Euastacus Armatus

Total Page:16

File Type:pdf, Size:1020Kb

Euastacus Armatus Developing population models for informing the sustainable management of the Murray spiny crayfish (Euastacus armatus) and the Glenelg spiny crayfish (E. bispinosus) in Victoria Potts, J.M.1 and C.R. Todd Arthur Rylah Institute for Environmental Research, 123 Brown St, Heidelberg 3084, Victoria. 1E-Mail: [email protected] Keywords: freshwater crayfish, population model, uncertainty, model structure. EXTENDED ABSTRACT We found that data on both species were lacking, including vital information about their life history Population models can be a useful tool for characteristics. In particular, it remains unclear identifying knowledge gaps to guide future whether moulting impedes the capacity of females research, ranking different management scenarios, to reproduce. Therefore, we propose two stage- and assessing the risk of extinction and based model structures to accommodate this conservation status of a target species. The process uncertainty. The ‘non-moult’ model defines two involves specifying a set of rules based on the life protected stages (ie. below the legal limit): history of the species that govern how the number juveniles, that are reproductively immature, and and distribution of individuals within the protected adults (that are reproductively mature). population change over time. There is one un-protected stage (ie. above the legal limit), that contains reproductively mature adults Data availability and quality can be a limiting available for harvesting. The final stage contains factor in model development, influencing the individuals who have died from harvesting (as estimation of parameters and the understanding of distinct from natural mortality). In addition, the important environmental processes. In such ‘moult’ model contains an additional two stages circumstances, uncertainty arises from a plethora for moulting females. In each time step, of sources: model structure, parameter estimation, individuals either progress to the next stage, or intra- and inter-species dependencies, and shape remain in their current state. Offspring of the uncertainty about a distribution. Choosing an reproductive stages enter the juvenile stage. Both appropriate model can therefore be problematic, model structures are sexually dependent, implying and should be governed by the life history a total of eight stages are required for the ‘non- characteristics of the target species, knowledge of moult’ model and ten stages for the ‘moult’ model. environmental processes and the amount of data available. By fixing some transition rates between stages to equal zero, a variety of model constructs can be Here, we describe a conceptual population model obtained from the two species models. We propose for two species of freshwater crayfish, the Murray five constructs to accommodate species-specific spiny crayfish (Euastacus armatus) and the management actions. For example, all female Glenelg spiny crayfish (E. bispinosus). Both E. bispinosus are protected. Therefore, any species are listed nationally as ‘vulnerable’. They transitions out of the protected female adult stage are not listed in Victoria despite substantial (other than natural mortality) equal zero. reductions in range and population abundance that have resulted in local extinctions. Identified threats Considerable uncertainty remains as to which to both species include overfishing by recreational particular model structure would be most useful anglers and habitat modification. Restrictions are for informing management about the efficacy of currently in place that govern the time of year, the current regulations. However these conceptual number, sex and size of individuals that can be models offer valuable insight, by highlighting removed. However these regulations have not current knowledge gaps. The next stage of the halted the observed decline in catch size and modelling process will be to collect empirical data abundance, as reported by local fisherman. on the species such that these models can be parameterised. 367 whether improved knowledge or greater accuracy 1. INTRODUCTION would change the decision-making process and consequently the management of the resource Australia contains approximately 20% of the (Starfield 1997, Bearlin et al 2002). world’s freshwater crayfish species and subspecies (Taylor 2002). Since European settlement, the The modelling process characterises the attributes range and abundance of these species has declined that cause a population to change: a set of logical (Barker 1990). Of particular conservation rules specifying how the number and distribution importance are the Euastacus armatus (the Murray of individuals within a population change over spiny crayfish) and E. bispinosus (the Glenelg time (Easterling et al 2000). Because modelling spiny crayfish) species which are listed nationally explicitly deals with uncertainty, subjective as ‘vulnerable’ and are protected in South opinion is removed from the management decision Australia and the ACT (Clarke and Spier-Ashcroft making process (Todd et al 2004). 