Landscape Scale Biodiversity Assessment: the Problem of Scaling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bio 308-Course Guide
COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit. -
Evolutionary Footprints of a Cold Relic in a Rapidly Warming World
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.11.451959; this version posted July 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 TITLE 2 Evolutionary footprints of a cold relic in a rapidly warming world 3 4 Eva M. Wolf1, Emmanuel Gaquerel1,2, Mathias Scharmann3, Levi Yant4, and Marcus A. Koch1* 5 6 1 Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120 7 Heidelberg, Germany 8 2 Present address: Institut de Biologie Moléculaire des Plantes CNRS UPR2357, Université de 9 Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France 10 3 Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland 11 4 Future Food Beacon and School of Life Sciences, the University of Nottingham, Nottingham, UK 12 13 *Author for correspondence 14 Email: [email protected] 15 16 17 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.11.451959; this version posted July 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 18 Abstract 19 With accelerating global warming, understanding the evolutionary dynamics of plant adaptation to 20 environmental change is increasingly urgent. Here we reveal the enigmatic history of the genus 21 Cochlearia (Brassicaceae), a Pleistocene relic that originated from a drought-adapted Mediterranean 22 sister genus during the Miocene. -
Biogeography and Diversification of Brassicales
Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0). -
Article Resolution of Brassicaceae Phylogeny Using Nuclear Genes
Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution Chien-Hsun Huang,1 Renran Sun,1 Yi Hu,2 Liping Zeng,1 Ning Zhang,3 Liming Cai,1 Qiang Zhang,4 Marcus A. Koch,5 Ihsan Al-Shehbaz,6 Patrick P. Edger,7 J. Chris Pires,8 Dun-Yan Tan,9 Yang Zhong,1 and Hong Ma*,1 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China 2Department of Biology, The Huck Institute of the Life Sciences, Pennsylvania State University 3Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 4Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China 5Biodiversity and Plant Systematics, Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany 6Missouri Botanical Garden, St. Louis 7Department of Horticulture, Michigan State University, East Lansing 8Division of Biological Sciences, University of Missouri, Columbia 9Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ur€ umqi,€ China *Corresponding author: E-mail: [email protected]. Associate editor: Hongzhi Kong Abstract Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. -
Svensk Botanisk Tidskrift 113 (1): 1–84 (2019) - : Gun Ingmansson
Fjälltätört Svensk Fjälltätört Pinguicula alpina Pollineringen ombesörjes av vid markytan. Arten är näm- hittas på kalkrik mark i våra små flugor som söker närings- ligen insektsfångande liksom Svenska nordliga fjäll men finns även vävnaden i botten av den breda de andra tätörterna. Alla är de Botaniska i Härjedalen. Dessutom är och krökta sporren. Flugorna Årets växt (se s. 83). Botanisk Föreningen den inte ovanlig i gotländska får dock akta sig så de inte FOTO: Gun Ingmansson. – Got- källmyrar; troligen har den levt fastnar på de klibbiga bladen land, Levide s:n, Mallgårds käll- kvar där sedan senglacial tid. som sitter i en lilabrun rosett myr, 25 maj 2015. Tidskrift Svensk Botanisk Tidskrift Volym 113: Häfte 1, 2019 113 (1): (1): 1–84 (2019) Nya nordiska växter och namn Viktig variation under artnivån Botanik på Java innehåll botaniska föreningar Floraväktarna C C Det började som ett Så här skriver en nybliven floraväktare: B B anspråkslöst projekt på ”I år deltog jag för första gången som A Gotland för lite mer än floraväktare, när jag var med en grupp trettio år sedan, startat botanister i Haparanda för att leta strand- av ArtDatabankens grundare Torleif Ingelög och viva, bottnisk malört och rysskörvel. Det WWF:s floravårdsnestor