Migration Timing, Routes, and Connectivity of Eurasian Woodcock Wintering in Britain and Ireland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ohio Birding Checklist with Difficulty Codes Daily/Year/Life
Ohio Birding Checklist with ____ Common Merganser 2 ____ Belted Kingfisher 1 ____ Louisiana Waterthrush 2 ____ Red-breasted Merganser 1 ____ Red-headed Woodpecker 2 ____ Northern Waterthrush 2 Difficulty Codes ____ Ruddy Duck 1 ____ Red-bellied Woodpecker 1 ____ Blue-winged Warbler 1 ____ Wild Turkey 2 ____ Yellow-bellied Sapsucker 2 ____ Black-and-white Warbler 1 Daily/Year/Life ________________ ____ Pied-billed Grebe 1 ____ Downy Woodpecker 1 ____ Prothonotary Warbler 2 ____ Horned Grebe 1 ____ Hairy Woodpecker 1 ____ Tennessee Warbler 2 This checklist is arranged in three sections, each ____ Rock Pigeon 1 ____ Northern Flicker 1 ____ Nashville Warbler 1 corresponding to a pair of difficulty codes. The ____ Mourning Dove 1 ____ Pileated Woodpecker 1 ____ Kentucky Warbler 2 six codes/descriptions are based primarily on the ____ Yellow-billed Cuckoo 2 ____ American Kestrel 1 ____ Common Yellowthroat 1 collective experience of Greg Miller and Dan ____ Common Nighthawk 2 ____ Eastern Wood-Pewee 2 ____ Hooded Warbler 1 Sanders. Overall abundance and ease of ____ Chimney Swift 1 ____ Acadian Flycatcher 2 ____ American Redstart 1 identification have been factored into each of the ____ Ruby-throated Hummingbird 1 ____ Willow Flycatcher 2 ____ Cape May Warbler 2 six codes and are as follows: ____ Virginia Rail 2 ____ Least Flycatcher 1 ____ Cerulean Warbler 2 ____ Sora 1 ____ Eastern Phoebe 1 ____ Northern Parula 2 Easier to See Birds ____ Common Gallinule 2 ____ Great Crested Flycatcher 1 ____ Magnolia Warbler 1 1. Readily found within expected habitat ____ American Coot 1 ____ Eastern Kingbird 1 ____ Bay-breasted Warbler 2 during at least one season of the year. -
Red and Fallow Deer Determine the Density of Ixodes Ricinus Nymphs Containing Anaplasma Phagocytophilum
Red and Fallow Deer Determine the Density of Ixodes Ricinus Nymphs Containing Anaplasma Phagocytophilum Katsuhisa Takumi ( [email protected] ) Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands Tim Hofmeester Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Hein Sprong Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands Research Keywords: Ixodes ricinus nymphs, Anaplasma phagocytophilum, phagocytophilum, anaplasmosis Posted Date: October 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-96286/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 19th, 2021. See the published version at https://doi.org/10.1186/s13071-020-04567-4. 1 Red and fallow deer determine the density of Ixodes ricinus 2 nymphs containing Anaplasma phagocytophilum 1, 2 1 3 Katsuhisa Takumi ✉, Tim R. Hofmeester , and Hein Sprong 4 1 Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control 5 National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands 6 2 Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural 7 Sciences Skogsmarksgränd 7 907 36 Umeå Sweden 8 ✉ Correspondence: Katsuhisa Takumi <[email protected]> 9 1 10 Abstract 11 Background: The density of Ixodes ricinus nymphs infected with Anaplasma phagocytophilum 12 is one of the parameters that determines the risk for humans and domesticated animals to 13 contract anaplasmosis. -
Growth and Development of Long-Billed Curlew Chicks
April 1973] General Notes 435 Pitelka and Donald L. Beaver critically read the manuscript. This work was con- ducted under the I.B.P. Analysis of Ecosystems-TundraProgram and supported by a grant to F. A. Pitelka from the National ScienceFoundation.--THo•rAs W. CUSTrR, Department o! Zoology and Museum o! Vertebrate Zoology, University o! California, Berkeley,California 94720. Accepted9 May 72. Growth and development of Long-billed Curlew chicks.