A Dissection of the Break Free from Plastic Pollution Act

Total Page:16

File Type:pdf, Size:1020Kb

A Dissection of the Break Free from Plastic Pollution Act Student Publications Student Scholarship Spring 2021 The Solution to Plastic Pollution: A Dissection of the Break Free From Plastic Pollution Act Nadine M. Snyder Gettysburg College Follow this and additional works at: https://cupola.gettysburg.edu/student_scholarship Part of the Environmental Policy Commons, and the Environmental Studies Commons Share feedback about the accessibility of this item. Recommended Citation Snyder, Nadine M., "The Solution to Plastic Pollution: A Dissection of the Break Free From Plastic Pollution Act" (2021). Student Publications. 914. https://cupola.gettysburg.edu/student_scholarship/914 This open access student research paper is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact [email protected]. The Solution to Plastic Pollution: A Dissection of the Break Free From Plastic Pollution Act Abstract Ever since the development of plastic in the 1900s, it has become one of the most commonly used materials in the world. Its flexibility and durability allow it to be used in a wide variety of materials from clothing to packaging to toothbrushes. However, plastic’s durability has caused environmental damage as well, as plastic particles have been found in everything from waterways to human bodies. This paper explains the history and science of plastic production and examines studies on the environmental and public health impacts of plastics. It then examines various policies that have been enacted to control plastic pollution and the effectiveness of those policies. Finally, it assesses the Break Free From Plastic Pollution Act and investigates why certain stakeholders support and oppose this act. Ultimately research suggests that the Break Free From Plastic Pollution Act would be effective at reducing plastic pollution in the United States, and the United States Congress should pass this act in order to protect both people and the environment from plastic pollution. Keywords Plastic, Environment, Policy, Politics Disciplines Environmental Policy | Environmental Studies | Public Affairs, Public Policy and Public Administration Comments Written for PP 401: Advanced Topics in Public Policy Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This student research paper is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/student_scholarship/914 Nadine Snyder May 12th, 2021 The Solution to Plastic Pollution A Dissection of the Break Free From Plastic Pollution Act Introduction The creation of plastic forever changed the economies and environments of countries across the globe. Today plastic is in almost everything, from clothing, to packaging, to toothbrushes. It has become inseparable from modern life. However, this may not be a good thing. Plastic pollutes our waterways and landscapes, and recent studies have shown that it even pollutes our bodies. However, attempts at regulating plastic use and production have not always been successful. The plastic industry has lots of money and power in the political game, and it is difficult to regulate a material that so many people are dependent on. Even so, given how difficult it is to remove plastic from our environment and bodies, it is now more important than ever for governments to regulate plastic. Therefore, The United States Government should pass the Break Free From Plastic Pollution Act, in order to reduce plastic waste, improve waste management, and hold companies accountable for the harm their products do to the environment and society. Background History of Plastic Production Plastic was first created in 1907 in the form of Bakelite, a synthetic polymer that was designed to replace silk and ivory (Davis, 2015). During World War Two, the need for cheaper materials greatly boosted plastic use. Post World War Two, plastics were lauded as a cheap material that could be used for everything from packaging to clothing (Davis, 2015). Plastic consumption was generally not driven by the need for new technology, but instead by the price of the material. It was a cheap replacement for items that were already in use. It also allowed for an increase in global consumerism, as plastic materials, such as shrink wrap, made shipping processes far easier (Davis, 2015). In the past fifty years plastic production has increased dramatically. In 1960 plastic made up just 1% of all municipal solid waste in the United States. By 2005 plastic made up at least 10% of all municipal solid waste. Global plastic production has increased 620% since 1975 (Jambck et al, 2015). This rapid increase in plastic consumption and production makes it even more important that countries, such as the United States, have policies regulating the disposal of plastic, to ensure that pollution does not get out of hand. Science and Formation of Plastic Plastic is so popular as its flexibility allows it to be molded into