Nils Dahlbeck. Nu har Laine m.fl. Lars Hedenäs : var en fantastisk vecka med trevligt säll- : det blivit mycket mer … FOTO skap och många botaniska bekantskaper, BILD Det här gör Floraväktarna samtidigt som jag fick göra nytta i arbetet Genom att alltför snävt Lars Ericson är lyrisk över en med att kartlägga rödlistade arter. Att vara fokusera på artnivån missar nyutkommen bok om våra • Nationell övervakning av närmare trehundra hotade kärlväxter samt arter i EU:s art- och floraväktare är något som jag verkligen kan 46 vi en stor del av den totala 80 europeiska vitmossor; 65 rekommendera och det krävs inte att man habitatdirektiv. -
Supporting Information
Supporting Information Beilstein et al. 10.1073/pnas.0909766107 SI Materials and Methods at the deepest node of the tree and 20.8 Mya for the most- Evaluation of Potential Fossil Calibrations. We searched the pa- derived node calibration (Table S3). leobotanical literature and identified 32 fossils assigned to All other fossils were used as minimum age constraints in r8s. Brassicales (Table S1). Only six (Akania americana, Akania pa- We calibrated two different nodes with the Akania fossils; the tagonica, Akania sp., Capparidoxylon holleisii, Dressiantha bi- Akania americana/A. patagonica fossils are from a more recent carpellata, Thlaspi primaevum) could be placed confidently in deposit than Akania sp. (Table S1), and thus we used the Brassicales. A fossil was considered acceptable for use as an age younger date for these fossils to constrain the divergence of constraint only if its record included a clear citation with pho- Akania bidwillii and Bretschneidera sinensis. Akania sp. was used tographic evidence or accurate reproduction, fossil collection to constrain the node defined by A. bidwilli and Tropaeolum number, and morphological characters that support the pro- majus, which is deeper in the tree than the split constrained by A. posed placement. americana/A. patagonica. This strategy allowed us to use all Akania fossils as calibrations in the ndhF and combined analyses. Ultrametric Tree and Divergence Date Estimation. To calculate di- We lacked PHYA data for B. sinensis, precluding the use of vergence dates for Brassicales, we first inferred trees from plastid A. americana/A. patagonica as a calibration in PHYA analyses. ndhF and the nuclear locus phytochrome A (PHYA)datasepa- Morphological analysis of Capparidoxylon holleisii using Inside rately and then from combined ndhFandPHYA data (Table S2). -
Urbanizing Flora of Portland, Oregon, 1806-2008
URBANIZING FLORA OF PORTLAND, OREGON, 1806-2008 John A. Christy, Angela Kimpo, Vernon Marttala, Philip K. Gaddis, Nancy L. Christy Occasional Paper 3 of the Native Plant Society of Oregon 2009 Recommended citation: Christy, J.A., A. Kimpo, V. Marttala, P.K. Gaddis & N.L. Christy. 2009. Urbanizing flora of Portland, Oregon, 1806-2008. Native Plant Society of Oregon Occasional Paper 3: 1-319. © Native Plant Society of Oregon and John A. Christy Second printing with corrections and additions, December 2009 ISSN: 1523-8520 Design and layout: John A. Christy and Diane Bland. Printing by Lazerquick. Dedication This Occasional Paper is dedicated to the memory of Scott D. Sundberg, whose vision and perseverance in launching the Oregon Flora Project made our job immensely easier to complete. It is also dedicated to Martin W. Gorman, who compiled the first list of Portland's flora in 1916 and who inspired us to do it again 90 years later. Acknowledgments We wish to acknowledge all the botanists, past and present, who have collected in the Portland-Vancouver area and provided us the foundation for our study. We salute them and thank them for their efforts. We extend heartfelt thanks to the many people who helped make this project possible. Rhoda Love and the board of directors of the Native Plant Society of Oregon (NPSO) exhibited infinite patience over the 5-year life of this project. Rhoda Love (NPSO) secured the funds needed to print this Occasional Paper. Katy Weil (Metro) and Deborah Lev (City of Portland) obtained funding for a draft printing for their agencies in June 2009. -
