REO-Monazite Brazil Historical

Total Page:16

File Type:pdf, Size:1020Kb

REO-Monazite Brazil Historical AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS Technical Publication No. a037 (CLASSH. INDUSTRIALMINERALS. NO. 147) DISCUSSION OF THIS PAPER IS INVITED. Discussion in writing (a co ies) may be sent to the Secretary. American Institute of Mining and.Metalluqgical Engineers. 29 West 39th gtreet. New York 18. N. Y. Unless spec~alarrangement is made, d~scuss~onof thls paper will close Dec. 31. 1946. Any d~scusslonoffered thereafter should preferably be in the form of a new paper. Technology and Uses of Monazite Sand MONAZITEhas had a Cinderella-like sluiced away lighter materials and con- history. Although nearly go per cent pure centrated the heavy (D = 5.0 to 5.2) rare-earth compound (rare-earth phos- grains of monazite, together with ilmenite, phate) it was sought at first not for the zircon, garnet, and other dense minerals. rare earths but for the sake of a minor The Carolina deposits were in stream constituent-thorium. The thorium, essen- beds; most of the other deposits mentioned tial for the Welsbach gaslight mantle, was are on or near the seashore, where the present in only small quantities and the action of the waves has served to con- ~rincipal constituents, the rare earths, centrate the monazite. were largely discarded. Gradually, how- In most cases, today, the sands are ever, the rare earths have developed uses worked to obtain the ilmenite and zircon, of their own and today have left the as well as monazite. The minerals are thorium far behind in value. separated by means of sluices, dry tables, and magnetic separators, and each is finally obtained nearly pure. No crushing Monazite was first produced commer- or grinding is necessary. The concentrates cially about 1886, in North Carolina, are shipped in fiber bags. where it was collected in small sluices by farmers who found it in stream beds on their land. The deposits were later ex- As Table I illustrates, monazite is the ploited on a larger scale, but were mostly anhydrous orthophosphate of the cerium abandoned in a few years, when monazite from Brazil came upon the market in far TABLE ~.-TyPical Analysis of a Monazite Sand (India). larger quantities. Domestic production PER CENT ceased entirely in 1906. Thorium oxide.. ........................... 8.1 Ceriumoxide .............................. 30.6 The Brazilian source is still active, Lanthanum oxide.. ......................... 15.7 Neodymium oxide.. ........................ 10.5 together with Indian, Dutch East Indies, Praseodymium oxide.. ...................... 2.9 Samarium oxide.. .......................... I.o and Australian deposits. Several other Europium, gadolinium, and terbium oxides.. .. 0.7 Yttrium oxide.. ............................ 0.4 localities in the United States have Dysprosium, holmium, erbium, thulium, ytter- yielded monazite, but none of these has bium. and lutecium oxides.. ............... o. 1 Silicon oxide.. ....................... : ..... 2 .4 produced commercially as yet. Calcium, aluminum, and iron oxides. ......... I . o Uranium oxide.. ........................... 0.3 Monazite occurs originally in peg- Phosphorus pentqxide.. ..................... 26.2 'The values given for the rare earths follomng matite~ and gneisses, through which, samanum are approximate. being based upon analyses of concentrated fractions derived from monazite. unfortunately, it is scattered in highly dis- The composition given represents Travancore mona- persed form. All commercially useful zite carefully freed from other minerals. deposits consist of transported monazite group of rare-earth elements. A small sands liberated by erosion and concen- amount of yttrium and terbium group trated by the action of water, which has phosphate is also present.* All the rare- *Lindsay Light and Chemical Co., West Chicago, Illinois. Elements 57 to 62. inclusive, constitute Manuscript received at the office of the the cerium group. elements 63 to 65 inclusive Institute Sept. 4. 1945; revised Feb. 21, 1946. the terbium group, and elements 39 and 6671 Copyright, 1946, by the American Institute of Mining and Metallurgical Engineers. Inc. MINING TECHNOLOGY.July 1946. Printed in U. S. A. 2 TECHNOLOGY AND USES OF MONAZITE SAND earth elements are of course isomorphous, Other uses of thorium are less well and react generally as one element. known. The oxide of thorium is used in Nonazite nearly always contains tho- radio tubes, as a constituent of special rium, which is chemically rather than optical glasses, as a high-temperature mechanically present, together usually refractory (M.P. ~ooo°F.), and as a with an approximately equivalent amount catalyst for petroleum cracking. of silica. The thorium content varies with the source of the ore. Rare-earth Salts The natural mixture of cerium and other DER~'ATNESOF MONAZITEAND THEIR rare earths as recovered from monazite USES has many large-tonnage uses in different Mesothorium forms. The mixed rare-earth oxide and the The radioactivity of monazite follows fluoride are used as a core material in from its content of thorium and its decom- searchlight and