2002). However neither E. armatus and Requisite data include state variables that describe E. bispinosus are listed in Victoria, despite having the population (i.e. life history characteristics such suffered a documented range reduction as well as as rates of birth, growth, maturation, fertility and localised population extinctions (Horwitz 1990). mortality; immigrations and emigrations) and The main threats to both crayfish species is process variables (i.e. the environmental processes overfishing by recreational anglers (Horwitz 1990, that invoke a response in the population). Process Lintermans and Rutzou 1991) and habitat variables include stochastic events that are modification (Clarke and Spier-Ashcroft 2002). unpredictable changes in the state of the system. While the occurrence of habitat modification has They include demographic stochasticity, reflecting greatly diminished in recent years, the impacts of the uncertainty associated with each individual; recreational angling have not. Recently, the environmental stochasticity, which are fluctuations importance of leaving larger individuals in fishery in the environment caused by temporal variation of management has become more frequently habitat parameters; genetic stochasticity, caused by discussed for its implications in the sustainable inbreeding and genetic drift; and catastrophic harvesting of exploited species (Birkeland and stochasticity, which are extreme environmental Dayton 2005). Despite this, the removal of larger fluctuations (Possingham et al 2001). In order to individuals has been recognised as a threat to the parameterise a population model, the relationship sustainable management of E. armatus (Horwitz between the process variables and the state 1990, Lintermans and Rutzou 1991). variables must be estimated. Although the fishery is subject to regulation, there In conjunction with these four stochastic processes are no measures in place to collect information on that are known to affect populations, a variety of the number of crayfish being removed, or to different types of uncertainty also exist: structural provide information on the efficacy of the current uncertainty; parameter uncertainty; dependency regulations upon the long-term persistence of uncertainty; and shape uncertainty about a either species. The aim of this paper is to examine distribution (Todd 2001). We can characterise the life history of freshwater crayfish in order to these uncertainties in two ways: epistemic develop conceptual population models for both uncertainty resulting from incomplete information E. armatus and E. bispinosus. Once these models about the system in question (ignorance); or the have been parameterised through empirical data underlying or inherent stochasticity in the system collection, better informed management decisions (variability) (Ferson and Ginzburg 1996). can be made by ensuring the process is transparent, explicit and repeatable. 3. BIOLOGY OF THE FRESHWATER SPINY CRAYFISH 2. POPULATION MODELLING AS AN E. armatus, E. bispinosus and Astacopsis gouldi EXPLORATORY TOOL (occurring in Tasmania) are collectively known as Population models are useful within the context of large lowland spiny crayfish (Horwitz 1990). The resource management and decision making to preferred habitat of these species is cool and clean assess conservation status, guide future research flowing waters with intact riparian vegetation and rank alternate management strategies, (Barker 1990). E. armatus occurs the Murray particularly in circumstances of incomplete data or River throughout most of its length and major lack of full ecological knowledge (Todd et al tributaries in Victoria and New South Wales, and 2002, Todd et al 2004). Modelling can also E. bispinosus occurs in the Glenelg River and its identify the sensitivities associated with tributaries in Western Victoria and a small portion uncertainty about particular mechanisms, and of South Australia (Morgan 1986). 368 The freshwater crayfish E. armatus and adult form (despite being sexually immature) by E. bispinosus share a similar life history: adults approximately 170 days and are released in spring produce eggs, eggs hatch to become juveniles that to summer (O'Connor 1984, Reynolds 2002). grow and develop into adults. Both species are It is not clear from the literature whether moulting slow growing and long lived, achieving relatively impedes the capacity of females to reproduce. large sizes: an orbital carapace length (OCL) of
Recommended publications