Morphology, Phylogeny, and Taxonomy of <I>Microthlaspi</I> (Brassicaceae: Coluteocarpeae) and Related Genera
Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae: Coluteocarpeae) and related genera Ali, Tahir; Schmuker, Angelika; Runge, Fabian; Solovyeva, Irina; Nigrelli, Lisa; Paule, Juraj; Buch, Ann-Katrin; Xia, Xiaojuan; Ploch, Sebastian; Orren, Ouria; Kummer, Volker; Linde- Laursen, Ib; Orgaard, Marian; Hauser, Thure Pavlo; Celik, Ali; Thines, Marco Published in: Taxon DOI: 10.12705/651.6 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Ali, T., Schmuker, A., Runge, F., Solovyeva, I., Nigrelli, L., Paule, J., Buch, A-K., Xia, X., Ploch, S., Orren, O., Kummer, V., Linde-Laursen, I., Orgaard, M., Hauser, T. P., Celik, A., & Thines, M. (2016). Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae: Coluteocarpeae) and related genera. Taxon, 65(1), 79- 98. https://doi.org/10.12705/651.6 Download date: 25. sep.. 2021 TAXON 65 (1) • February 2016: 79–98 Ali & al. • A revision of Microthlaspi (Brassicaceae) Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae: Coluteocarpeae) and related genera Tahir Ali,1,2 Angelika Schmuker,3 Fabian Runge,3 Irina Solovyeva,1,2 Lisa Nigrelli,1,2 Juraj Paule,1,2 Ann-Katrin Buch,1,2 Xiaojuan Xia,1,2 Sebastian Ploch,1,4 Ouria Orren,5 Volker Kummer,6 Ib Linde-Laursen,7 Marian Ørgaard,7 Thure Pablo Hauser,7 Ali Ҫelik8 & Marco Thines1,2,9,10 1 Biodiversität und Klima Forschungszentrum (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany 2 Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 3 Department of Biology, Institute of Ecology, Evolution and Diversity, Goethe University, Campus Riedberg, Max-von-Laue-Str. -
European Red List of Vascular Plants Melanie Bilz, Shelagh P
European Red List of Vascular Plants Melanie Bilz, Shelagh P. Kell, Nigel Maxted and Richard V. Lansdown European Red List of Vascular Plants Melanie Bilz, Shelagh P. Kell, Nigel Maxted and Richard V. Lansdown IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission This publication has been prepared by IUCN (International Union for Conservation of Nature). The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the European Commission or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of the European Commission or IUCN. Citation: Bilz, M., Kell, S.P., Maxted, N. and Lansdown, R.V. 2011. European Red List of Vascular Plants. Luxembourg: Publications Office of the European Union. Design and layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: Narcissus nevadensis is endemic to Spain where it has a very restricted distribution. The species is listed as Endangered and is threatened by modifications to watercourses and overgrazing. © Juan Enrique Gómez. All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should not be reproduced or used in other contexts without written permission from the copyright holder. Available from: Luxembourg: Publications Office of the European Union, http://bookshop.europa.eu IUCN Publications Services, www.iucn.org/publications A catalogue of IUCN publications is also available. -
Target Species - Species of European Concern
Target Species - Species of European concern Commissioned by Sander van Opstal (Senior Policy Advisor Ecosystems and the Environment; Expertise Centre of the Dutch Ministry of Agriculture, Nature and Food quality) Cover photo’s: Danube Crested Newt: B.I. Timofeev (© Pensoft Publishers), European Bison: G. Pohl, Isoplexis canariensis: J.H.J. Schaminée 2 Alterra-report 1119 Target species – Species of European concern A database driven selection of plant and animal species for the implementation of the Pan European Ecological Network Editors: W.A. Ozinga J.H.J. Schaminée Authors: W.A. Ozinga M. de Heer S.M. Hennekens A.J.F.M. van Opstal J.H.J. Schaminée H. Sierdsema N.A.C. Smits A.H.P. Stumpel Ch. van Swaay Alterra-report 1119 Alterra, Wageningen, 2005 ABSTRACT Ozinga, W.A. & Schaminée, J.H.J. (eds.). 