projector-arc carbons, position product, mesothorium, which where the brilliant spectrum of the rare- is an isotope of radium. Hocvever, the earth elements increases the visible light mineral also contains traces of uranium output. Rare-earth chloride is electrolyzed and hence radium. Mesothorium is similar in the fused condition to produce rare- in every way to radium and is useful for earth metal, which alone or alloyed with the same purposes. It decays at a much iron forms the well-known "flints" used faster rate, however, having a half-life in lighters. Rare-earth chloride and acetate of 6.7 years as compared with 1590 for are used as waterproofing agents and radium. Monazite actually contains a fungicides in textile manufacture. Rare- greater weight of radium than it does of earth oxalate is used medicinally as an mesothorium, but because of the greater agent to prevent nausea and seasickness. decay rate the activity is nearly all due to Cerium mesothorium. It is possible to recover radioactive material equivalent to one The high cerium content of monazite is gram of radium from about 300 tons of fortunate, as this element has unique and monazite. This value varies with the useful properties and may be readily thorium content of the ore. separated from the other rare earths. Because of its two valence states, cerium Thorium in some of its compounds is a valuable For many. -years monazite sands were oxygen carrier and catalyst. In this way priced according to their thorium content, it is used for decolorizing glass, through which was the sole useful constituent. its power of holding iron in the ferric state. The oldest and best known use for thorium Thus ordinary window and bottle glass, is the incandescent mantle, still used for as well as higher grades, may be produced street lighting in many cities. The well- with cheaper grades of glass sand. In known Aladdin kerosene lamps and Cole- paint and printing-ink driers, cerium man gasoline lanterns are widely used in naphthenate, though not widely used, rural districts. The armed forces have permits special effects to be obtained in used millions of mantles in the present some cases, since tremendous quantities of war. drier may be added without the usual ill effects. inclusive the yttrium group. These groups are not sharply characterized; the division is Various other catalytic reactions with based partly on the solubility of the double cerium are known. Cerium metal is used sulphates and partly on their distribution in certain minerals. in alloys, various salts are valuable labora- R. PHILIP HAMMOND 3 tory reagents, and the oxide (or hydrated silica, but consists entirely of the oxides of oxide) is used as a coloring agent in ceramic rare elements, with lanthanum oxide as glazes. the base. The glass, of very high density, A most important use is as a polishing has a high index of refraction and a rela- agent for lenses, prisms, and other sur- tively low dispersion, making possible faces. The development of a suitable lenses of improved color correction with form of cerium oxide for this use helped fewer elements and with curved surfaces break a critical bottleneck in optical of larger radius. equipment in the early days of the war. The tremendous demand for tank peri- Neodymium scopes, gun sights, binoculars, range Neodymium hds its principal use in finders, photographic lenses, and other the glass industry, where it serves to optical goods found the manufacturers neutralize the greenish tinge caused by of lcns-polishing equipment hopelessly iron. Whereas cerium decolorizes glass swamped. Rouge had been used for cen- chemically by oxidation of iron, neo- turies as the polishing agent, but in approxi- dymium is a physical decolorizer, since it mately three years has been almost imparts a complementary hue. Both are completely supplanted bv optical-grade often used in ordinary types of glass. cerium oxide. The outstanding advantage of In larger proportions, neodymium pro- cerium oxide, the use of which for optical duces an orchid tint of great beauty used polishing was unknown in this country in expensive stemware, and also in "Soft- before the war, is the tremendous speed Lite" spectacle lenses, where the ultra- with which a perfect polish is obtained. violet opacity of neodymium glass is Optical-grade cerium oxide polishes two utilized . For large-scale uses, neodymium and three times as fast as the best rouge, is often employed in its natural mixture and in addition has several other advan- with the other rare earths, except cerium. tages (such as cleanliness) greatly ap- The mixture, known commercially as preciated by lens polishers. With this new "didymium,"* contains about 33 per cent polish, the optical industry was enabled neodymium; the other rare earths present to double or triple its output with existing (mostly lanthanum) have little or no machinery. Today even spectacle lenses effect on glass in the amounts used. are polished with cerium. Large quantities of this mixture are also The peculiar combination of properties used in the manufacture of electronic required for lens polishing is not fully apparatus, particularly where a ceramic understood.
