Printed 4-DEC-2001 ---------------------------------------------------------------------- ---------------------------------------------------------------------- CHEMICAL PRODUCT/COMPANY IDENTIFICATION ---------------------------------------------------------------------- Material Identification "Krytox" is a registered trademark of DuPont. Corporate MSDS Number : DU008134 Grade : 220, 221, 222, 223, 224, 225, 226, 227 Tradenames and Synonyms "Krytox" GPL 227-500 Company Identification MANUFACTURER/DISTRIBUTOR DuPont 1007 Market Street Wilmington, DE 19898 PHONE NUMBERS Product Information : 1-800-441-7515 (outside the U.S. 302-774-1000) Transport Emergency : CHEMTREC 1-800-424-9300(outside U.S. 703-527-3887) Medical Emergency : 1-800-441-3637 (outside the U.S. 302-774-1000) ---------------------------------------------------------------------- COMPOSITION/INFORMATION ON INGREDIENTS ---------------------------------------------------------------------- Components Material CAS Number % Perfluoroalkylether 60164-51-4 71-80 *Sodium Nitrite 7632-00-0 2 PTFE 9002-84-0 18-27 * Disclosure as a toxic chemical is required under Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR part 372. ---------------------------------------------------------------------- HAZARDS IDENTIFICATION ----------------------------------------------------------------------
    [Show full text]
  • Acute Gevolgen Van De Inhalatie Van Impregnatiesprays B
    Contactgroep Gezondheid en Chemie & NVAB ‘s Hertogenbosch – 09.06.2011 Acute gevolgen van de inhalatie van impregnatiesprays B. Nemery, MD, PhD Arbeids-, Milieu- en Verzekeringsgeneeskunde and Pneumologie K.U.Leuven Belgium [email protected] Case 1 Case 1 • Man, 43 y, smoker, no previous disease • Visit to Emergency Department: • fever, malaise, dry cough, dyspnoea • evening: WBC 17,200 (82% pmn), CRP 7 mg/L • morning: WBC 11,800 (69% pmn), CRP 53 mg/L, PaO 2 63 mmHg • Chest X-ray: « atypical respiratory infection » R/ clarithromycin 141003 Case 1 • Second visit to ED 10 days later: • similar symptoms • WBC 21,400 (81% pmn), CRP 11 mg/L, PaO 2 74 mmHg • Chest X-ray and HRCT 241003 «sprayed an aerosol to prepare new cars (1 can/car)» Fluorocarbon-containing spray Toxic alveolitis caused by fabric protection spray 241003 Case 1 • no infectious organisms detected • R/ methylprednisolone • rapid improvement, discharged after 5 days • normal pulmonary function, including DLco • normal chest X-ray • 4 months follow-up: further symptomaticexp improvement 090304 Fabric protection sprays • Sprays for impregnation of leather or fabrics (shoes, jackets, furnishings, …) (water/dirt repellant, “anti-rain”) • Fluorine-containing hydrocarbons • + Solvents severe pulmonary damage in consumers, domestic animals, workers • Burkhart et al . Pulmonary toxicity following exposure to an aerosolized leather protector. Clin Toxicol 1996; 34 :21-24. • Jinn et al . Acute lung injury after inhalation of water-proofing spray while smoking a cigarette. Respiration 1998; 65 :486- 488. • Bracco & Favre. Pulmonary injury after ski wax inhalation exposure. Ann Emerg Med 1998; 32 :616-619. Fabric protection sprays • 2002-2003 reports of (severe) pulmonary injury in users of fabric & leather protection sprays • The Netherlands Bonte et al .
