Codes for Type of Vessel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulatory Issues in International Martime Transport
Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development __________________________________________________________________________________________ Or. Eng. DIRECTORATE FOR SCIENCE, TECHNOLOGY AND INDUSTRY DIVISION OF TRANSPORT REGULATORY ISSUES IN INTERNATIONAL MARTIME TRANSPORT Contact: Mr. Wolfgang Hübner, Head of the Division of Transport, DSTI, Tel: (33 1) 45 24 91 32 ; Fax: (33 1) 45 24 93 86 ; Internet: [email protected] Or. Eng. Or. Document complet disponible sur OLIS dans son format d’origine Complete document available on OLIS in its original format 1 Summary This report focuses on regulations governing international liner and bulk shipping. Both modes are closely linked to international trade, deriving from it their growth. Also, as a service industry to trade international shipping, which is by far the main mode of international transport of goods, has facilitated international trade and has contributed to its expansion. Total seaborne trade volume was estimated by UNCTAD to have reached 5330 million metric tons in 2000. The report discusses the web of regulatory measures that surround these two segments of the shipping industry, and which have a considerable impact on its performance. As well as reviewing administrative regulations to judge whether they meet their intended objectives efficiently and effectively, the report examines all those aspects of economic regulations that restrict entry, exit, pricing and normal commercial practices, including different forms of business organisation. However, those regulatory elements that cover competition policy as applied to liner shipping will be dealt with in a separate study to be undertaken by the OECD Secretariat Many measures that apply to maritime transport services are not part of a regulatory framework but constitute commercial practices of market operators. -
Annex 10 PDF Page Vanderlaan, ASM, Taggart, CT, Serdynska, AR
Fisheries and Oceans Canada (DFO) Annex 10 PDF Page Vanderlaan, A.S.M., Taggart, C.T., Serdynska, A.R., Kenney, R.D., and Brown, M.W. 2008. 2 Reducing the risk of lethal encounters: vessels and right whales in the Bay of Fundy and on the Scotian Shelf. Endang. Spec. Res. 4:283–297. Veirs, S., Veirs, V., and Wood, J.D. 2016. Ship noise extends to frequencies used for 17 echolocation by endangered killer whales. PeerJ, 4, p.e1657. Yang, Z., Hollebone, B.P., Zhang, G., Brown, C.E., Yang, C., Lambert, P., Wang, Z., 53 Landriault, M., and Shah, K. 2017. Fate of Photodegraded Diluted Bitumen in Seawater, Proceedings of the 2017 International Oil Spill Conference, American Petroleum Institute, Washington, D.C., pp. 2286-2305. Yang, Z., Zhang, G., Hollebone, B.P., Brown, C.E., Yang, C., Lambert, P., Landriault, M., 73 and Shah, K. 2017. Fate of Oxygenated Components for Solar Irradiated Diluted Bitumen in Saltwater, Proceedings of the Fortieth AMOP Technical Seminar on Environmental Contamination and Response, pp. 415-440, Environment and Climate Change Canada, Ottawa, ON. Yang, Z., Zhang, G., Hollebone, B.P., Brown, C.E., Yang, C., Lambert, P., Wang, Z., 99 Landriault, M., and Shah, K. 2017. Fate of Oxygenated Components for Solar Irradiated Diluted Bitumen Mixed with Seawater, Environmental Pollution, Vol. 231, pp. 622-634, http://dx.doi.org/10.1016/j.envpol.2017.08.043. Yergeau, E., Maynard, C., Sanschagrin, S., Champagne, J., Juck, D., Lee, K., and Greer, C. 112 2015. Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident. -
Download/Dnvgl-Rp-G107-Efficient-Updating-Of-Risk-Assessments (Accessed on 5 April 2021)