--Compared with the altricial nestlings of passerinesand the semiprecocialyoung of gulls, few studies of the growth and developmentof the precocialchicks of the Charadrii have been made (Pettingill, 1970: 378). In Europe, yon Frisch (1958, 1959) describedthe develop- ment of behavior in 14 plovers and sandpipers. Davis (1943) and Nice (1962) have reported on the growth of Killdeer (Charadriusvociferus), Nice (1962) on the Spotted Sandpiper (Actiris macularia), and Webster (1942) on the growth and development of plumages in the Black Oystercatcher (Haematopus bachmani). Pettingill (1936) studiedthe atypical AmericanWoodcock (Philohelaminor). Among the curlews, Genus Numenius, only the Eurasian Curlew (N. arquata) has been studied (von Frisch, 1956). Becauseof the scant knowledgeabout the development of the youngin the Charadriiand the scarcityof informationon all aspectsof the breeding biology of the Long-billed Curlew (N. americanus) (Palmer, 1967), I believe that the following data on the growth and development of Long-billed Curlew chicks are relevant. I took four eggs,one being pipped, from a nest 10 miles west of Brigham City, Box Elder County, Utah, on 24 May 1966. One egg was preservedimmediately for additional study, the others I placed in a 4' X 3' X 2' cardboard box with a 60-watt lamp for warmth in a vacant room in my home until they hatched. -
Ruffed Grouse and American Woodcock Status in Michigan, 2017
Printed by Authority of: P.A. 451 of 1994 Total Number of Copies Printed: 207 Michigan Department of Natural Resources Cost per Copy:................................$0.84 Wildlife Report No. 3642 Total Cost: ................................... $174.00 September 2017 Michigan Department of Natural Resources RUFFED GROUSE AND AMERICAN WOODCOCK STATUS IN MICHIGAN, 2017 C. Alan Stewart and Lori Sargent ABSTRACT Hunter cooperator surveys, spring breeding surveys, and mail harvest surveys are conducted each year to monitor Ruffed grouse (Bonasa umbellus) and American woodcock (Scolopax minor) populations. Annual data comparisons are described for hunter cooperator survey (2015–2016), Ruffed grouse drumming survey (2015-2016), American woodcock spring breeding surveys (2016-2017), and mail harvest survey (2010-2011). Ruffed grouse cooperators hunting the first 4 days of ruffed grouse season reported an average 1.93 grouse per hour in 2016 compared to 0.91 grouse per hour in 2015. The usual spring drumming grouse surveys were not conducted this year because of concerns over past open records requests from a hunter whose activities jeopardized the validity of the survey. There was an increase detected in Michigan’s woodcock index based on the singing-ground survey from 2016-2017 and during the ten-year trend from 2007-2017. Significant long-term (1968-2017) declines were detected regionally and statewide, respectively. Woodcock banders in Michigan spent 1,950 hours afield in 2017 and banded 937 chicks. There were about 67 chicks observed and 48 chicks banded per 100 hours of search time, compared to 66 chicks observed and 49 banded in 2016. There were 112 ruffed grouse drumming routes surveyed in 2015 and 105 in 2014. -
Review of the Conflict Between Migratory Birds and Electricity Power Grids in the African-Eurasian Region
CMS CONVENTION ON Distribution: General MIGRATORY UNEP/CMS/Inf.10.38/ Rev.1 SPECIES 11 November 2011 Original: English TENTH MEETING OF THE CONFERENCE OF THE PARTIES Bergen, 20-25 November 2011 Agenda Item 19 REVIEW OF THE CONFLICT BETWEEN MIGRATORY BIRDS AND ELECTRICITY POWER GRIDS IN THE AFRICAN-EURASIAN REGION (Prepared by Bureau Waardenburg for AEWA and CMS) Pursuant to the recommendation of the 37 th Meeting of the Standing Committee, the AEWA and CMS Secretariats commissioned Bureau Waardenburg to undertake a review of the conflict between migratory birds and electricity power grids in the African-Eurasian region, as well as of available mitigation measures and their effectiveness. Their report is presented in this information document and an executive summary is also provided as document UNEP/CMS/Conf.10.29. A Resolution on power lines and migratory birds is also tabled for COP as UNEP/CMS/Resolution10.11. For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) and the Convention on the Conservation of Migratory Species of Wild Animals (CMS) REVIEW OF THE CONFLICT BETWEEN MIGRATORY BIRDS AND ELECTRICITY POWER GRIDS IN THE AFRICAN-EURASIAN REGION Funded by AEWA’s cooperation-partner, RWE RR NSG, which has developed the method for fitting bird protection markings to overhead lines by helicopter. Produced by Bureau Waardenburg Boere Conservation Consultancy STRIX Ambiente e Inovação Endangered Wildlife Trust – Wildlife & Energy Program Compiled by: Hein Prinsen 1, Gerard Boere 2, Nadine Píres 3 & Jon Smallie 4. -