a seemingly infinite number of products. The term plastics itself is defined as materials that at some stage in production are capable of flow that allows them to be extruded, molded, spun, or painted on as a coating (American Chemistry Council, 2021). Plastic is made from carbon atoms from monomers that come from oil or gas. Then these carbon atoms are chemically bonded to form polymers through a process called polymerization (American Chemistry Council, 2021). This is done by adding an enzyme, such as peroxide, that causes the monomers to link up. Plastic can also be formed through condensation, which is when catalysts are added to cause all atoms to react with the atoms surrounding them. In condensation byproducts, such as water, oftentime have to be disposed of before the newly linked polymers can be used (American Chemistry Council, 2021). After the polymer chains are formed additives can be added to the plastic to give it different properties. For example antioxidants can be added to the outside of plastic packaging, to prevent it from being damaged. Antimicrobials can be added to things such as shower curtains, to prevent bacteria growth. Flame retardants can be added to things such as wire and cable coverings, to ensure they do not catch fire. Colarants can be added to all types of plastic, to improve the aesthetics, and make the item unique when compared to other plastic items (American Chemistry Council, 2021). After all of these steps are complete, carbon molecules are transformed from oil to a plastic cup or other item. In general there are two main types of plastic, thermoplastics and thermoset plastics. Thermoplastics are formed of repeating units, called unit cells. Examples of different types of thermoplastics include ethene, propene, and butene, which differ in their number of carbon and hydrogen bonds (American Chemistry Council, 2021). There are two main groups of thermoplastics, homopolymers, which are formed of long chains of carbon bonds, or heteropolymers where the carbon atoms are divided by oxygen or nitrogen atoms. Homopolymers tend to be more durable than heteropolymers. In general, almost all plastics, approximately 92%, are thermoplastics (American Chemistry Council, 2021). All thermoplastics have a high molecular weight, which means that they can easily bond with thousands of other atoms. They also are easily meltable, and can be molded to form a variety of objects.Thermosets are plastics that are not meltable, as they are formed from 2 or 3 dimensional configurations of atoms, not just a single chain (American Chemistry Council, 2021). The chemical bonds in plastic make it very difficult to decompose. On average plastic takes 20 to 500 years to decompose. The decomposition rate of plastic products depends on the strength of the plastic it is made out of. For example weaker plastic such as the plastic in a plastic grocery bag can take 20 years to decompose, whereas studier plastic, such as the plastic in a toothbrush can take around 450 years (Godswill and Godspel, 2019). This makes recycling plastic incredibly important, as if it is not recycled it will spend decades sitting in landfills. However, 91% of plastic is not recycled. Thermoplastics, which comprise the majority of plastics can be recycled, while thermoset plastics, which comprise 8% of all plastics cannot be recycled (Sedaghat, 2018). This is because the weaker bonds of thermoplastics allow them to be easily broken down and formed into other materials, whereas the stronger bonds of thermoset plastics make them difficult to remold. However, thermoplastics can generally only be recycled 2 or 3 times before the quality of the plastic deteriorates to a point where it cannot be reused (Sedaghat, 2018). This process is called downcycling, and it happens to the majority of recycled goods. All of this information is especially concerning considering that 8.3 billion metric tons of plastic have been produced since 1960. 6.3 billion metric tons of this plastic has become waste (Sedaghat, 2018). This waste causes environmental, public health, and environmental justice issues that need to be addressed. Environmental Effects of Plastic Plastic waste causes severe harm to the environment, particularly to ocean ecosystems. One study found that in 2010 275 million metric tons of plastic was created by 192 coastal countries. 99.5 million metric tons of this plastic waste was created by people living within 50 kilometers of the coast (Jambeck et al, 2015). Plastic waste is at a greater risk of entering the ocean when it is mismanaged, or when it does not make its way to a landfill, incinerator, or recycling center. It is estimated that 31.9 million metric tons of the 99.5 million metric tons of coastal waste that was generated was mismanaged, and 4.8 to 12.7 million tons of this waste ended up in the ocean (Jambeck et al, 2015). As the amount of plastic used by global populations increases, the amount of mismanaged waste will as well.