applied sciences Article Determination of the Waterway Parameters as a Component of Safety Management System Andrzej B ˛ak 1,* and Paweł Zalewski 1 Faculty of Navigation, Maritime University of Szczecin, Wały Chrobrego St. 1-2, 70-500 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: This article presents the use of a computer application codenamed “NEPTUN” to ascertain the waterway parameters of the modernised Swinouj´scie–Szczecinwaterway.´ The designed program calculates the individual risks in selected sections of the fairway depending on the input data, including the parameters of the ship, available water area, and positioning methods. The collected data used for analyses in individual modules are stored in a SQL server of shared access. Vector electronic navigation charts of S-57 standard specification are used as the cartographic background. The width of the waterway is calculated by means of the method developed on the basis of the modified PIANC guidelines. The main goal of the research is to prove and demonstrate that the designed software would directly increase the navigation safety level of the Swinouj´scie–Szczecin´ fairway and indicate the optimal positioning methods in various navigation circumstances. Keywords: safety of navigation; safety management system; fairway; navigation channel; marine traffic engineering Citation: B ˛ak,A.; Zalewski, P. Determination of the Waterway Parameters as a Component of Safety 1. Introduction Management System. Appl. Sci. 2021, The aim of the work described in the paper was to build an application of the inte- 11, 4456. https://doi.org/10.3390/ app11104456 grated navigation safety management system (INSMS) for coastal waters and harbour approaches in order to easily estimate the risk level of a selected part of the waterway in Academic Editors: Peter Vidmar, predefined hydrometeorological and navigation conditions. -
Seacare Authority Exemption
EXEMPTION 1—SCHEDULE 1 Official IMO Year of Ship Name Length Type Number Number Completion 1 GIANT LEAP 861091 13.30 2013 Yacht 1209 856291 35.11 1996 Barge 2 DREAM 860926 11.97 2007 Catamaran 2 ITCHY FEET 862427 12.58 2019 Catamaran 2 LITTLE MISSES 862893 11.55 2000 857725 30.75 1988 Passenger vessel 2001 852712 8702783 30.45 1986 Ferry 2ABREAST 859329 10.00 1990 Catamaran Pleasure Yacht 2GETHER II 859399 13.10 2008 Catamaran Pleasure Yacht 2-KAN 853537 16.10 1989 Launch 2ND HOME 856480 10.90 1996 Launch 2XS 859949 14.25 2002 Catamaran 34 SOUTH 857212 24.33 2002 Fishing 35 TONNER 861075 9714135 32.50 2014 Barge 38 SOUTH 861432 11.55 1999 Catamaran 55 NORD 860974 14.24 1990 Pleasure craft 79 199188 9.54 1935 Yacht 82 YACHT 860131 26.00 2004 Motor Yacht 83 862656 52.50 1999 Work Boat 84 862655 52.50 2000 Work Boat A BIT OF ATTITUDE 859982 16.20 2010 Yacht A COCONUT 862582 13.10 1988 Yacht A L ROBB 859526 23.95 2010 Ferry A MORNING SONG 862292 13.09 2003 Pleasure craft A P RECOVERY 857439 51.50 1977 Crane/derrick barge A QUOLL 856542 11.00 1998 Yacht A ROOM WITH A VIEW 855032 16.02 1994 Pleasure A SOJOURN 861968 15.32 2008 Pleasure craft A VOS SANTE 858856 13.00 2003 Catamaran Pleasure Yacht A Y BALAMARA 343939 9.91 1969 Yacht A.L.S.T. JAMAEKA PEARL 854831 15.24 1972 Yacht A.M.S. 1808 862294 54.86 2018 Barge A.M.S. -
Det Norske Veritas
DET NORSKE VERITAS Report Heavy fuel in the Arctic (Phase 1) PAME-Skrifstofan á Íslandi Report No./DNV Reg No.: 2011-0053/ 12RJ7IW-4 Rev 00, 2011-01-18 DET NORSKE VERITAS Report for PAME-Skrifstofan á Íslandi Heavy fuel in the Arctic (Phase 1) MANAGING RISK Table of Contents SUMMARY............................................................................................................................... 1 1 INTRODUCTION ............................................................................................................. 3 2 PHASE 1 OBJECTIVE..................................................................................................... 3 3 METHODOLOGY ............................................................................................................ 3 3.1 General ....................................................................................................................... 3 3.2 Arctic waters delimitation .......................................................................................... 3 3.3 Heavy fuel oil definition and fuel descriptions .......................................................... 4 3.4 Application of AIS data.............................................................................................. 5 3.5 Identifying the vessels within the Arctic.................................................................... 6 3.6 Identifying the vessels using HFO as fuel.................................................................. 7 4 TECHNICAL AND PRACTICAL ASPECTS OF USING HFO -
Spanish National Action Framework for Alternative Energy in Transport