2005. Target species – Species of European concern. A database driven selection of plant and animal species for the implementation of the Pan European Ecological Network. Wageningen, Alterra, Alterra-report 1119. 193 pages; 30 figs.; 18 tables; 134 refs. The concept of ecological networks is becoming increasingly important in both policies and practices of nature conservation throughout Europe. The establishment of the Pan Ecological European Network (PEEN) can be seen as one of the priority issues for nature conservation. For the establishment of such networks, it is essential to have adequate information on the threat status and distribution of plant and animal species throughout Europe. As there are thousands of plant and animal species, it is necessary to make a selection of species that are considered to be of specific conservation concern, so-called ‘target species’. -
Plants and Climate Change in Europe
Strasbourg, 2 September 2009 T-PVS/Inf (2009) 9 [Inf09e_2009.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 29th meeting Bern, 23-26 November 2009 __________ THE IMPACTS OF CLIMATE CHANGE ON PLANT SPECIES IN EUROPE FINAL VERSION Report prepared by Professor Vernon Heywood School of Biological Sciences, University of Reading With contributions by Dr Alastair Culham This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2009) 9 - 2 – EXECUTIVE SUMMARY A summary is given of the current state of conservation of plant diversity in Europe and gaps in our baseline knowlege are identified. Published data on the recent effects on climate change on European plants are reviewed, including changes in phenology and altitudinal shifts. All the available evidence points to the high probability that plant diversity, both at the landscape and ecosystem level and at the species and population level will be severely impacted by climate change over the course of this century, interacting with other forms of global change such as population growth and movement and changes in disturbance regimes. The impacts will not be uniform, with some regions such as northern Europe experiencing moderate changes and turnover of species, while others, especially in the Mediterranean region and high mountain ranges may expect serious disruption of existing ecosystems and their replacement with novel assemblages of species and the loss of considerable numbers of currently rare and endangered species in specialized habitats. -
ACTA BIOLOGICA CRACOVIENSIA Series Botanica
ACTA BIOLOGICA CRACOVIENSIA SERIES BOTANICA Vol. 55 suppl. 1 2013 The First Interdisciplinary Symposium Biogeography of the Carpathians: Evolution of Biodiversity in a Spatiotemporal Context September 26–28, 2013 • Kraków, Poland Polish Academy of Sciences – Cracow Branch Jagiellonian University ACTA BIOLOGICA CRACOVIENSIA Series Botanica The Official Publication of the Biological Commission of the Polish Academy of Sciences – Cracow Branch and the Jagiellonian University DEVOTED TO PLANT ANATOMY, MORPHOLOGY, CYTOLOGY, GENETICS, KARYOLOGY, EMBRYOLOGY, TISSUE CULTURE, PHYSIOLOGY, BIOSYSTEMATICS, PHYTOCHEMISTRY, SECONDARY METABOLISM, PHARMACOLOGY, BIOACTIVITY OF PLANT NATURAL PRODUCTS, BIOTECHNOLOGY, MOLECULAR PHYLOGENETICS AND PHYLOGEOGRAPHY ESTABLISHED 1958 © Polish Academy of Sciences and the Jagiellonian University, Cracow 2013 The edition of this supplement is financed by the Polish Academy of Sciences. EDITORIAL NOTE The abstract texts have been printed as received, and no proofreading or corrections have been made. Thus, the contents of the abstracts are entirely the responsibility of the contributors. In the Index, the names of authors (in alphabetical order) are accompanied by the respective page numbers. ACTA BIOLOGICA CRACOVIENSIA Series Botanica is published twice a year by the Polish Academy of Sciences – Cracow Branch, ul. św. Jana 28, 31-018 Cracow, Poland and the Jagiellonian University in Cracow, ul. Gołębia 24, 31-007 Cracow, Poland Publisher: Versita: http://versita.com/abcsb Set and printed by KON Tekst Publishing House,