Recommended publications
  • The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 124
    1998:12 The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 124. Thermal Degradation Products of Polyethylene, Polypropylene, Polystyrene, Polyvinylchloride and Polytetrafluoroethylene in the Processing of Plastics Antti Zitting Nordic Council of Ministers arbete och hälsa vetenskaplig skriftserie ISBN 91–7045–472–8 ISSN 0346–7821 http://www.niwl.se/ah/ah.htm National Institute for Working Life National Institute for Working Life The National Institute for Working Life is Sweden's center for research and development on labour market, working life and work environment. Diffusion of infor- mation, training and teaching, local development and international collaboration are other important issues for the Institute. The R&D competence will be found in the following areas: Labour market and labour legislation, work organization and production technology, psychosocial working conditions, occupational medicine, allergy, effects on the nervous system, ergonomics, work environment technology and musculoskeletal disorders, chemical hazards and toxicology. A total of about 470 people work at the Institute, around 370 with research and development. The Institute’s staff includes 32 professors and in total 122 persons with a postdoctoral degree. The National Institute for Working Life has a large international collaboration in R&D, including a number of projects within the EC Framework Programme for Research and Technology Development. ARBETE OCH HÄLSA Redaktör: Anders Kjellberg Redaktionskommitté: Anders Colmsjö och Ewa Wigaeus Hjelm © Arbetslivsinstitutet & författarna 1998 Arbetslivsinstitutet, 171 84 Solna, Sverige ISBN 91–7045–472–8 ISSN 0346-7821 Tryckt hos CM Gruppen Preface The Nordic Council is an intergovernmental collaborative body for the five countries, Denmark, Finland, Iceland, Norway and Sweden.
    [Show full text]
  • Products Evolved During Hot Gas Welding of Fluoropolymers
    Health and Safety Executive Products evolved during hot gas welding of fluoropolymers Prepared by the Health and Safety Laboratory for the Health and Safety Executive 2007 RR539 Research Report Health and Safety Executive Products evolved during hot gas welding of fluoropolymers Chris Keen BSc CertOH Mike Troughton BSc PhD CPhys MInstP Derrick Wake BSc, Ian Pengelly BSc, Emma Scobbie BSc Health and Safety Laboratory Broad Lane Sheffield S3 7HQ This report details the findings of a research project which was performed as a collaboration between the Health and Safety Executive (HSE) and The Welding Institute (TWI). The project aim was to identify and measure the amounts of products evolved during the hot gas welding of common fluoropolymers, to attempt to identify the causative agents of polymer fume fever. Carbonyl fluoride and/or hydrogen fluoride were detected from certain fluoropolymers when these materials were heated to their maximum welding temperatures. Significant amounts of ultrafine particles were detected from all of the fluoropolymers investigated when they were hot gas welded. The report concludes that fluoropolymers should be hot gas welded at the lowest possible temperature to reduce the potential for causing polymer fume fever in operators. If temperature control is not sufficient to prevent episodes of polymer fume fever, a good standard of local exhaust ventilation (LEV) should also be employed. This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy. HSE Books © Crown copyright 2007 First published 2007 All rights reserved.
    [Show full text]
  • Safety Assessment of Fluoropolymers As Used in Cosmetics
    Safety Assessment of Fluoropolymers as Used in Cosmetics Status: Draft Report for Panel Review Release Date: February 9, 2018 Panel Date: March 5-6, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Wilbur Johnson, Jr. Senior Scientific Analyst Date: February 9, 2018 Subject: Draft Report on Fluoropolymers A Scientific Literature Review (SLR) on Fluoropolymers was issued on January 8, 2018. The attached use concentration data (fluoro032018data1 and fluoro032018data2) that are included in this draft report were received from the Personal Care Products Council (Council) prior to issuance of the SLR. Data relating to the skin irritation and sensitization potential and ocular irritation potential of formulas containing PTFE (fluoro032018data3) and report comments (fluoro032018pcpc1) were received from the Council after the SLR was issued. These data are included in the draft report, and the Council’s comments have been addressed. Additionally, a memorandum with report comments (fluoro032018pcpc2) was received from the Cosmetic Ingredient Review (CIR) Science and Support Committee of the Council.