Effect of Weather Conditions on the Spring Migration of Eurasian Woodcock and Consequences for Breeding
Ibis (2018) doi: 10.1111/ibi.12657 Effect of weather conditions on the spring migration of Eurasian Woodcock and consequences for breeding KEVIN LE REST,1* ANDREW HOODLESS,2 CHRISTOPHER HEWARD,2 JEAN-LOUIS CAZENAVE3 & YVES FERRAND1 1Office National de la Chasse et de la Faune Sauvage, 8 boulevard Albert Einstein, Nantes, 44300, France 2Game & Wildlife Conservation Trust, Burgate Manor, Fordingbridge, Hampshire SP6 1EF, UK 3Club National des Becassiers, 105 rue Louis Pergaud, Villeneuve, Champniers, 16430, France Migration is a critical period of time with fitness consequences for birds. The develop- ment of tracking technologies now allows researchers to examine how different aspects of bird migration affect population dynamics. Weather conditions experienced during migration are expected to influence movements and, subsequently, the timing of arrival and the energetic costs involved. We analysed satellite-tracking data from 68 Eurasian Woodcock Scolopax rusticola fitted with Argos satellite tags in the British Isles and France (2012–17). First, we evaluated the effect of weather conditions (temperature, humidity, wind speed and direction, atmospheric stability and visibility) on migration movements of individuals. Then we investigated the consequences for breeding success (age ratio) and brood precocity (early-brood ratio) population-level indices while accounting for cli- matic variables on the breeding grounds. Air temperature, wind and relative humidity were the main variables related to migration movements, with high temperatures and northward winds greatly increasing the probability of onward flights, whereas a trend towards greater humidity over 4 days decreased the probability of movement. Breeding success was mostly affected by climatic variables on the breeding grounds. The propor- tion of juveniles in autumn was negatively correlated with temperature in May, but posi- tively correlated with precipitation in June and July. -
202 Common Redshank Put Your Logo Here
Javier Blasco-Zumeta & Gerd-Michael Heinze Sponsor is needed. Write your name here Put your logo here 202 Common Redshank Ruff Redshank. Spring. Adult (02-V) COMMON REDSHANK (Tringa totanus ) SEXING IDENTIFICATION Plumage of both sexes alike. 27-28 cm. In spring with brownish upperparts barred dark; white rump; white tail with dark bars; wings with a broad white band on the ed- AGEING ge; white underparts with dark streaks on head, This species is a scarce breeder in Aragon, so neck and breast; red bill with dark tip; orange- only 3 age classes can be recognized: red legs. In autumn with darker colours on up- 1st year autumn with fresh plumage; median perparts: grey tinge on breast. coverts spotted pale on edge; tertials brown with buff and dark marks; pointed tail feathers; breast slightly streaked; dull reddish base of bill; yellowish legs. 2nd year spring similar to adult ; this age can be recognized only in birds with some unmoul- ted median wing coverts and/or tertials; flight feathers moderately worn. Adult with median coverts with whitish edge and dark subterminal band; tertials grey brown with variable markings: either plain or with dark sepia bars, sometimes with extensive dark markings; rounded tail feathers; underparts with variable amount of dark barring and spot- ting; reddish legs and base of bill. Redshank . Pattern of wing, tail and bill. SIMILAR SPECIES Recalls a Spotted Redhsank in autumn , without a white patch on wings and has a longer bill; Redshank. Ruff has a narrower wing band and two whi- Ageing. te bands on sides of uppertail Pattern of bill: top adult; bot- Spotted tom 1st Redshank. -
Review of Illegal Killing and Taking of Birds in Northern and Central Europe and the Caucasus