  • Unexpected Diversity in Neelipleona Revealed by Molecular Phylogeny Approach (Hexapoda, Collembola)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 383–398 ISSN: 1864-6417 Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola) Clément Schneider1, 3, Corinne Cruaud2 and Cyrille A. D’Haese1 1 UMR7205 CNRS, Département Systématique et Évolution, Muséum National d’Histoire Naturelle, CP50 Entomology, 45 rue Buffon, 75231 Paris cedex 05, France 2 Genoscope, Centre National de Sequençage, 2 rue G. Crémieux, CP5706, 91057 Evry cedex, France 3 Corresponding author: Clément Schneider (email: [email protected]) Abstract Neelipleona are the smallest of the four Collembola orders in term of species number with 35 species described worldwide (out of around 8000 known Collembola). Despite this apparent poor diversity, Neelipleona have a worldwide repartition. The fact that the most commonly observed species, Neelus murinus Folsom, 1896 and Megalothorax minimus Willem, 1900, display cosmopolitan repartition is striking. A cladistic analysis based on 16S rDNA, COX1 and 28S rDNA D1 and D2 regions, for a broad collembolan sampling was performed. This analysis included 24 representatives of the Neelipleona genera Neelus Folsom, 1896 and Megalothorax Willem, 1900 from various regions. The interpretation of the phylogenetic pattern and number of transformations (branch length) indicates that Neelipleona are more diverse than previously thought, with probably many species yet to be discovered. These results buttress the rank of Neelipleona as a whole order instead of a Symphypleona family. Keywords: Collembola, Neelidae, Megalothorax, Neelus, COX1, 16S, 28S 1. Introduction 1.1. Brief history of Neelipleona classification The Neelidae family was established by Folsom (1896), who described Neelus murinus from Cambridge (USA).
    [Show full text]
  • Murrumbidgee Regional Fact Sheet
    Murrumbidgee region Overview The Murrumbidgee region is home The river and national parks provide to about 550,000 people and covers ideal spots for swimming, fishing, 84,000 km2 – 8% of the Murray– bushwalking, camping and bird Darling Basin. watching. Dryland cropping, grazing and The Murrumbidgee River provides irrigated agriculture are important a critical water supply to several industries, with 42% of NSW grapes regional centres and towns including and 50% of Australia’s rice grown in Canberra, Gundagai, Wagga Wagga, the region. Narrandera, Leeton, Griffith, Hay and Balranald. The region’s villages Chicken production employs such as Goolgowi, Merriwagga and 350 people in the area, aquaculture Carrathool use aquifers and deep allows the production of Murray bores as their potable supply. cod and cotton has also been grown since 2010. Image: Murrumbidgee River at Wagga Wagga, NSW Carnarvon N.P. r e v i r e R iv e R v i o g N re r r e a v i W R o l g n Augathella a L r e v i R d r a W Chesterton Range N.P. Charleville Mitchell Morven Roma Cheepie Miles River Chinchilla amine Cond Condamine k e e r r ve C i R l M e a nn a h lo Dalby c r a Surat a B e n e o B a Wyandra R Tara i v e r QUEENSLAND Brisbane Toowoomba Moonie Thrushton er National e Riv ooni Park M k Beardmore Reservoir Millmerran e r e ve r i R C ir e e St George W n i Allora b e Bollon N r e Jack Taylor Weir iv R Cunnamulla e n n N lo k a e B Warwick e r C Inglewood a l a l l a g n u Coolmunda Reservoir M N acintyre River Goondiwindi 25 Dirranbandi M Stanthorpe 0 50 Currawinya N.P.
    [Show full text]
  • Population Monitoring of Glenelg Spiny Crayfish (Euastacus Bispinosus ) in Rising-Spring Habitats of Lower South East, South Australia
    Population monitoring of Glenelg Spiny Crayfish (Euastacus bispinosus ) in rising-spring habitats of lower south east, South Australia Nick Whiterod and Michael Hammer Aquasave Consultants, Adelaide May 2012 Report to Friends of Mt Gambier Area Parks (Friends of Parks Inc.) Citation Whiterod, N. and Hammer, M. (2012). Population monitoring of Glenelg Spiny Crayfish (Euastacus bispinosus ) in rising-spring habitats of lower south east, South Australia. Report to Friends of Mt Gambier Area Parks (Friends of Parks Inc.). Aquasave Consultants, Adelaide. p. 27. Correspondence in relation to this report contact Dr Nick Whiterod Aquasave Consultants Tel: +61 409 023 771 Email: [email protected] Photographs © N. Whiterod, O. Sweeney, D. Mossop and M. Hammer Cover (clockwise from top): underwater view of aquatic vegetation in the Ewens Pond system; female Glenelg Spiny Crayfish with eggs (in berry); and Glenelg Spiny Crayfish amongst aquatic vegetation. Disclaimer This report was commissioned by Friends of Mt Gambier Area Parks (Friends of Parks Inc.). It was based on the best information available at the time and while every effort has been made to ensure quality, no warranty express or implied is provided for any errors or omissions, nor in the event of its use for any other purposes or by any other parties. ii Table of Contents 1.0 Introduction ........................................................................................................................... 1 2.0 Methods ..................................................................................................................................