    [Show full text]
  • Toxic Hazards to Fire Fighters, Including Effects of Fire Retardants, During Fires and Post-Fire Investigation Activities
    David Purser Fire Retardants and their Potential Impact on Fire Fighter Health National Institute of Standards and Technology, Gaithersburgh MD September 30th 2009 Toxic Hazards to Fire Fighters, Including Effects of Fire Retardants, During Fires and Post-Fire Investigation Activities Prof. David Purser Hartford Environmental Research Hatfield, United Kingdom HER David Purser Issues • What are potential health hazards to fire fighters from exposure to toxic fire effluents? • What features of burning materials and fire conditions give rise to these hazards? • What effect do fire retardants have on toxic fire hazards? HER David Purser Role of fire retardant treatments Benefits of fire retardant treatments: 1. Reduce probability that a heat or ignition source will initiate a growing spreading fire – Reduce initial ignition probability – If ignition does occur may result in self- extinction/failure of propagation – Thereby essentially eliminate the toxic and environmental hazards from fires prevented 2. If the initial ignition resistance is overcome may reduce the rate of fire growth – May result in a period of very slow growth up to a critical fire size – Or may provide a slower t2 fire growth curve – In such cases may reduce the rate of toxic hazard development and increase the time available for escape or fire fighting HER David Purser BS7974 fire growth rate curves t^2 fire growth curves 10000 9000 8000 7000 6000 5000 4000 Slow 3000 Medium Heat release rate (Kilowatts) 2000 Fast Ultrafast 1000 Explosion 0 0 100 200 300 400 500 600 Time (s) HER David Purser BS7974 fire growth rate curves CBUF chairs HER David Purser Limitations of fire retardant treatments • Do not provide non-combustibility, but ignition resistance to a heat source up to a design limit.
    [Show full text]
  • DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS
    criteria for a recommended standard . occupational exposure to DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE criteria for a recommended standard... OCCUPATIONAL EXPOSURE TO DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health September 1977 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DHEW (NIOSH) Publication No. 77-193 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommendations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epidemiologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on the decomposition products of fluorocarbon polymers by members of the NIOSH staff and the valuable constructive comments by the Review Consultants on the Decomposition Products of Fluorocarbon Polymers and by Robert B.
    [Show full text]
  • 10.5 Polymerization Reactions—Monomers And
    Extension 12. (a) (b) Animal hides decompose quickly unless they are cured to remove the water from the skin. The hide is first soaked in water to remove water-soluble substances, and hair is removed by soaking in a mixture of lime and water, followed by an enzyme mixture. The hair and any remaining tissue are removed by machine and the hide is washed and treated with tannic acid. The tannic acid displaces water from the spaces between the protein fibres of the hide, allowing the fibres to cement together to form a strong, water-resistant leather. 13. (a) First molecule: one cis and two trans Second molecule: two cis and two trans (b) Transfats increase the level of low-density lipoprotein (LDL) or “bad” cholesterol in the bloodstream, which contributes to clogging of the arteries. As arteries clog, the risk of stroke and heart attack increases. 10.5 POLYMERIZATION REACTIONS—MONOMERS AND POLYMERS Web Activity: Web Quest—Teflon: Healthy or Hazardous? (Page 448) [Students’ presentations may cover some of the following material.] Production of Teflon To produce polytetrafluoroethylene (PTFE or Teflon®), the manufacturer first needs a steady supply of tetrafluoroethylene (TFE). To produce the required TFE, three main ingredients, fluorspar, hydrofluoric acid, and chloroform are combined in a reaction chamber and heated to between 590 ˚C and 900 ˚C. The gas produced is cooled and then distilled to remove impurities. A possible sequence of reactions is: CaF2(s) + H2SO4(aq) o CaSO4(s) + 2 HF(aq) CH4(g) + 3 Cl2(g) o CHCl3(g) + 3 HCl(g) CHCl3(g) + 2 HF(g) o CHClF2(g) + 2 HCl(g) 2 CHClF2(g) o CF2CF2(g) + 2 HCl(g) 374 Unit 5 Solutions Manual Copyright © 2007 Thomson Nelson One method of producing PTFE from the TFE is by suspension polymerization.
