Npr 5.3: Russia's Missile Industry and U.S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FY2020 Financial Results
Norilsk Nickel 2020 Financial Results Presentation February 2021 Disclaimer The information contained herein has been prepared using information available to PJSC MMC Norilsk Nickel (“Norilsk Nickel” or “Nornickel” or “NN”) at the time of preparation of the presentation. External or other factors may have impacted on the business of Norilsk Nickel and the content of this presentation, since its preparation. In addition all relevant information about Norilsk Nickel may not be included in this presentation. No representation or warranty, expressed or implied, is made as to the accuracy, completeness or reliability of the information. Any forward looking information herein has been prepared on the basis of a number of assumptions which may prove to be incorrect. Forward looking statements, by the nature, involve risk and uncertainty and Norilsk Nickel cautions that actual results may differ materially from those expressed or implied in such statements. Reference should be made to the most recent Annual Report for a description of major risk factors. There may be other factors, both known and unknown to Norilsk Nickel, which may have an impact on its performance. This presentation should not be relied upon as a recommendation or forecast by Norilsk Nickel. Norilsk Nickel does not undertake an obligation to release any revision to the statements contained in this presentation. The information contained in this presentation shall not be deemed to be any form of commitment on the part of Norilsk Nickel in relation to any matters contained, or referred to, in this presentation. Norilsk Nickel expressly disclaims any liability whatsoever for any loss howsoever arising from or in reliance upon the contents of this presentation. -
Space Launch System (Sls) Motors
Propulsion Products Catalog SPACE LAUNCH SYSTEM (SLS) MOTORS For NASA’s Space Launch System (SLS), Northrop Grumman manufactures the five-segment SLS heavy- lift boosters, the booster separation motors (BSM), and the Launch Abort System’s (LAS) launch abort motor and attitude control motor. The SLS five-segment booster is the largest solid rocket motor ever built for flight. The SLS booster shares some design heritage with flight-proven four-segment space shuttle reusable solid rocket motors (RSRM), but generates 20 percent greater average thrust and 24 percent greater total impulse. While space shuttle RSRM production has ended, sustained booster production for SLS helps provide cost savings and access to reliable material sources. Designed to push the spent RSRMs safely away from the space shuttle, Northrop Grumman BSMs were rigorously qualified for human space flight and successfully used on the last fifteen space shuttle missions. These same motors are a critical part of NASA’s SLS. Four BSMs are installed in the forward frustum of each five-segment booster and four are installed in the aft skirt, for a total of 16 BSMs per launch. The launch abort motor is an integral part of NASA’s LAS. The LAS is designed to safely pull the Orion crew module away from the SLS launch vehicle in the event of an emergency on the launch pad or during ascent. Northrop Grumman is on contract to Lockheed Martin to build the abort motor and attitude control motor—Lockheed is the prime contractor for building the Orion Multi-Purpose Crew Vehicle designed for use on NASA’s SLS. -
IAC-17-D2.4.3 Page 1 of 18 IAC-17
68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017. Copyright ©2017 by DLR-SART. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-17- D2.4.3 Evaluation of Future Ariane Reusable VTOL Booster stages Etienne Dumonta*, Sven Stapperta, Tobias Eckerb, Jascha Wilkena, Sebastian Karlb, Sven Krummena, Martin Sippela a Department of Space Launcher Systems Analysis (SART), Institute of Space Systems, German Aerospace Center (DLR), Robert Hooke Straße 7, 28359 Bremen, Germany b Department of Spacecraft, Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Bunsenstraße 10, 37073 Gottingen, Germany *[email protected] Abstract Reusability is anticipated to strongly impact the launch service market if sufficient reliability and low refurbishment costs can be achieved. DLR is performing an extensive study on return methods for a reusable booster stage for a future launch vehicle. The present study focuses on the vertical take-off and vertical landing (VTOL) method. First, a restitution of a flight of Falcon 9 is presented in order to assess the accuracy of the tools used. Then, the preliminary designs of different variants of a future Ariane launch vehicle with a reusable VTOL booster stage are described. The proposed launch vehicle is capable of launching a seven ton satellite into a geostationary transfer orbit (GTO) from the European spaceport in Kourou. Different stagings and propellants (LOx/LH2, LOx/LCH4, LOx/LC3H8, subcooled LOx/LCH4) are considered, evaluated and compared. First sizing of a broad range of launcher versions are based on structural index derived from existing stages. -