    [Show full text]
  • Guide for the Safe Handling of Fluoropolymer Resins November 2012 Acknowledgement
    Guide for the Safe Handling of Fluoropolymer Resins November 2012 Acknowledgement This guide has been developed by the members of the Fluoropolymers Committee of PlasticsEurope (the Disclaimer Association of Plastics Manufacturers in Europe), the The information presented in this brochure is provided professional representative body for the European free of charge and submitted in good faith and is polymer producers. The association has more than correct to the best of PlasticEurope’s present 100 member companies, producing over 90% of all knowledge. polymers across the EU27 member states plus Following the Guide does not guarantee compliance Norway, Switzerland, Croatia and Turkey. with any regulation nor safe operation of any process- ing facilities. Users are cautioned that the information PlasticsEurope wishes to acknowledge the Fluo- upon which this guide is based is subject to change ropolymers Division of the USA Society of the Plastics that may invalidate any or all of the comments Industry (SPI) for permission to use extracts from contained herein. the SPI Guide to the Safe Handling of Fluoropolymer Resins. PlasticsEurope will be unable to accept responsibility or claims from any party, related to information presented in this brochure. Freedom under patents, copyright and registered designs cannot be assumed. Version 6 Contents Introduction 1 Chapter I: Fluoropolymer Resins Types and Properties 2 1 – Resins types 2 2 – Thermal properties 3 Chapter II: Potential Health Effects 5 1 – Polymer General Toxicology 5 2 – Health hazards
    [Show full text]
  • Download MSDS CKWMC
    View NSN Online: https://aerobasegroup.com/nsn/9150-00-961-8995 DUPONT -- 240AC, KRYTOX 240 SERIES FLUORINATED GREASE -- 9150-00-961-8995 ===================== Product Identification ===================== Product ID:240AC, KRYTOX 240 SERIES FLUORINATED GREASE MSDS Date:05/05/1995 FSC:9150 NIIN:00-961-8995 Status Code:A MSDS Number: CKWMC === Responsible Party === Company Name:DUPONT Address:1007 MARKET STREET City:WILMINGTON State:DE ZIP:19898-5000 Country:US Info Phone Num:PROD 800-441-751 5 MED: 8004413637 Emergency Phone Num:1-800-441-3637 Resp. Party Other MSDS Num.:DU008138 Chemtrec Ind/Phone:(800)424-9300 CAGE:EO596 === Contractor Identification === Company Name:DU PONT E I DE NEMOURS AND CO INC Address:RT US 211 N Box:863 City:MARTINSBURG State:WV ZIP:25401 Country:US Phone:304-274-2121 CAGE:0E731 Company Name:DU PONT E I DE NEMOURS AND CO INC Address:RT US 11 N Box:863 City:MARTINSBURG State:WV ZIP:25401 Country:US Phone:304-274-2121 CAGE:15756 Company Name:DUPONT Address:1 007 MARKET STREET City:WILMINGTON State:DE ZIP:19898-5000 Country:US Phone:PROD 800-441-7515 MED: 8004413637 CAGE:EO596 Company Name:DUPONT E I DE NEMOURS AND CO INC, POLYMER PRODUCT-TEFLON CO. Address:1007 MARKET ST Box:City:WILMINGTON State:DE ZIP:19898 Country:US Phone:800-523-0372/346-4748 CAGE:9V583 Company Name:SDB CONSULTANTS LTD Address:401 WHITNEY AVE SUITE 120 Box:City:GRETNA State:LA ZIP:70056 Country:US Phone:504-366-9105 Contract Num:SP0450-00-W-2049 CAGE:0PGK2 ============= Composition/Information on Ingredients ============= Ingred Name:PERFLUOROALKYLETHER CAS:60164-51-4 Minumum % Wt:73.
    [Show full text]
  • PTFE Fine Powder Version 6.0
    Safety Data Sheet PTFE Fine Powder Version 6.0 Revision Date 10/19/2016 Ref. 150000002329 This SDS adheres to the standards and regulatory requirements of the United States and may not meet the regulatory requirements in other countries. SECTION 1. PRODUCT AND COMPANY IDENTIFICATION Product name : PTFE Fine Powder Tradename/Synonym : 6-J, 6C, 6C X, 6C-J, 6C-N, 6CN X, K10, K-10-J 60, 60 X, 62, 62 X, 62-N, 62N X, 62-J, 62XT, 62XT X, 65, 65 X, 65A, 65-A X, 65-N, 65-N X, 67, 68 600A, 601A, 601 X, 602A, 602 X, 603, 604J, 605XT, 605XT X, 610A, 610A X, 612A, 612A, 613A, 613A X, 615, 636-N, 637-N, 638RFF-N, 640-J, 640XT, 640XT X, 641-J, 641XT X, 650XT X, 669, 669 X, 669-N, 669-N X, CFP 6000 X, CFP 6000-N, TE3852-N, TE3853-N, TE3905, TE3907, TE3911, TE3912, TE3944, TE3958, TE3963, TE3964, TE3967, TE3971, TE3972, TE3979, TE3980, TE3981, TE3989, TE3991, TE3002, TE3993, TE3994, TE3999, TE4001, TE4014, TE4016, TE4019, TE5402 Product Use : Resin for moulding and/or extrusion, For industrial use only. Cleaning agent, For professional users only. Restrictions on use : Do not use product for anything outside of the above specified uses Manufacturer/Supplier : The Chemours Company FC, LLC 1007 Market Street Wilmington, DE 19899 United States of America Product Information : 1-844-773-CHEM (outside the U.S. 1-302-773-1000) Medical Emergency : 1-866-595-1473 (outside the U.S. 1-302-773-2000) Transport Emergency : CHEMTREC: +1-800-424-9300 (outside the U.S.
    [Show full text]