    [Show full text]
  • Summer 2015 Newsletter
    OF NORTHEAST WISCONSIN j C ELEBRATING 30 YEARS OF WORKING TO PROTECT PUBLIC HEALTH AND THE ENVIRONMENT IN N ORTHEAST W ISCONSIN i SUMMER 2015 Protecting Your Family from Toxins in the Home and Environment Introduction by CWAC President Dean Hoegger silence still surrounds the link between chemicals in our environments and their impact on human health. Dr. cientific research shows a strong link between Sandra Steingraber, who spoke at CWAC’s Health Forum Sunregulated chemicals and the health problems in May, 2014, noted the degree to which our environment that plague American families. Public concern about that has been contaminated. “From dry-cleaning fluids to link has driven positive change in state policies, in the pesticides, harmful substances have trespassed into the marketplace, and among America’s trading partners, states landscape and have also woven themselves, in trace the Safer Chemicals and Healthy Families Organization. amounts, into the fibers of our bodies.” In 2009, Lisa Jackson, Director of the U.S. Without the EPA requiring testing of the ever- Environmental Protection Agency (EPA), agreed with increasing number of chemicals found in American the research when she announced her intent to reform homes, consumers will be left guessing about the safe use the 33-year-old federal law, the Toxic Substances Control of these products. Steingraber emphasized that testing Act (TSCA), governing the manufacture of hazardous should also include a look at the long-term effects: “This substances, noting the law had failed to protect public much we know with certainty. It is not only reasonable but health. When Congress passed the TSCA in 1976, there essential that we should understand the lifetime effects of were already more than 62,000 synthetic chemicals in use, these incremental accumulations.
    [Show full text]
  • Krytox GPL-22X and GPL-52X Series Fluorinated Grease
    MSDS No. 3829PP ---------------------------------------------------------------------- "KRYTOX" GPL-22X and GPL-52X Series Fluorinated Grease 3829PP Revised 5-MAY-1995 Printed 4-DEC-2001 ---------------------------------------------------------------------- ---------------------------------------------------------------------- CHEMICAL PRODUCT/COMPANY IDENTIFICATION ---------------------------------------------------------------------- Material Identification "Krytox" is a registered trademark of DuPont. Corporate MSDS Number : DU008134 Grade : 220, 221, 222, 223, 224, 225, 226, 227 Tradenames and Synonyms "Krytox" GPL 227-500 Company Identification MANUFACTURER/DISTRIBUTOR DuPont 1007 Market Street Wilmington, DE 19898 PHONE NUMBERS Product Information : 1-800-441-7515 (outside the U.S. 302-774-1000) Transport Emergency : CHEMTREC 1-800-424-9300(outside U.S. 703-527-3887) Medical Emergency : 1-800-441-3637 (outside the U.S. 302-774-1000) ---------------------------------------------------------------------- COMPOSITION/INFORMATION ON INGREDIENTS ---------------------------------------------------------------------- Components Material CAS Number % Perfluoroalkylether 60164-51-4 71-80 *Sodium Nitrite 7632-00-0 2 PTFE 9002-84-0 18-27 * Disclosure as a toxic chemical is required under Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR part 372. ---------------------------------------------------------------------- HAZARDS IDENTIFICATION ----------------------------------------------------------------------