Recommended publications
  • The Rare Earths II
    Redis co very of the Elements The Ra re Earth s–The Con fusing Years I A gallery of rare earth scientists and a timeline of their research I I James L. Marshall, Beta Eta 1971 , and Virginia R. Marshall, Beta Eta 2003 , Department of Chemistry, University of North Texas, Denton, TX 76203-5070, [email protected] The rare earths after Mosander. In the pre - vi ou s HEXAGON “Rediscovery” article, 1p we were introduced to the 17 rare earths, found in the f-block and the Group III chemical family of Figure 1. Important scientists dealing with rare earths through the nineteenth century. Johan Gadolin the Periodic Table. Because of a common (1760 –1852) 1g —discovered yttrium (1794). Jöns Jacob Berzelius (1779 –1848) and Martin Heinrich valence electron configuration, the rare earths Klaproth (1743 –1817) 1d —discovered cerium (1803). Carl Gustaf Mosander (1787 –1858) 1p —discovered have similar chemical properties, and their lanthanum (1839), didymium (1840), terbium, and erbium (1843). Jean-Charles deGalissard Marignac chemical separation from one another can be (1817 –1894) 1o —discovered ytterbium (1878) and gadolinium (1880). Per Teodor Cleve (1840 –1905) 1n — difficult. From preparations of the first two rare discovered holmium and thulium (1879). Lars Fredrik Nilson (1840 –1899) 1n —discovered scandium earth element s—yttrium and ceriu m—the (1879). Paul-Émile Lecoq de Boisbaudran (1838 –1912) —discovered samarium (1879) and dysprosium Swedish chemist Carl Gustaf Mosander (Figure (1886). 1b Carl Auer von Welsbach (1858 –1929) 1c —discovered praseodymium and neodymium (1885); 1, 2) was able to separate four additional ele - co-discovered lutetium (1907).