    [Show full text]
  • Report of a Mass Mortality of Euastacus Valentulus (Decapoda
    Report of a mass mortality of Euastacus valentulus (Decapoda: Parastacidae) in southeast Queensland, Australia, with a discussion of the potential impacts of climate change induced severe weather events on freshwater crayfish species Author Furse, James, Coughran, Jason, Wild, Clyde Published 2012 Journal Title Crustacean Research Copyright Statement © 2012 The Carcinological Society of Japan. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/50569 Link to published version http://rose.hucc.hokudai.ac.jp/~s16828/cr/e-site/Top_page.html Griffith Research Online https://research-repository.griffith.edu.au CRUSTACEAN RESEARCH, SPECIAL NUMBER 7: 15–24, 2012 Report of a mass mortality of Euastacus valentulus (Decapoda: Parastacidae) in southeast Queensland, Australia, with a discussion of the potential impacts of climate change induced severe weather events on freshwater crayfish species James M. Furse, Jason Coughran and Clyde H. Wild Abstract.—In addition to predicted changes Leckie, 2007) including in “vast” numbers in climate, more frequent and intense severe (Viosca, 1939; Olszewski, 1980). Mass weather events (e.g. tropical cyclones, severe emersions and mortalities have also been storms and droughts) have been identified as recorded in marine crayfish in hypoxic serious and emerging threats to the World’s conditions (Jasus lalandii H. Milne Edwards) freshwater crayfish. This paper documents a (Cockroft, 2001). It is also known that some single, high intensity rainfall event (in an area freshwater crayfish species are particularly known for phenomenal rainfall events) that led sensitive to severe flooding events (Parkyn & to a flash flood and mass mortality of Euastacus Collier, 2004; Meyer et al., 2007) and mass valentulus in the Numinbah Valley of southeast emersions/strandings have been reported in Queensland in 2008.
    [Show full text]
  • Comparing Murray Crayfish (Euastacus Armatus) Population Parameters Between Recreationally Fished and Non-Fished Areas
    Freshwater Crayfish 19(2):153–160, 2013 Copyright ©2013 International Association of Astacology ISSN:2076-4324 (Print), 2076-4332 (Online) doi: 10.5869/fc.2013.v19-2.153 Comparing Murray Crayfish (Euastacus armatus) Population Parameters Between Recreationally Fished and Non-fished Areas Sylvia Zukowski,1,2 Nick S. Whiterod 2,* and Robyn J. Watts 1 1 Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia. 2 Aquasave – Nature Glenelg Trust, 7 Kemp Street, Goolwa Beach, SA 5214, Australia. *Corresponding Author. —[email protected] Abstract.— The implementation of fishing regulations becomes increasingly complex where the natural state of fisheries resources is unknown. Comparing populations in fished and non-fished areas can provide information that is vital for the management and protection of species. We conducted field surveys ofEuastacus armatus in non-fished and fished reservoirs and provide comparisons with a heavily fished area of the River Murray. The non-fished population (Talbingo Reservoir) ofE. armatus exhibited almost equal sex ratios, robust normally-distributed population structure and a high proportion of mature and berried females. The parameters defining two fished populations (Blowering Reservoir and the River Murray) deviated significantly, to varying degrees, from the benchmark population (Talbingo). These differences suggest that recreational fishing may impose a considerable impact on the population parameters of E. armatus. Comparison with the benchmark defined in the present study will allow tracking of the population recovery under the new fishing regulations forE. armatus in the southern Murray-Darling Basin. [Keywords.— Euastacus armatus; non-fished areas; population parameters; recreational fishing pressure].