Information on IRC – R.O.S.T., the Registrar of the Company and the Acting Ballot Committee of MMC Norilsk Nickel
Information on IRC – R.O.S.T., the registrar of the Company and the acting Ballot Committee of MMC Norilsk Nickel IRC – R.O.S.T. (former R.O.S.T. Registrar merged with Independent Registrar Company in February 2019) was established in 1996. In 2003–2015, Independent Registrar Company was a member of Computershare Group, a global leader in registrar and transfer agency services. In July 2015, IRC changed its ownership to pass into the control of a group of independent Russian investors. In December 2016, R.O.S.T. Registrar and Independent Registrar Company, both owned by the same group of independent investors, formed IRC – R.O.S.T. Group of Companies. In 2018, Saint Petersburg Central Registrar joined the Group. In February 2019, Independent Registrar Company merged with IRC – R.O.S.T. Ultimate beneficiaries of IRC – R.O.S.T. Group are individuals with a strong background in business management and stock markets. No beneficiary holds a blocking stake in the Group. In accordance with indefinite License No. 045-13976-000001, IRC – R.O.S.T. keeps records of holders of registered securities. Services offered by IRC – R.O.S.T. to its clients include: › Records of shareholders, interestholders, bondholders, holders of mortgage participation certificates, lenders, and joint property owners › Meetings of shareholders, joint owners, lenders, company members, etc. › Electronic voting › Postal and electronic mailing › Corporate consulting › Buyback of securities, including payments for securities repurchased › Proxy solicitation › Call centre services › Depositary and brokerage, including escrow agent services IRC – R.O.S.T. Group invests a lot in development of proprietary high-tech solutions, e.g. -
Paper Session III-A-History of the First NASA Contract with Russia
1994 (31st) Space Exploration and Utilization The Space Congress® Proceedings for the Good of the World Apr 28th, 2:00 PM - 5:00 PM Paper Session III-A - History of the First NASA Contract with Russia Barbara D. Connelly-Fratzke NASA Headquarters, Office of Space Systems Development Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Connelly-Fratzke, Barbara D., "Paper Session III-A - History of the First NASA Contract with Russia" (1994). The Space Congress® Proceedings. 18. https://commons.erau.edu/space-congress-proceedings/proceedings-1994-31st/april-28-1994/18 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. History of the First NASA Contract with Russia Barbara D. Connelly-Fratzke NASA Headquarters Office of Space Systems Development This story begins after the end of the cold war with the Soviet Union. after perestroika had its initial impact on the economy, at about the time the Russian space firms were beginning to lose government support and fac ing hard times ahead. As part or the FY92 Budget approval, Congress, in its wisdom, directed NASA to investigate the Russian space hardware and determine its feasibility for use in the U.S. space program. At the invitation of the U.S. Embassy in Moscow and the Russian firm NPO Energia, NASA made a reconnaissance visit to NPO Energia to open discussions concerning Russian space hardware. -
Status of the Space Shuttle Solid Rocket Booster
The Space Congress® Proceedings 1980 (17th) A New Era In Technology Apr 1st, 8:00 AM Status of The Space Shuttle Solid Rocket Booster William P. Horton Solid Rocket Booster Engineering Office, George C. Marshall Space Flight Center, Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Horton, William P., "Status of The Space Shuttle Solid Rocket Booster" (1980). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1980-17th/session-1/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATUS OF THE SPACE SHUTTLE SOLID ROCKET BOOSTER William P. Horton, Chief Engineer Solid Rocket Booster Engineering Office George C. Marshall Space Flight Center, AL 35812 ABSTRACT discuss retrieval and refurbishment plans for Booster reuse, and will address Booster status Two Solid Rocket Boosters provide the primary for multimission use. first stage thrust for the Space Shuttle. These Boosters, the largest and most powerful solid rocket vehicles to meet established man- BOOSTER CONFIGURATION rated design criteria, are unique in that they are also designed to be recovered, refurbished, It is appropriate to review the Booster config and reused. uration before describing the mission profile. The Booster is 150 feet long and is 148 inches The first SRB f s have been stacked on the in diameter (Figure 1), The inert weight Mobile Launch Platform at the Kennedy Space is 186,000 pounds and the propellant weight is Center and are ready to be mated with the approximately 1.1 million pounds for each External Tank and Orbiter in preparation for Booster. -
Russia Intelligence
N°70 - January 31 2008 Published every two weeks / International Edition CONTENTS SPOTLIGHT P. 1-3 Politics & Government c Medvedev’s Last Battle Before Kremlin Debut SPOTLIGHT c Medvedev’s Last Battle The arrest of Semyon Mogilevich in Moscow on Jan. 23 is a considerable development on Russia’s cur- Before Kremlin Debut rent political landscape. His profile is altogether singular: linked to a crime gang known as “solntsevo” and PRESIDENTIAL ELECTIONS sought in the United States for money-laundering and fraud, Mogilevich lived an apparently peaceful exis- c Final Stretch for tence in Moscow in the renowned Rublyovka road residential neighborhood in which government figures « Operation Succession » and businessmen rub shoulders. In truth, however, he was involved in at least two types of business. One c Kirillov, Shestakov, was the sale of perfume and cosmetic goods through the firm Arbat Prestige, whose manager and leading Potekhin: the New St. “official” shareholder is Vladimir Nekrasov who was arrested at the same time as Mogilevich as the two left Petersburg Crew in Moscow a restaurant at which they had lunched. The charge that led to their incarceration was evading taxes worth DIPLOMACY around 1.5 million euros and involving companies linked to Arbat Prestige. c Balkans : Putin’s Gets His Revenge The other business to which Mogilevich’s name has been linked since at least 2003 concerns trading in P. 4-7 Business & Networks gas. As Russia Intelligence regularly reported in previous issues, Mogilevich was reportedly the driving force behind the creation of two commercial entities that played a leading role in gas relations between Russia, BEHIND THE SCENE Turkmenistan and Ukraine: EuralTransGaz first and then RosUkrEnergo later. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
Using Energia (Arduino)
Using Energia (Arduino) Introduction This chapter of the MSP430 workshop explores Energia, the Arduino port for the Texas Instruments Launchpad kits. After a quick definition and history of Arduino and Energia, we provide a quick introduction to Wiring – the language/library used by Arduino & Energia. Most of the learning comes from using the Launchpad board along with the Energia IDE to light LED’s, read switches and communicate with your PC via the serial connection. Learning Objectives, Requirements, Prereq’s Prerequisites & Objectives Prerequisites Basic knowledge of C language Basic understanding of using a C library and header files This chapter doesn’t explain clock, interrupt, and GPIO features in detail, this is left to the other chapters in the MSP430 workshop Requirements - Tools and Software Hardware Windows (XP, 7, 8) PC with available USB port MSP430F5529 Launchpad Software Already installed, if you Energia Download have installed CCSv5.x Launchpad drivers (Optional) MSP430ware / Driverlib Objectives Define ‘Arduino’ and describe what is was created for Define ‘Energia’ and explain what it is ‘forked’ from Install Energia, open and run included example sketches Use serial communication between the board & PC Add an external interrupt to an Energia sketch Modify CPU registers from an Energia sketch MSP430 Workshop - Using Energia (Arduino) 8 - 1 What is Arduino Chapter Topics Using Energia (Arduino) ............................................................................................................ -
Ross University School of Medicine Annual Disclosure