    [Show full text]
  • RBRC-32 BNL-6835.4 PARITY ODD BUBBLES in HOT QCD D. KHARZEEV in This ~A~Er We Give a Pedawwicalintroduction~0 Recent Work Of
    RBRC-32 BNL-6835.4 PARITY ODD BUBBLES IN HOT QCD D. KHARZEEV RIKEN BNL Research Center, Br$ookhauenNational Laboratory, . Upton, New York 11973-5000, USA R.D. PISARSKI Department of Physics, Brookhaven National Laboratoy, Upton, New York 11973-5000, USA M.H.G. TYTGAT Seruice de Physique Th&orique, (7P 225, Uniuersitc4Libre de Bruzelles, B[ud. du !t%iomphe, 1050 Bruxelles, Belgium We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N + m. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the reconfining phrrse transition. The meet interesting possibility is if the reconfining transition, at T = Td, is of second order. Then we argue that Witten’s relation implies that the topological suscepti~lfity vanishes in a calculable fdion at Td. Ae noted by Witten, this implies that for sufficiently light quark messes, metaetable etates which act like regions of nonzero O — parity odd bubbles — can arise at temperatures just below Td. Experimentally, parity odd bubbles have dramatic signature% the rI’ meson, and especially the q meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as q + rr”ro, are allowed. The most direct way to detect parity violation is by measuring a parity odd global seymmetry for charged pions, which we define. 1 Introduction In this .-~a~er we give a Pedawwicalintroduction~0 recent work of ours? We I consider an SU(IV) gau”ge t~e~ry in the limit of a large number of colors, N + co, This is, of course, a familiar limit? We use the large N expansion I to investigate the behavior of the theory at nonzero temperature, especially for the topological susceptibility.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • A Brief Overview Including Uses, Worldwide Resources, and Known Occurrences in Alaska
    A brief overview including uses, worldwide resources, and known occurrences in Alaska Information Circular 61 David J. Szumigala and Melanie B. Werdon STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys (DGGS) 3354 College Road, Fairbanks, AK 99709-3707 www.dggs.alaska.gov COVER PHOTO CAPTIONS: TOP: Sheeted REE-bearing veins, Dotson Trend, Bokan Mountain property, Alaska. Photo from http://www.ucoreraremetals.com/docs/SME_2010_Keyser.pdf BOTTOM: Rare-earth-element-bearing quartz vein exposed in granite, Bokan Mountain, Alaska. Photo from http://www.ucoreraremetals.com/docs/SME_2010_Keyser.pdf RARE-EARTH ELEMENTS: A brief overview including uses, worldwide resources, and known occurrences in Alaska David J. Szumigala and Melanie B. Werdon GGS Minerals Program The Alaska Division of Geological & Geophysical Surveys (DGGS), part of the Department of Natural Resources, is charged by statute with determining the potential of Alaska’s land for production of metals, minerals, fuels, and geothermal resources; the locations and supplies of groundwater and construction Dmaterial; and the potential geologic hazards to buildings, roads, bridges, and other installations and structures. The Mineral Resources Section at DGGS collects, analyzes, and provides information on the geological and geophysical framework of Alaska as it pertains to the state’s mineral resources. The results of these studies include reports and maps, which are used by scientists for various associated studies, by mining company geologists as a basis for their more focused exploration programs, and by state and federal agency personnel in resource and land-use management decisions. This paper provides a brief overview of rare-earth elements, their uses, and current worldwide sources of their production.
    [Show full text]
  • THE MAJOR RARE-EARTH-ELEMENT DEPOSITS of AUSTRALIA: GEOLOGICAL SETTING, EXPLORATION, and RESOURCES Figure 1.1
    CHAPTER ONE WHAT ARE RARE- EARTH ELEMENTS? 1.1. INTRODUCTION latter two elements are classified as REE because of their similar physical and chemical properties to the The rare-earth elements (REE) are a group of seventeen lanthanides, and they are commonly associated with speciality metals that form the largest chemically these elements in many ore deposits. Chemically, coherent group in the Periodic Table of the Elements1 yttrium resembles the lanthanide metals more closely (Haxel et al., 2005). The lanthanide series of inner- than its neighbor in the periodic table, scandium, and transition metals with atomic numbers ranging from if its physical properties were plotted against atomic 57 to 71 is located on the second bottom row of the number then it would have an apparent number periodic table (Fig. 1.1). The lanthanide series of of 64.5 to 67.5, placing it between the lanthanides elements are often displayed in an expanded field at gadolinium and erbium. Some investigators who want the base of the table directly above the actinide series to emphasise the lanthanide connection of the REE of elements. In order of increasing atomic number the group, use the prefix ‘lanthanide’ (e.g., lanthanide REE: REE are: lanthanum (La), cerium (Ce), praseodymium see Chapter 2). In some classifications, the second element of the actinide series, thorium (Th: Mernagh (Pr), neodymium (Nd), promethium (Pm), samarium 1 (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), and Miezitis, 2008), is also included in the REE dysprosium (Dy), holmium (Ho), erbium (Er), thulium group, while promethium (Pm), which is a radioactive (Tm), ytterbium (Yb), and lutetium (Lu).
