Geochemical Impact of Super-Critical Co2 Injection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambrian Ordovician
Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation. -
IGS 2015B-Maquoketa Group
,QGLDQD*HRORJLFDO6XUYH\ $ERXW8V_,*66WDII_6LWH0DS_6LJQ,Q ,*6:HEVLWHIGS Website Search ,1',$1$ *(2/2*,&$/6859(< +20( *HQHUDO*HRORJ\ (QHUJ\ 0LQHUDO5HVRXUFHV :DWHUDQG(QYLURQPHQW *HRORJLFDO+D]DUGV 0DSVDQG'DWD (GXFDWLRQDO5HVRXUFHV 5HVHDUFK ,QGLDQD*HRORJLF1DPHV,QIRUPDWLRQ6\VWHP'HWDLOV 9LHZ&DUW 7ZHHW *1,6 0$482.(7$*5283 $ERXWWKH,*1,6 $JH 6HDUFKIRUD7HUP 2UGRYLFLDQ 6WUDWLJUDSKLF&KDUW 7\SHGHVLJQDWLRQ 7\SHORFDOLW\7KH0DTXRNHWD6KDOHZDVQDPHGE\:KLWH S IRUH[SRVXUHVRIEOXHDQGEURZQVKDOH 025(,*65(6285&(6 WKDWDJJUHJDWHIW P LQWKLFNQHVVDORQJWKH/LWWOH0DTXRNHWD5LYHULQ'XEXTXH&RXQW\,RZD *UD\DQG6KDYHU 5HODWHG%RRNVWRUH,WHPV +LVWRU\RIXVDJH 6LQFHLWVILUVWXVHWKHWHUPKDVVSUHDGJUDGXDOO\HDVWZDUGLQWKHSURFHVVEHFRPLQJDJURXSWKDWHPEUDFHVVHYHUDO IRUPDWLRQV *UD\DQG6KDYHU ,WLVQRZXVHGWKURXJKRXW,OOLQRLV :LOOPDQDQG%XVFKEDFKS ZDV H[WHQGHGLQWRQRUWKZHVWHUQ,QGLDQDE\*XWVWDGW DQGZDVDGRSWHGIRUXVHLQDJURXSVHQVHWKURXJKRXW,QGLDQD 5(/$7('6,7(6 E\*UD\ *UD\DQG6KDYHU 86*6*(2/(; 'HVFULSWLRQ 1RUWK$PHULFDQ6WUDWLJUDSKLF $VGHVFULEHGE\*UD\ WKH0DTXRNHWD*URXSLQ,QGLDQDLVDZHVWZDUGWKLQQLQJZHGJHIW P WKLFNLQ &RGH VRXWKHDVWHUQ,QGLDQDDQGIW P WKLFNLQQRUWKZHVWHUQ,QGLDQD *UD\DQG6KDYHU ,WFRQVLVWVSULQFLSDOO\RI $$3*&2681$&KDUW VKDOH DERXWSHUFHQW OLPHVWRQHFRQWHQWLVPLQLPDOWKURXJKRXWPRVWRI,QGLDQDEXWLQFUHDVHVSURPLQHQWO\LQWKH VRXWKHDVWVRWKDWSDUWVRIWKHJURXSDUHLQSODFHVGRPLQDQWO\OLPHVWRQH *UD\DQG6KDYHU 7KHORZHUSDUWRIWKH JURXSLVHYHU\ZKHUHDOPRVWHQWLUHO\VKDOHDQGWKHORZHUSDUWRIWKHVKDOHLVGDUNEURZQWRQHDUO\EODFN *UD\DQG 6KDYHU $VDFRQVHTXHQFHRIWKLVSDWWHUQRIURFNGLVWULEXWLRQWZRVFKHPHVRIQRPHQFODWXUHDUHXVHGLQVXEGLYLVLRQRIWKH 0DTXRNHWD*URXSLQ,QGLDQD -
Upper Ordovician) at Wequiock Creek, Eastern Wisconsin
~rnooij~~~mij~rnoo~ ~oorn~rn~rn~~ rnoo~~rnrn~rn~~ Number 35 September, 1980 Stratigraphy and Paleontology of the Maquoketa Group (Upper Ordovician) at Wequiock Creek, Eastern Wisconsin Paul A. Sivon Department of Geology University of Illinois Urbana, Illinois REVIEW COMMITTEE FOR THIS CONTRIBUTION: T.N. Bayer, Winona State College University, Winona Minnesota M.E. Ostrom, Wisconsin Geological Survey, Madison, Wisconsin Peter Sheehan, Milwaukee Public Museum· ISBN :0-89326-016-4 Milwaukee Public Museum Press Published by the Order of the Board of Trustees Milwaukee Public Museum Accepted for publication July, 1980 Stratigraphy and Paleontology of the Maquoketa Group (Upper Ordovician) at Wequiock Creek, Eastern Wisconsin Paul A. Sivon Department of Geology University of Illinois Urbana, Illinois Abstract: The Maquoketa Group (Upper Ordovician) is poorly exposed in eastern Wisconsin. The most extensive exposure is found along Wequiock Creek, about 10 kilometers north of Green Bay. There the selection includes a small part of the upper Scales Shale and good exposures of the Fort Atkinson Limestone and Brainard Shale. The exposed Scales Shale is 2.4 m of clay, uniform in appearance and containing no apparent fossils. Limestone and dolomite dominate the 3.9 m thick Fort Atkinson Limestone. The carbonate beds alternate with layers of dolomitic shale that contain little to no fauna. The shales represent times of peak terrigenous clastic deposition in a quiet water environment. The car- bonates are predominantly biogenic dolomite and biomicrite. Biotic succession within single carbonate beds includes replacement of a strophomenid-Lepidocyclus dominated bottom community by a trep- ostome bryozoan-Plaesiomys-Lepidocyclus dominated community. Transported echinoderm and cryptostome bryozoan biocalcarenites are common. -