    [Show full text]
  • Biology of the Mountain Crayfish Euastacus Sulcatus Riek, 1951 (Crustacea: Parastacidae), in New South Wales, Australia
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 October 2013 | 5(14): 4840–4853 Article Biology of the Mountain Crayfish Euastacus sulcatus Riek, 1951 (Crustacea: Parastacidae), in New South Wales, Australia Jason Coughran ISSN Online 0974–7907 Print 0974–7893 jagabar Environmental, PO Box 634, Duncraig, Western Australia, 6023, Australia [email protected] OPEN ACCESS Abstract: The biology and distribution of the threatened Mountain Crayfish Euastacus sulcatus, was examined through widespread sampling and a long-term mark and recapture program in New South Wales. Crayfish surveys were undertaken at 245 regional sites between 2001 and 2005, and the species was recorded at 27 sites in the Clarence, Richmond and Tweed River drainages of New South Wales, including the only three historic sites of record in the state, Brindle Creek, Mount Warning and Richmond Range. The species was restricted to highland, forested sites (220–890 m above sea level), primarily in national park and state forest reserves. Adult crayfish disappear from the observable population during the cooler months, re-emerging in October when the reproductive season commences. Females mature at approximately 50mm OCL, and all mature females engage in breeding during a mass spawning season in spring, carrying 45–600 eggs. Eggs take six to seven weeks to develop, and the hatched juveniles remain within the clutch for a further 2.5 weeks. This reproductive cycle is relatively short, and represents a more protracted and later breeding season than has been inferred for the species in Queensland. A combination of infrequent moulting and small moult increments indicated an exceptionally slow growth rate; large animals could feasibly be 40–50 years old.
    [Show full text]
  • NSW Recreational Freshwater Fishing Guide 2020-21
    NSW Recreational Freshwater Fishing Guide 2020–21 www.dpi.nsw.gov.au Report illegal fishing 1800 043 536 Check out the app:FishSmart NSW DPI has created an app Some data on this site is sourced from the Bureau of Meteorology. that provides recreational fishers with 24/7 access to essential information they need to know to fish in NSW, such as: ▢ a pictorial guide of common recreational species, bag & size limits, closed seasons and fishing gear rules ▢ record and keep your own catch log and opt to have your best fish pictures selected to feature in our in-app gallery ▢ real-time maps to locate nearest FADs (Fish Aggregation Devices), artificial reefs, Recreational Fishing Havens and Marine Park Zones ▢ DPI contact for reporting illegal fishing, fish kills, ▢ local weather, tide, moon phase and barometric pressure to help choose best time to fish pest species etc. and local Fisheries Offices ▢ guides on spearfishing, fishing safely, trout fishing, regional fishing ▢ DPI Facebook news. Welcome to FishSmart! See your location in Store all your Contact Fisheries – relation to FADs, Check the bag and size See featured fishing catches in your very Report illegal Marine Park Zones, limits for popular species photos RFHs & more own Catch Log fishing & more Contents i ■ NSW Recreational Fishing Fee . 1 ■ Where do my fishing fees go? .. 3 ■ Working with fishers . 7 ■ Fish hatcheries and fish stocking . 9 ■ Responsible fishing . 11 ■ Angler access . 14 ■ Converting fish lengths to weights. 15 ■ Fishing safely/safe boating . 17 ■ Food safety . 18 ■ Knots and rigs . 20 ■ Fish identification and measurement . 27 ■ Fish bag limits, size limits and closed seasons .