    [Show full text]
  • Towards the Recovery of Rare Earth Elements from End-Of-Life Products: Hydrometallurgical Routes and Mathematical Modelling of Extraction Systems
    Chemical Engineering Department PhD Program: Chemical Processes Engineering TOWARDS THE RECOVERY OF RARE EARTH ELEMENTS FROM END-OF-LIFE PRODUCTS: HYDROMETALLURGICAL ROUTES AND MATHEMATICAL MODELLING OF EXTRACTION SYSTEMS Author: Eleonora Obón Estrada Director: Dr. Ana Maria Sastre Requena Codiretor: Dr. Agustín Fortuny Sanromà Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB) Universitat Politècnica de Catalunya, Barcelona, July 2019 Thesis presented to obtain the qualification of Doctor awarded by the Universitat Politècnica de Catalunya II Abstract The rare earth elements (REEs) are essential ingredients for the development of modern industry and the transition to a more sustainable economy model. The unique physicochemical features of these elements, such as their magnetism and optical properties, are greatly expanding their application. They have become key elements for the manufacture of many ordinary consumer goods like hybrid cars, fluorescent lamps or electronic devices like mobile phones or tablets. The growing popularity of the rare earth elements derivatives is leading to an increase in the global demand and the price of these elements. Unfortunately, the current availability of these resources is limited due to three main factors: their heterogeneous geological location, their low concentration in the ores, and the environmental issues related with their mining. All these disadvantages concerning the supply of the rare earth elements have led to the study of new techniques to obtain them, such as the recycling of end- of-life products. Recycling of REEs arises as a new secondary source of supply of REEs, especially in Europe where large amounts of technological waste are generated every year. Currently, the recycling of rare earth elements represents less than 1% of the global supply.
    [Show full text]
  • Didymium Separation from Lanthanum by Solvent Extraction Using 2-Ethylhexylphosphonic Acid Mono-2-Ethylhexyl Ester and Lactic Acid
    a Original Article http://dx.doi.org/10.4322/2176-1523.1131 DIDYMIUM SEPARATION FROM LANTHANUM BY SOLVENT EXTRACTION USING 2-ETHYLHEXYLPHOSPHONIC ACID MONO-2-ETHYLHEXYL ESTER AND LACTIC ACID Maíra Labanca Waineraich Scal 1 Luciana Amaral Seruff 1 Ysrael Marrero Vera 1 Abstract This article reports the separation of didymium from lanthanum by solvent extraction using 2-ethylhexyl phosphonic acid mono–2–ethyl hexyl ester (HEH(EHP)) as extracting reagent. The aim of the study was to evaluate the effect of lactic acid addition as well as the feed solution pH variation on the didymium separation from lanthanum. We carried out batch and continuous extraction experiments. In batch experiments, we observed that the extractions of REEs increased along with the increase of lactic acid concentration and feed solution pH. The best conditions for Pr/La separation were obtained at pH 3.5 and lactic concentrations varying between 1.1 and 2.6 times the total REE molar concentration. In the continuous extraction experiments, when no lactic acid was added in the feed solution and with A/O 1:1, the extractions of La, Pr and Nd were 2.0%, 22.3% and 29.5%, respectively. When lactic acid was added in the feed solution, the extractions of La, Pr and Nd were 7.0%, 57.8% and 73.7%, respectively. The addition of lactic acid in the feed solution increased the REE total concentration in the loaded organic phase, the Pr/La separation factor and the total REE mass flow rate, by 2.6, 2.8 and 2.7 times, respectively.