B2150-B FRONT Final
Bedrock Geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Kentucky, and Missouri By W. John Nelson THE PADUCAH CUSMAP QUADRANGLE: RESOURCE AND TOPICAL INVESTIGATIONS Martin B. Goldhaber, Project Coordinator T OF EN TH TM E U.S. GEOLOGICAL SURVEY BULLETIN 2150–B R I A N P T E E R D . I O S . R A joint study conducted in collaboration with the Illinois State Geological U Survey, the Indiana Geological Survey, the Kentucky Geological Survey, and the Missouri M 9 Division of Geology and Land Survey A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Nelson, W. John Bedrock geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Ken- tucky, and Missouri / by W. John Nelson. p. cm.—(U.S. Geological Survey bulletin ; 2150–B) (The Paducah CUSMAP Quadrangle, resource and topical investigations ; B) Includes bibliographical references. Supt. of Docs. no. : I 19.3:2150–B 1. Geology—Middle West. I. Title. II. Series. III. Series: The Paducah CUSMAP Quadrangle, resource and topical investigations ; B QE75.B9 no. 2150–B [QE78.7] [557.3 s—dc21 97–7724 [557.7] CIP CONTENTS Abstract .......................................................................................................................... -
Geological Sequestration of Carbon Dioxide in the Cambrian Mount Simon Sandstone Figure 1
Geological sequestration of AUTHORS David A. Barnes Michigan Geological carbon dioxide in the Cambrian Repository for Research and Education and Geosciences, Western Michigan University, Mount Simon Sandstone: Kalamazoo, Michigan 49008; [email protected] Regional storage capacity, David Barnes is a professor of geosciences and a research scientist at the Michigan Geological site characterization, and Repository for Research and Education at Western Michigan University, Kalamazoo, Michigan. He received his Ph.D. from the University of Cali- large-scale injection feasibility, fornia Santa Barbara in 1982 with an emphasis in sedimentary geology, he worked for SOHIO Michigan Basin Petroleum Company in the early 1980s, and he has been at Western Michigan University since David A. Barnes, Diana H. Bacon, and Stephen R. Kelley 1986. Diana H. Bacon Battelle Pacific Northwest Division, Richland, Washington 99352; ABSTRACT [email protected] Diana H. Bacon has 23 years of experience in The Mount Simon Sandstone (Cambrian) is recognized as an impor- vadose zone hydrology and geochemistry. She tant deep saline reservoir with potential to serve as a target for geolog- received her Ph.D. in geology from Washington ical sequestration in the Midwest, United States. The Mount Simon State University in 1997 and her M.S. degree in Sandstone in Michigan consists primarily of sandy clastics and grades hydrology from New Mexico Institute of Mining upward into the more argillaceous Eau Claire Formation, which and Technology in 1986. She has been a research serves as a regional confining zone. The Mount Simon Sandstone lies scientist at Battelle since May 1986 and is cur- at depths from about 914 m (3000 ft) to more than 4572 m (15,000 ft) rently supporting the development of STOMP-CO2 in the Michigan Basin and ranges in thickness from more than 396 m for several midwestern regional carbon se- (1300 ft) to near zero adjacent to basement highs. -
Italic Page Numbers Indicate Major References]
Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67. -
Report of Investigation 15 SUBSURFACE GEOLOGY of BARRY COUNTY, MICHIGAN