Review of illegal killing and taking of birds in Northern and Central Europe and the Caucasus Overview of main outputs of the project The information collated and analysed during this project has been summarised in a variety of outputs: 1. This full report Presenting all the aspects of the project at regional and national levels http://www.birdlife.org/illegal-killing 2. Scientific paper Presenting results of the regional assessment of scope and scale of illegal killing and taking of birds in Northern and Central Europe and the Caucasus1 https://www.cambridge.org/core/journals/bird-conservation-international 3. Legislation country factsheets Presenting a review of national legislation on hunting, trapping and trading of birds in each assessed country http://www.birdlife.org/datazone/country (under ‘resources’ tab) 4. ‘The Killing 2.0’ Layman’s report Short communications publication for publicity purposes with some key headlines of the results of the project and the previous one focussing on the Mediterranean region http://www.birdlife.org/illegal-killing Credits of front cover pictures 1 2 3 4 1 Hen harrier Circus cyaneus © RSPB 2 Illegal trapping of Hen Harrier in the UK © RSPB 3 Common Coot (Fulica atra) © MISIK 4 Illegal trade of waterbirds illegally killed in Azerbaijan © AOS Citation of the report BirdLife International (2017) Review of illegal killing and taking of birds in Northern and Central Europe and the Caucasus. Cambridge, UK: BirdLife International. 1 Paper in revision process for publication in Bird Conservation International in October 2017 when this report is released 1 Executive Summary The illegal killing and taking of wild birds remains a major threat on a global scale. -
Ruffed Grouse
Ruffed Grouse Photo Courtesy of the Ruffed Grouse Society Introduction The ruffed grouse (Bonasa umbellus) is North America’s most widely distributed game bird. As a very popular game species, the grouse is in the same family as the wild turkey, quail and pheasant. They range from Alaska to Georgia including 34 states and all the Canadian provinces. Historically in Indiana, its range included the forested regions of the state. Today the range is limited to the south central and southeastern 1/3 of the state in the southern hill country, with a few pockets in counties bordering Michigan. Ruffed grouse weigh between 1 and 1.5 pounds and grow to 17 inches in length with a 22-inch wingspan. They exhibit color phases with northern range birds being reddish-brown to gray while those in the southern part of their continental range, including Indiana, are red. History and Current Status Before settlement, grouse populations ranged throughout the hardwood region of the state. In areas where timber was permanently removed for farms, homes and towns grouse habitat has been lost. During the early1900’s, many farms in the south-central portion of Indiana were abandoned. As a result of this farm abandonment, the vegetation around old home sites and in the fallow fields grew through early plant succession stages. About the same time, the reforestation era began as abandoned farms reverted into public ownership under the management of state and federal natural resource agencies. By the 1950’s, natural succession, reforestation, and timber harvest management were beginning to form a myriad of early successional forest patches across a fairly contiguous forested landscape. -
Priority Information Needs for American Woodcock a FUNDING STRATEGY
Priority Information Needs for American Woodcock A FUNDING STRATEGY Developed by the Association of Fish and Wildlife Agencies’ Migratory Shore and Upland Game Bird Support Task Force. March 15, 2010 D.J. Case and Associates (editor). 2010. Priority Information Needs for American Woodcock: A Funding Strategy. Developed for the Association of Fish and Wildlife Agencies by the Migratory Shore and Upland Game Bird Support Task Force. 