    [Show full text]
  • Acute Gevolgen Van De Inhalatie Van Impregnatiesprays B
    Contactgroep Gezondheid en Chemie & NVAB ‘s Hertogenbosch – 09.06.2011 Acute gevolgen van de inhalatie van impregnatiesprays B. Nemery, MD, PhD Arbeids-, Milieu- en Verzekeringsgeneeskunde and Pneumologie K.U.Leuven Belgium [email protected] Case 1 Case 1 • Man, 43 y, smoker, no previous disease • Visit to Emergency Department: • fever, malaise, dry cough, dyspnoea • evening: WBC 17,200 (82% pmn), CRP 7 mg/L • morning: WBC 11,800 (69% pmn), CRP 53 mg/L, PaO 2 63 mmHg • Chest X-ray: « atypical respiratory infection » R/ clarithromycin 141003 Case 1 • Second visit to ED 10 days later: • similar symptoms • WBC 21,400 (81% pmn), CRP 11 mg/L, PaO 2 74 mmHg • Chest X-ray and HRCT 241003 «sprayed an aerosol to prepare new cars (1 can/car)» Fluorocarbon-containing spray Toxic alveolitis caused by fabric protection spray 241003 Case 1 • no infectious organisms detected • R/ methylprednisolone • rapid improvement, discharged after 5 days • normal pulmonary function, including DLco • normal chest X-ray • 4 months follow-up: further symptomaticexp improvement 090304 Fabric protection sprays • Sprays for impregnation of leather or fabrics (shoes, jackets, furnishings, …) (water/dirt repellant, “anti-rain”) • Fluorine-containing hydrocarbons • + Solvents severe pulmonary damage in consumers, domestic animals, workers • Burkhart et al . Pulmonary toxicity following exposure to an aerosolized leather protector. Clin Toxicol 1996; 34 :21-24. • Jinn et al . Acute lung injury after inhalation of water-proofing spray while smoking a cigarette. Respiration 1998; 65 :486- 488. • Bracco & Favre. Pulmonary injury after ski wax inhalation exposure. Ann Emerg Med 1998; 32 :616-619. Fabric protection sprays • 2002-2003 reports of (severe) pulmonary injury in users of fabric & leather protection sprays • The Netherlands Bonte et al .
    [Show full text]
  • Guide for the Safe Handling of Fluoropolymer Resins November 2012 Acknowledgement
    Guide for the Safe Handling of Fluoropolymer Resins November 2012 Acknowledgement This guide has been developed by the members of the Fluoropolymers Committee of PlasticsEurope (the Disclaimer Association of Plastics Manufacturers in Europe), the The information presented in this brochure is provided professional representative body for the European free of charge and submitted in good faith and is polymer producers. The association has more than correct to the best of PlasticEurope’s present 100 member companies, producing over 90% of all knowledge. polymers across the EU27 member states plus Following the Guide does not guarantee compliance Norway, Switzerland, Croatia and Turkey. with any regulation nor safe operation of any process- ing facilities. Users are cautioned that the information PlasticsEurope wishes to acknowledge the Fluo- upon which this guide is based is subject to change ropolymers Division of the USA Society of the Plastics that may invalidate any or all of the comments Industry (SPI) for permission to use extracts from contained herein. the SPI Guide to the Safe Handling of Fluoropolymer Resins. PlasticsEurope will be unable to accept responsibility or claims from any party, related to information presented in this brochure. Freedom under patents, copyright and registered designs cannot be assumed. Version 6 Contents Introduction 1 Chapter I: Fluoropolymer Resins Types and Properties 2 1 – Resins types 2 2 – Thermal properties 3 Chapter II: Potential Health Effects 5 1 – Polymer General Toxicology 5 2 – Health hazards