Geological Survey Ordovician System .......................................................10 Report of Investigation 15 Cincinnatian Series...................................................10 Trenton Group ..........................................................10 SUBSURFACE GEOLOGY OF BARRY COUNTY, Black River Group ....................................................10 MICHIGAN St. Peter Sandstone .................................................11 by Prairie du Chien Group.............................................11 Richard T. Lilienthal Cambrian System.........................................................11 Illustrations by Author Trempealeau Formation ...........................................11 Lansing Munising Formation ..................................................12 1974 STRUCTURAL GEOLOGY .............................................12 POROUS INTERVALS....................................................12 Contents REFERENCES AND FURTHER READING ...................16 FOREWORD......................................................................2 ABSTRACT .......................................................................2 Illustrations INTRODUCTION ...............................................................3 GEOLOGIC SETTING.......................................................3 Figures MINERAL RESOURCES...................................................3 Index map ...................................................................................2 Surface Minerals ............................................................3 -
Microanalysis of Carbonate Cement D O in a CO2-Storage System Seal
Microanalysis of carbonate AUTHORS 18 Maciej G. Sliwi´ nski´ ~ WiscSIMS cement d O in a CO2-storage Laboratory, Department of Geoscience, University of Wisconsin–Madison, 1215 system seal: Insights into the W. Dayton St., Madison, Wisconsin 53706; [email protected] diagenetic history of the Eau Maciej G. Sliwi´ nski´ received a B.S. in geology from the University of Washington and a Ph.D. Claire Formation (Upper in geology from the University of Alaska Fairbanks. He joined the WiscSIMS Laboratory Cambrian), Illinois Basin at the University of Wisconsin–Madison as a postdoctoral fellow in 2013. His research Maciej G. Sliwi´ nski,´ Reinhard Kozdon, Kouki Kitajima, interests are chemical and isotopic microanalysis, analytical methods Adam Denny, and John W. Valley development, x-ray spectroscopy (wavelength- dispersive–x-ray fluorescence, handheld–x-ray fluorescence, and synchrotron-based methods), chemostratigraphy, and sediment ABSTRACT diagenesis. Oxygen isotope (d18O) zonation in carbonate mineral cements is Reinhard Kozdon ~ WiscSIMS often employed as a proxy record (typically with millimeter-scale Laboratory, Department of Geoscience, resolution) of changing temperature regimes during different University of Wisconsin–Madison, 1215 stages of sediment diagenesis. Recent advances in secondary ion W. Dayton St., Madison, Wisconsin 53706; mass spectrometry allow for highly precise and accurate deter- present address: Lamont-Doherty Earth minations of cement d18O values to be made in situ on a mi- Observatory, Columbia University, 61 Route crometer scale, thus significantly increasing the spatial resolution 9W–PO Box 1000, Palisades, New York available to studies of diagenesis in sandstone–shale and carbonate 10964; [email protected] systems. Chemo-isotopically zoned dolomite–ankerite cements Reinhard Kozdon received his Ph.D. -
Geology of the Eau Claire Formation and Conasauga Group in Part of Kentucky and Analysis of Their Suitability As Caprocks for Deeper Co2 Sequestration