    [Show full text]
  • Euastacus Bispinosus Glenelg Spiny Freshwater Crayfish
    The Minister included this species in the endangered category, effective from 15 February 2011 Advice to the Minister for Sustainability, Environment, Water, Population and Communities from the Threatened Species Scientific Committee (the Committee) on Amendment to the list of Threatened Species under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Name Euastacus bispinosus This species is commonly known as Glenelg spiny freshwater crayfish. It is also known regionally as 'pricklyback'. It is in the Family Parastacidae. 2. Reason for Conservation Assessment by the Committee This advice follows assessment of information provided by a public nomination to list the Glenelg spiny freshwater crayfish. The nominator suggested listing in the endangered category of the list. This is the Committee’s first consideration of the species under the EPBC Act. 3. Summary of Conclusion The Committee judges that the species has been demonstrated to have met sufficient elements of Criterion 1 to make it eligible for listing as vulnerable. The Committee judges that the species has been demonstrated to have met sufficient elements of Criterion 2 to make it eligible for listing as endangered. The Committee judges that the species has been demonstrated to have met sufficient elements of Criterion 3 to make it eligible for listing as vulnerable. The highest category for which the species is eligible to be listed is endangered. 4. Taxonomy The species is conventionally accepted as Euastacus bispinosus Clark, 1936 (Glenelg spiny freshwater crayfish). 5. Description The Glenelg spiny freshwater crayfish is a large, long-lived freshwater crayfish of the Euastacus genus. The Euastacus crayfish, also commonly known as spiny crayfish, are one of two groups of fully aquatic freshwater crayfish in Australia, the other being the smooth-shelled Cherax crayfish, commonly known as yabbies.
    [Show full text]
  • Download Full Article 2.2MB .Pdf File
    March 1941 �!Dr. NAT.. Mus. VrcT., 12, 1941. https://doi.org/10.24199/j.mmv.1941.12.01 REVISION OF THE GENUS EUAS11AGUS (CRAY­ FISHES, FAMILY PARASTACIDAE), WITH NOTES ON THE DISTRIBUTION OF CERTAIN SPECIES.1 By Ellen Clark Plates I-IX, Fig. 1. INTRODUCTION. In a previous paper (2) an attempt was made to clear up the synonymy of the Australian Parastacidae, but it was not possible to make a complete survey of the group as material from many districts ,vas not available. Since that time, how­ ever, much material from localities not previously repre­ sented bas been collected or received for identification. Special attention ,vas given to obtaining specimens from New South ,vales, the type locality of most species of the genus. With the material now available it has been possible to make a complete reYision of the genus Euastac1ts; this revision has resulted in several alterations in nomenclature, the reasons for which are explained below. The full synonymy of each species is included with its description, and the distribution (as for as is known) is indicated. Since difficulties arose in finding suitable maps of Victoria to illustrate the distribution, two special maps (Plates VIII and IX) were compiled from data on plans prepared by the State Rivers and "\VaterSupply Commission and maps issued by the Gcologieal Survey. N mIENCLATURE. Genus EUASTACUS Clark. Euastacus Clark, Mem. Nat. l\fos. Viet., x, 1936, p. 10. Carapace spinous or tuberculate; cervical groove deeply impressed, rounded. Rostral carinae spinous or tuberculate. Abdomen spinous or tuberculate; first segment with lateral lobes large and rounded.
    [Show full text]
  • Aquatic Threatened Species Monitoring of Karst Rising Springs 2014‒2018
    Aquatic threatened species monitoring of Karst Rising Springs: 2014-2018 Aquatic threatened species monitoring of Karst Rising Springs : 2014 - 2017 Regional Action Plan for Swamp G Woodland (Eucalyptus ovata) in the South East of SA AQUATIC THREATENED SPECIES MONITORING OF KARST RISING SPRINGS 2014 ‒ 20 18 Lauren Veale and Nick Whiterod June 2018 Report to the Department of Environment, Water and Natural Resources i 1 Aquatic threatened species monitoring of Karst Rising Springs: 2014-2018 Citation Veale, L. & Whiterod, N. (2018). Aquatic threatened species monitoring of Karst Rising Springs: 2014‒2018. Report to the Department of Environment, Water and Natural Resources, Government of South Australia. Nature Glenelg Trust, Mount Gambier, South Australia. Correspondence in relation to this report contact Dr Nick Whiterod Senior Aquatic Ecologist Nature Glenelg Trust 0409 023 771 [email protected] Cover photo Some of the small, lesser known karst-rising springs (clockwise from top left): Jerusalem Creek, Cress Creek, lower Deep Creek and Bones Pond. All photos taken by Nick Whiterod and Lauren Veale otherwise stated. Disclaimer This report forms part of the Restoring Under-represented Ecological Communities project commissioned by the Department for Environment and Water. Although all efforts were made to ensure quality, it was based on the best information available at the time and no warranty express or implied is provided for any errors or omissions, nor in the event of its use for any other purposes or by any other parties. 2 Aquatic threatened species monitoring of Karst Rising Springs: 2014-2018 Acknowledgements The Restoring Under-represented Ecological Communities project was funded by the Australian Government’s Caring for our Country Program, through a regional allocation of grant funding to the South East Natural Resources Management Board.