    [Show full text]
  • Download MSDS CKWMC
    View NSN Online: https://aerobasegroup.com/nsn/9150-00-961-8995 DUPONT -- 240AC, KRYTOX 240 SERIES FLUORINATED GREASE -- 9150-00-961-8995 ===================== Product Identification ===================== Product ID:240AC, KRYTOX 240 SERIES FLUORINATED GREASE MSDS Date:05/05/1995 FSC:9150 NIIN:00-961-8995 Status Code:A MSDS Number: CKWMC === Responsible Party === Company Name:DUPONT Address:1007 MARKET STREET City:WILMINGTON State:DE ZIP:19898-5000 Country:US Info Phone Num:PROD 800-441-751 5 MED: 8004413637 Emergency Phone Num:1-800-441-3637 Resp. Party Other MSDS Num.:DU008138 Chemtrec Ind/Phone:(800)424-9300 CAGE:EO596 === Contractor Identification === Company Name:DU PONT E I DE NEMOURS AND CO INC Address:RT US 211 N Box:863 City:MARTINSBURG State:WV ZIP:25401 Country:US Phone:304-274-2121 CAGE:0E731 Company Name:DU PONT E I DE NEMOURS AND CO INC Address:RT US 11 N Box:863 City:MARTINSBURG State:WV ZIP:25401 Country:US Phone:304-274-2121 CAGE:15756 Company Name:DUPONT Address:1 007 MARKET STREET City:WILMINGTON State:DE ZIP:19898-5000 Country:US Phone:PROD 800-441-7515 MED: 8004413637 CAGE:EO596 Company Name:DUPONT E I DE NEMOURS AND CO INC, POLYMER PRODUCT-TEFLON CO. Address:1007 MARKET ST Box:City:WILMINGTON State:DE ZIP:19898 Country:US Phone:800-523-0372/346-4748 CAGE:9V583 Company Name:SDB CONSULTANTS LTD Address:401 WHITNEY AVE SUITE 120 Box:City:GRETNA State:LA ZIP:70056 Country:US Phone:504-366-9105 Contract Num:SP0450-00-W-2049 CAGE:0PGK2 ============= Composition/Information on Ingredients ============= Ingred Name:PERFLUOROALKYLETHER CAS:60164-51-4 Minumum % Wt:73.
    [Show full text]
  • PTFE Fine Powder Version 6.0
    Safety Data Sheet PTFE Fine Powder Version 6.0 Revision Date 10/19/2016 Ref. 150000002329 This SDS adheres to the standards and regulatory requirements of the United States and may not meet the regulatory requirements in other countries. SECTION 1. PRODUCT AND COMPANY IDENTIFICATION Product name : PTFE Fine Powder Tradename/Synonym : 6-J, 6C, 6C X, 6C-J, 6C-N, 6CN X, K10, K-10-J 60, 60 X, 62, 62 X, 62-N, 62N X, 62-J, 62XT, 62XT X, 65, 65 X, 65A, 65-A X, 65-N, 65-N X, 67, 68 600A, 601A, 601 X, 602A, 602 X, 603, 604J, 605XT, 605XT X, 610A, 610A X, 612A, 612A, 613A, 613A X, 615, 636-N, 637-N, 638RFF-N, 640-J, 640XT, 640XT X, 641-J, 641XT X, 650XT X, 669, 669 X, 669-N, 669-N X, CFP 6000 X, CFP 6000-N, TE3852-N, TE3853-N, TE3905, TE3907, TE3911, TE3912, TE3944, TE3958, TE3963, TE3964, TE3967, TE3971, TE3972, TE3979, TE3980, TE3981, TE3989, TE3991, TE3002, TE3993, TE3994, TE3999, TE4001, TE4014, TE4016, TE4019, TE5402 Product Use : Resin for moulding and/or extrusion, For industrial use only. Cleaning agent, For professional users only. Restrictions on use : Do not use product for anything outside of the above specified uses Manufacturer/Supplier : The Chemours Company FC, LLC 1007 Market Street Wilmington, DE 19899 United States of America Product Information : 1-844-773-CHEM (outside the U.S. 1-302-773-1000) Medical Emergency : 1-866-595-1473 (outside the U.S. 1-302-773-2000) Transport Emergency : CHEMTREC: +1-800-424-9300 (outside the U.S.
    [Show full text]