University of Kentucky UKnowledge Theses and Dissertations--Earth and Environmental Sciences Earth and Environmental Sciences 2012 GEOLOGY OF THE EAU CLAIRE FORMATION AND CONASAUGA GROUP IN PART OF KENTUCKY AND ANALYSIS OF THEIR SUITABILITY AS CAPROCKS FOR DEEPER CO2 SEQUESTRATION Ralph E. Bandy III University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Bandy, Ralph E. III, "GEOLOGY OF THE EAU CLAIRE FORMATION AND CONASAUGA GROUP IN PART OF KENTUCKY AND ANALYSIS OF THEIR SUITABILITY AS CAPROCKS FOR DEEPER CO2 SEQUESTRATION" (2012). Theses and Dissertations--Earth and Environmental Sciences. 8. https://uknowledge.uky.edu/ees_etds/8 This Master's Thesis is brought to you for free and open access by the Earth and Environmental Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Earth and Environmental Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Wabash Carbonsafe Subtask 7.1 – Pre-Drilling Site Assessment Topical Report
Wabash CarbonSAFE Subtask 7.1 – Pre-drilling Site Assessment Topical Report February 1, 2019 through January 31, 2021 Carl Carman, Curt Blakley, Jared Freiburg, Chris Korose Prairie Research Institute University of Illinois Urbana-Champaign, IL 61820 Report Issued: November 27, 2019 Report Number: DOE/ FE0031626‐1 U.S. DOE Cooperative Agreement Number: DE-FE0031626 WABASH CARBONSAFE Principal Investigator: Mr. Christopher Korose Business Contact: Illinois State Geological Survey 615 E. Peabody Drive Champaign, IL 61820‐7406 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, or manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. 2 EXECUTIVE SUMMARY The Wabash CarbonSAFE project will drill a stratigraphic test well at the Wabash Valley Resources facility near Terre Haute, Indiana. Lithologic, geomechanical, and geophysical data collected from samples testing and an extensive geophysical logging suite will be used to determine the feasibility for the geologic sequestration of 50 million metric tons or more of injected carbon dioxide. -
Diagenesis of Upper Cambrian Mount Simon Sandstone in the Illinois Basin - Microscale Investigation of Basinal Fluid Migration and Mass Transfer
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2001 Diagenesis of Upper Cambrian Mount Simon Sandstone in the Illinois Basin - Microscale Investigation of Basinal Fluid Migration and Mass Transfer Zhensheng Chen University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geology Commons Recommended Citation Chen, Zhensheng, "Diagenesis of Upper Cambrian Mount Simon Sandstone in the Illinois Basin - Microscale Investigation of Basinal Fluid Migration and Mass Transfer. " PhD diss., University of Tennessee, 2001. https://trace.tennessee.edu/utk_graddiss/3284 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Zhensheng Chen entitled "Diagenesis of Upper Cambrian Mount Simon Sandstone in the Illinois Basin - Microscale Investigation of Basinal Fluid Migration and Mass Transfer." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Geology. Claudia I. Mora, Major Professor We have read this -
Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin
National Water Availability and Use Pilot Program Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin Scientific Investigations Report 2009–5060 U.S. Department of the Interior U.S. Geological Survey Cover image: Three-dimensional rendering of surficial topography and hydrogeologic layers beneath the Lake Michigan Basin. (Image by David Lampe, U.S. Geological Survey.) Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin By David C. Lampe National Water Availability and Use Pilot Program Scientific Investigations Report 2009–5060 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Lampe, D.C., 2009, Hydrogeologic framework of bedrock units and initial salinity distribution for a simulation of ground- water flow for the Lake Michigan Basin: U.S.