    [Show full text]
  • A Freshwater Crayfish)
    Consultation Document on Listing Eligibility and Conservation Actions Euastacus bindal (a freshwater crayfish) You are invited to provide your views and supporting reasons related to: 1) the eligibility of Euastacus bindal (a freshwater crayfish) for inclusion on the EPBC Act threatened species list in the Critically Endangered category; and 2) the necessary conservation actions for the above species. Evidence provided by experts, stakeholders and the general public are welcome. Responses can be provided by any interested person. Anyone may nominate a native species, ecological community or threatening process for listing under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) or for a transfer of an item already on the list to a new listing category. The Threatened Species Scientific Committee (the Committee) undertakes the assessment of species to determine eligibility for inclusion in the list of threatened species and provides its recommendation to the Australian Government Minister for the Environment. Responses are to be provided in writing either by email to: [email protected] or by mail to: The Director Marine and Freshwater Species Conservation Section Wildlife, Heritage and Marine Division Department of the Environment PO Box 787 Canberra ACT 2601 Responses are required to be submitted by 2 August 2016. Contents of this information package Page General background information about listing threatened species 2 Information about this consultation process 2 Draft information about the common name and its eligibility for listing 3 Conservation actions for the species 11 References cited 12 Collective list of questions – your views 15 Euastacus bindal (a freshwater crayfish) consultation document Page 1 of 18 General background information about listing threatened species The Australian Government helps protect species at risk of extinction by listing them as threatened under Part 13 of the EPBC Act.
    [Show full text]
  • Active Searching and Baited Cameras Trump Conventional Hoop Netting in Detecting Euastacus Armatus
    Vol. 19: 39–45, 2012 ENDANGERED SPECIES RESEARCH Published online November 7 doi: 10.3354/esr00460 Endang Species Res Counting crayfish: active searching and baited cameras trump conventional hoop netting in detecting Euastacus armatus Christopher J. Fulton1,*, Danswell Starrs1, Monica P. Ruibal1, Brendan C. Ebner2 1Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia 2Tropical Landscapes Joint Venture, CSIRO Ecosystem Sciences & TropWATER, James Cook University, PO Box 780, Atherton, QLD 4883, Australia ABSTRACT: Accurate distribution and abundance estimates for rare and endangered species are necessary to ascertain extinction threats and take appropriate conservation measures. Traditional capture-based methods are imperfect for surveying elusive species such as freshwater crayfish in upland streams. We compared estimates of Murray River crayfish Euastacus armatus abundance made via direct visual assessments by snorkel, against baited remote underwater video surveys (BRUVS) and traditional hoop netting conducted in 2 montane river systems. Similar total abun- dances were recorded via visual survey and BRUVS across 4 sites within 1 river system where E. armatus was relatively common. In contrast, markedly lower values were obtained at these sites via conventional hoop netting methods. In another stream where E. armatus is particularly rare, the only detection of this species was via BRUVS. Average catch per unit effort (CPUE) was high- est from active visual surveys (2.99 ind. h−1), followed by BRUVS (0.63) and hoop netting (0.13). Extremely low sampling efficiency from hoop netting was attributed to the short time periods crayfish attended baits (mean ± SE, 387 ± 209 s) relative to the rate of net retrieval (hourly).
    [Show full text]