INTERMINISTERIAL GROUP FOR GOVERNMENT COORDINATION OF THE NATIONAL ACTION FRAMEWORK FOR OF SPAIN ALTERNATIVE ENERGY IN TRANSPORT NATIONAL ACTION FRAMEWORK FOR ALTERNATIVE ENERGY IN TRANSPORT MARKET DEVELOPMENT AND DEPLOYMENT OF ALTERNATIVE FUELS INFRASTRUCTURE. IN COMPLIANCE WITH DIRECTIVE 2014/94/EU OF THE EUROPEAN PARLIAMENT AND THE COUNCIL, OF 22 OCTOBER 2014. 14 OCTOBER 2016 COORDINATED BY SECRETARIAT-GENERAL FOR INDUSTRY AND SMALL AND MEDIUM-SIZED ENTERPRISES PRESIDENCY OF THE INTERMINISTERIAL GROUP INTERMINISTERIAL GROUP FOR GOVERNMENT COORDINATION OF THE NATIONAL ACTION FRAMEWORK FOR OF SPAIN ALTERNATIVE ENERGY IN TRANSPORT TABLE OF CONTENTS I. INTRODUCTION .................................................................................................. 9 I.1. PRESENTATION OF DIRECTIVE 2014/94/EU......................................... 9 I.2. BACKGROUND.................................................................................... 10 I.3. PREPARATION OF THE NATIONAL ACTION FRAMEWORK......................... 13 II. ALTERNATIVE ENERGY IN THE TRANSPORT SECTOR............................................. 17 II.1. NATURAL GAS.................................................................................... 17 II.2. ELECTRICITY..................................................................................... 21 II.3. LIQUEFIED PETROLEUM GAS.............................................................. 23 II.4. HYDROGEN………………………………………..…………................. 26 II.5. BIOFUELS…………………………………………….………………….. 28 III. ROAD TRANSPORT…………………………………………..………..……………. -
Wärtsilä Ship Design References
WÄRTSILÄ SHIP DESIGN REFERENCES Conversions/ upgrades/ modifications © Wärtsilä NOT YET CLASSIFIED SK 4209 BIT VIKING SCOPE OF SUPPLY ADDITIONAL • Ship Design • NOx measurement during • Engine conversion sea trial DF and • LNGPac system (2 x • LNGPac training for 500m3) personnel • Gas supply units • Torque meter for power measurement • Bunkering system • Gas piping (single and double walled) • Exhaust system • Fire-fighting upgrade • Gas detection system • Electrical system © Wärtsilä NOT YET CLASSIFIED CALA SERIES HIGHLIGHTS WSD SCOPE • Reefer vessels (4 no.’s) • Basic design • Lloyd Werft Bremerhaven • Detail design GmbH (Germany) • Steel production documentation CONVERSION SCOPE • Lengthening for increase of cargo capacity © Wärtsilä NOT YET CLASSIFIED M/T FOUR MOON HIGHLIGHTS WSD SCOPE • OBO carrier, 54,500dwt • Basic design conversion to 65,000 DWT • Detail design Crude oil tanker • Steel production documentation CONVERSION SCOPE • Lengthening for increase of cargo capacity © Wärtsilä NOT YET CLASSIFIED PETROTRYM HIGHLIGHTS WSD SCOPE • Product/Crude oil tanker • Basic design • 82,000 DWT • Detail design • Steel production CONVERSION SCOPE documentation • Conversion to buoy loader/shuttle tanker © Wärtsilä NOT YET CLASSIFIED M/T NCC ARAR, M/T NCC ASIR, M/T BOW HUNTER HIGHLIGHTS WSD SCOPE • Chemical tankers • Basic design • 22,500 DWT • Tender documentation package MODIFICATION SCOPE • Refitted with innershell © Wärtsilä NOT YET CLASSIFIED M/T JO BREVIK, M/T JO CLIPPER, M/T JO LIND, M/T JO BIRK, M/T JO OAK HIGHLIGHTS • Refitted with -
Established Korea Shipping Co., Ltd
1. HSM Introduction 2. HSM Procedure in High Risk Area 3. Prevention case from Somali Piracy HSM Introduction 1. History 2. Organization 3. Figure - Full Ship Management 4. Transit status in high risk area 3 1. History 1949 Established Korea Shipping Co., Ltd 1977 Established Hanjin Shipping Co., Ltd 1988 Merged Korea Shipping Corp. 1995 Merged KeoYang Shipping Co., Ltd 1997 Merged Senator Lines Co., Ltd 2006.09 Spun off from Hanjin Shipping Co., Ltd, and established Hanjin Ship Management Co., Ltd 2007.10 Opened Hanjin Shipping Training Center 2008.10 Merged the Maritime Group of Hanjin Shipping Co., Ltd 4 1. History (Introduction of Hanjin Group) Marine Transportation Aviation Ground Transportation We are always there for our customers, We are committed to excellence as we We promise to become the 21st century's offering the best services as the leader in seek to become a respected leader in the total logistics company through Global marine transportation. global aviation industry. e-Logistics. Information Service Tourism/Hotel/Real Estate Non-Profit As an IT company for greater values, we We provide our customers with We are dedicated to fostering manpower support our customers' successful a high-quality travel/recreation culture. and developing local communities as well business. as aim to become a leading international public beneficiary for the advancement of Korea. 