16pp. Priority Information Needs for American Woodcock A Funding Strategy Developed by the Association of Fish and Wildlife Agencies’ Migratory Shore and Upland Game Bird Support Task Force Compiled and Edited by David J. Case and Sarah J. Sanders D.J. Case & Associates March 15, 2010 Photo credits: Top row: left by Rucker Sewell; right by paco lypic Second row: CC Chapman Third row: Ren West Fourth row: atlantic life Illustration of American woodcock by Bob Hines, USFWS Table of Contents Table of Contents Executive Summary . i Introduction . 1 Status of American Woodcock. 1 Priority Information Needs . 6 Priority 1. Develop a demographic-based model for assessing American woodcock population response to harvest and habitat management . 6 Priority 2. Develop communication strategies to increase support for policies and practices that benefit American woodcock and other wildlife of young forests . 7 Priority 3. Improve understanding of migration, breeding, and wintering habitat quality for American woodcock . 9 Priority 4. Improve the Singing-ground Survey . 11 Measuring Success . 13 Literature Cited . 15 Appendix A: 2009 Workshop Participants . 16 Figure 1. American woodcock management regions, breeding range, and Singing-ground Survey coverage and winter range . 2 Figure 2. -
Tringa Melanoleuca (Greater Yellowlegs)
Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Tringa melanoleuca (Greater Yellowlegs) Priority 3 Species of Greatest Conservation Need (SGCN) Class: Aves (Birds) Order: Charadriiformes (Plovers, Sandpipers, And Allies) Family: Scolopacidae (Curlews, Dowitchers, Godwits, Knots, Phalaropes, Sandpipers, Snipe, Yellowlegs, And Woodcock) General comments: Considered stable range wide, considered species of low or moderate concern by US Shorebird Conservation Plan however due to vulnerability to climate change considered priority 3. Listed as "Species of Least Concern" by U. S. Shorebird Conservation Plan Partnership - 2015. Species Conservation Range Maps for Greater Yellowlegs: Town Map: Tringa melanoleuca_Towns.pdf Subwatershed Map: Tringa melanoleuca_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: NA High Climate Change Vulnerability: Vulnerability: 3, Confidence: Medium, Reviewers: Decided in Workshop (W) Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Greater Yellowlegs: Formation Name Cliff & Rock Macrogroup Name Rocky Coast Formation Name Freshwater Marsh Macrogroup Name Emergent Marsh Macrogroup Name Modified-Managed Marsh Formation Name Intertidal Macrogroup Name Intertidal Gravel Shore Macrogroup Name Intertidal Mudflat Macrogroup Name Intertidal Sandy Shore Stressors Assigned to Greater Yellowlegs: -
Survival Rates of Russian Woodcocks
Proceedings of an International Symposium of the Wetlands International Woodcock and Snipe Specialist Group Survival rates of Russian Woodcocks Isabelle Bauthian, Museum national d’histoire naturelle, Centre de recherches sur la biologie des populations d’oiseaux, 55 rue Buffon, 75005 Paris, France. E-mail: [email protected] Ivan Iljinsky, State University of St Petersburg, Russia. E-mail: [email protected] Sergei Fokin, State Informational-Analytical Center of Game Animals and Environment Group. Woodcock, Teterinsky Lane, 18, build. 8, 109004 Moscow, Russia. E-mail: [email protected] Romain Julliard, Museum national d’histoire naturelle, Centre de recherches sur la biologie des populations d’oiseaux, 55 rue Buffon, 75005 Paris, France. E-mail: [email protected] François Gossmann, Office national de la chasse et de la faune sauvage, 53 rue Russeil, 44 000 Nantes, France. E-mail: [email protected] Yves Ferrand, Office national de la chasse et de la faune sauvage, BP 20 - 78612 Le-Perray-en-Yvelines Cedex, France. E-mail: [email protected] We analysed 324 recoveries from 2,817 Russian Woodcocks ringed as adult or yearling in two areas in Russia (Moscow and St Petersburg). We suspected that birds belonging to these two areas may experience different hunting pressure or climatic conditions, and thus exhibit different demographic parameters. To test this hypothesis, we analysed spatial and temporal distribution of recoveries, and performed a ringing-recovery analysis to estimate possible survival differences between these two areas. We used methods developed by Brownie et al. in 1985. We found differences in temporal variations of the age ratio between the two ringing areas.