Ross University School of Medicine 2020-2021 Annual Disclosure Student Right-to-Know and Campus Security (Clery Act) Annual Security Report Annual Fire Safety Report Sex and Gender Based Misconduct Response and Prevention Policy Alcohol & Substance Abuse Policy Student Rights under FERPA (The Family Educational Rights and Privacy Act) This document includes information for: Ross University School of Medicine, Barbados Campus, 2 mile Hill, St. Michael, Barbados December 15, 2020 The policies outlined in this document are current as of December 15, 2020. The most current versions of the policies are available online. 1 TABLE OF CONTENTS CAMPUS WATCH ............................................................................................ 4 REPORTING CRIMES AND EMERGENCIES ................................................ 4 ANNUAL SECURITY REPORT ....................................................................... 4 SIREN EMERGENCY ALERT SYSTEM ......................................................... 5 CAMPUS ACCESS, FACILITY SECURITY AND LAW ENFORCEMENT ............................................................................................... 5 MISSING STUDENT POLICY .......................................................................... 6 MISSING STUDENT PROCEDURES .............................................................. 7 SAFETY AND SECURITY ............................................................................... 7 FIRE SAFETY ................................................................................................... -
January 2018 Satellite & Space Monthly Review
February 5, 2018 Industry Brief Chris Quilty [email protected] January 2018 +1 (727)-828-7085 Austin Moeller Satellite & Space Monthly Review [email protected] +1 (727)-828-7601 January 11, 2018: Air force to utilize more smallsats for weather DMSP F19 Readying for Launch observation. Citing growing budget constraints, the US Air Force announced that is considering using small satellites in combination with next-gen software rather than procuring traditional multibillion-dollar, cost-plus spacecraft to replace/replenish its Defense Meteorological Satellite Program (DMSP). Despite awarding a $94 million contract to Ball Aerospace in November to design the Weather System Follow-on Microwave (WSF-M) satellite, the Air Force plans to begin launching small satellites equipped with infrared imaging and electro-optical instruments to monitor battlefield weather starting in 2021-2022. The Air Force is also considering augmenting their current capabilities with inactive NOAA GOES satellites in the near-term. These considerations parallel recent comments by USSTRATCOM commander Gen. John Hyten, who has repeatedly stated that the Air Force currently spends too much time and money developing large, high- cost satellites, and needs to invest in more small satellites for strategic Source: Lockheed Martin and budgetary reasons. Conclusion: Smallsats ready for a DoD growth spurt? With growing evidence of Russian/Chinese anti- satellite technology demonstrations, the Pentagon is becoming increasingly reluctant to spend billions of dollars on monolithic “Battlestar Galactica” satellite systems that place too many eggs in one basket. While not as robust or technologically-capable as high-end spacecraft built by traditional contractor, such as Lockheed Martin, small satellites are orders-of-magnitude less expensive to build, launch, and maintain. -
Igor AFANASYEV, Dmitry VORONTSOV Cosmonautics | Event
cosmonautics | event Andrey Morgunov Igor AFANASYEV, Dmitry VORONTSOV AANGARA’SNGARA’S FFIRSTIRST BBLASTOFFLASTOFF At 16.04 hrs Moscow time on 9 July 2014, the Plesetsk space launch centre saw the launching facility in February 2014 to the first launch of the Angara-1.2PP launch vehicle of the advanced space rocket practice its fuelling and the nose fairing was family being developed by the Khrunichev state space research and production fitted on the rocket in March. The successful ground tests were followed by the prelaunch centre. The maiden blastoff conducted as part of the Angara flight test programme preparations. was aimed at testing the solutions embodied in the design of the URM-1 and URM-2 The date of the launch was put off for versatile rocket modules and the Angara’s launch and technical facilities as well. 27 June 2014 due to extra checks required. In this connection, orbiting an actual spacecraft had not been considered, with On 9 June, Khrunichev hosted a session of an inseparable full-scale mock-up used as payload. The flight was suborbital to the Chief Designers Council, dedicated to prevent cluttering near-Earth orbit with space junk. the preparation of the Angara to its flight tests. The session pronounced the rocket fit To say the Angara’s first launch had been In spite of the hurdles, the developer, for the trials. anticipated for a long time would be an nevertheless, got in the stretch with the Angara The LV had been taken out of the assembly understatement: it was slated for 2005 under programme.