2. Organization CEO Ryu, Jae-Heog Inaugurated as CEO in 2009 CEO Regional Manager in Seattle 153 in total and Long beach in USA graduated from Korea Maritime University in 1980 VP VP VP VP VP Fleet Crew Management Marine SHEQ Marina Marketing Management Management Support Engineering Management Business Container Crew Business Newbuilding Safety, Fleet 11 Mgmt I 10 Administration Supervision Health, 9 28 Marina Bulk Crew Sales Environment 11 Business Fleet Mgmt II 10 & Quality Purchasing & Marine Crew Management Specialized Procurement R&D Center Mgmt III 9 Fleet 9 6 6 6 10 3 Fleet Support & Crew Training Safety Mgmt. -
BLÜCHER Marine References
BLÜCHER Marine References Country Project Shipyard Owner Vessel Type Hull no. Year Argentina Frigate Naval Shipyard Frigate Frigate Refitting 2005 Australia Australian Customs and Austal Ships Australian Customs and Border Cape Class Patrol Boat 361 2013 Border Protection Service Protection Service Australia Australian Customs and Austal Ships Australian Customs and Border Cape Class Patrol Boat 362 2013 Border Protection Service Protection Service Australia Australian Customs and Austal Ships Australian Customs and Border Cape Class Patrol Boat 363 2013 Border Protection Service Protection Service Australia Australian Customs and Austal Ships Australian Customs and Border Cape Class Patrol Boat 364 2013 Border Protection Service Protection Service Australia Australian Customs and Austal Ships Australian Customs and Border Cape Class Patrol Boat 365 2014 Border Protection Service Protection Service Australia Australian Customs and Austal Ships Australian Customs and Border Cape Class Patrol Boat 366 2014 Border Protection Service Protection Service Australia Australian Customs and Austal Ships Australian Customs and Border Cape Class Patrol Boat 367 2014 Border Protection Service Protection Service Australia Australian Customs and Austal Ships Australian Customs and Border Cape Class Patrol Boat 368 2014 Border Protection Service Protection Service Australia Australian Defence Civmec/ASC Australian Defence OPV OPV1 2019 Australia Australian Defence - ASC Shipyard Australian Defence Air Warfare Destroyer 2012 AWD Australia Australian Defence - LHD BAE Systems Australian Defence Landing Helicpoter 2012 Dock Australia Dick Smith Tenix Dick Smith Ocean Research Ulysses Blue 2005 Vessel Australia Esso West Tuna Esso Platform 1996 Australia HMAS Arunta BAE Systems Australian Defence ANZAC Frigate ANZAC 2019 Australia Jean de la Valette - Virtu Austal Ships Virtu Ferries High Speed Ferry 248 2010 Ferries Australia RNZN Tenix RNZN Ocean Research 42826 2006 Vessel Australia Taylor Bros. -
Maritime Orientation Package
MARITIME ORIENTATION PACKAGE Port Nelson 1 MARITIME ORIENTATION PACKAGE Introduction This ‘Maritime Orientation Package’ will introduce the complex Maritime industry to Health Protection Officers (HPOs) who may have to implement and apply health measures within it. Background New Zealand Public Health Units are designated as ‘competent authorities’ by the World Health Organisation for ensuring maritime Points of Entry (POE) comply with the standards required by the International Health Regulations (2005) (IHR) and the International Maritime Organisation. Most New Zealand Public Health Units have a Maritime POE in their region. The Maritime Environment comprises many unique factors and has its own language rich with acronyms. For a HPO to be competent and feel confident working in the maritime environment they need a basic understanding of: • Vessel Types – their purpose and the possible public health issues associated with them. • The layout of a ship – where to go and what to look for. • Maritime Terminology – communication with the personnel on board and dockside in the lexicon. • The sequence a vessel follows upon entering NZ waters and the ensuing processes; o gaining pratique, o berthing, o discharging and loading cargo, o replenishment of food and water, o refuelling, and o departure for another jurisdiction, and • The suite of documents that ships maintain to show that management practices on board comply with international regulations and requirements. Purpose The purpose of this orientation package is to familiarise HPOs with some background information that will enable them to be able to confidently conduct their duties at the port. The package is in three parts; • maritime terminology, • an illustrated compendium of ship types that might be encountered in NZ waters, and • a schematic showing the layout of a ship. -
The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy
Advances in Historical Studies, 2017, 6, 18-39 http://www.scirp.org/journal/ahs ISSN Online: 2327-0446 ISSN Print: 2327-0438 The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy Roberto Mantovani Department of Pure and Applied Sciences (DiSPeA), Physics Laboratory: Urbino Museum of Science and Technology, University of Urbino Carlo Bo, Urbino, Italy How to cite this paper: Mantovani, R. Abstract (2017). The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy. This work is born out of the accidental finding, in a repository of the ancient Advances in Historical Studies, 6, 18-39. “Oliveriana Library” in the city of Pesaro (Italy), of a small mahogany box https://doi.org/10.4236/ahs.2017.61002 containing three specimens of a submarine telegraph cable built for the Italian Received: December 22, 2016 government by the Henley Company of London. This cable was used to con- Accepted: March 18, 2017 nect, by means of the telegraph, in 1864, the Ports of Otranto and Avlona (to- Published: March 21, 2017 day Valona, Albania). As a scientific relic, the Oliveriana memento perfectly fits in the scene of that rich chapter of the history of long distance electrical Copyright © 2017 by author and Scientific Research Publishing Inc. communications known as submarine telegraphy. It is known that, thanks to This work is licensed under the Creative the English, the issue of submarine electric communication had an impressive Commons Attribution International development in Europe from the second half of the nineteenth century on. License (CC BY 4.0). Less known is the fact that, in this emerging technology field, Italy before uni- http://creativecommons.org/licenses/by/4.0/ fication was able to carve out a non-negligible role for itself, although primar- Open Access ily political. -
Integrated Method for Optimal Channel Dredging Design 5
Integrated Method for Optimal Channel Dredging Design 5 LUCAS SILVEIRA, GUSTAVO GOMES, LUANA TAIANI, VALDECÍLIO PINHEIRO, LINDINO BENEDET, ANDRE MARQUES AND CLAUDIO LOUREIRO INTEGRATED METHOD FOR OPTIMAL CHANNEL DREDGING DESIGN ABSTRACT OPEX. This in turn helps to identify the This configuration of the coastal environment optimal configuration for commercial interests favours the amplification of tidal astronomic This article has been adapted from the paper and internal rate of return (IRR) of the constituents inside the bays (tidal ranges up to that won the IADC Young Author 2016 terminal. 7m), generating strong tidal currents (up to Award and it was published in the 3 m/s) that pose serious hazards to navigation proceedings of IX PIANC-COPEDEC INTRODUCTION and force migration of seabed sand banks conference in October 2016. It is reprinted that cause channel shoaling. here with permission. The logistical constraints in central-southern Brazil and increasing agriculture production in MEARIM PORT An integrated analytical method was the central-northern areas of the country has Located about 45km inland inside the São developed and applied to identify the optimal given an impetus for the development of new Marcos Bay, the Mearim Port is a greenfield channel layout and dredging depth that greenfield port terminals in northern Brazil, port concept that is being studied and allowed for safe navigation; enabled the specifically in the states of Maranhão and designed over the past 8 years (Figure 1). operation of the required amount of ships per Pará. This is due to their strategic locations Initial studies of the port considered a 48km year; and at the same time reduced dredging that allow for cost-effective solutions to long navigation channel for 15m draft vessels, costs.