    [Show full text]
  • U.S. Strategic Material Supply Chain Assessment: Rare Earth Elements
    U.S. STRATEGIC MATERIAL SUPPLY CHAIN ASSESSMENT: SELECT RARE EARTH ELEMENTS DYSPROSIUM, ERBIUM, NEODYMIUM, TERBIUM, AND YTTERBIUM 2016 PREPARED BY U.S. DEPARTMENT OF COMMERCE BUREAU OF INDUSTRY AND SECURITY OFFICE OF TECHNOLOGY EVALUATION FOR FURTHER INFORMATION ABOUT THIS REPORT, CONTACT: Jason Bolton, Senior Trade and Industry Analyst, (202) 482-5936 David Boylan-Kolchin, Trade and Industry Analyst, (202) 482-7816 Elizabeth Oakes, Trade and Industry Analyst, (202) 482-4615 Intern Support: Angelo Curto, Hannah Dennis, Ashira Naftali Greer, Yolanda Ngo Brad Botwin Director, Industrial Studies [email protected] Phone: (202) 482-4060 Fax: (202) 482-5361 For more information about the Office of Technology Evaluation, please visit: http://www.bis.doc.gov/dib Table of Contents I. INTRODUCTION AND SELECT FINDINGS ................................................................................... 3 II. INDUSTRY PROFILE .............................................................................................................. 11 III. SALES AND FINANCIAL PERFORMANCE .............................................................................. 20 IV. PRODUCTS AND INPUTS ...................................................................................................... 29 V. ORGANIZATIONAL CHALLENGES, COMPETITIVENESS, AND CAPITAL EXPENDITURES ......... 46 VI. INNOVATION: SUBSTITUTION, RECYCLING, AND R&D ...................................................... 61 VII. SUPPORT FOR U.S. GOVERNMENT AGENCIES ..................................................................
    [Show full text]
  • Henri Gorceix, the Mining School of Ouro Preto, the Monazite Sand of Citation: J.H
    Firenze University Press www.fupress.com/substantia Feature Article Almost a Discovery – Henri Gorceix, the Mining School of Ouro Preto, the Monazite Sand of Citation: J.H. Maar (2018) Almost a Discovery – Henri Gorceix, the Mining Bahia and the Chemistry of Didymium School of Ouro Preto, the Monazite Sand of Bahia and the Chemistry of Didymium. Substantia 2(2): 27-41. doi: 10.13128/substantia-59 Juergen Heinrich Maar Copyright: © 2018 J.H. Maar. This is Retired, Chemistry Department, Universidade Federal de Santa Catarina, Florianópolis, an open access, peer-reviewed article SC, Brazil published by Firenze University Press E-mail: [email protected] (http://www.fupress.com/substantia) and distribuited under the terms of the Creative Commons Attribution License, Abstract. The chemical history of the supposed element didymium may well be char- which permits unrestricted use, distri- acterised as a case of collecting empirical data in a period of “normal” science. But this bution, and reproduction in any medi- element’s history also reveals little known facts of the history of chemistry in South um, provided the original author and America, such as the exploration and smuggling of monazite sands, and the difficult source are credited. beginnings of scientific research and higher education in Brazil. Didymium is also a Data Availability Statement: All rel- curious case: even after it was shown to be a mixture, it continued to be regarded as an evant data are within the paper and its element. This fact alone raises questions about the adequacy of scientific methodology Supporting Information files. at the time. In this paper, we consider the history of didymium, and determine how this history’s different facts and stories, set in Brazil’s rather unique historical and sci- Competing Interests: The Author(s) entific context, intertwine thanks to the work of Claude Henri Gorceix.
    [Show full text]
  • IIIHIIII US005541346A United States Patent (19) 11 Patent Number: 5,541,346 Drysdale Et Al
    IIIHIIII US005541346A United States Patent (19) 11 Patent Number: 5,541,346 Drysdale et al. 45) Date of Patent: Jul. 30, 1996 (54) POLYMERIZATION OF, AND 24.59163 12/1974 Germany. DEPOLYMERIZATION TO, CYCLIC ETHERS 59 SS' 3. Stay SSSI CTED METAL COMPOUND 60-109584 6/1985 Japan ..................................... 549/509 C WO88/02661 4/1988 WIPO. 75) Inventors: Neville E. Drysdale; Norman Herron, OTHER PUBLICATIONS both of Newark, Del. Grant & Hackh's Chemical Dictionary, Fifth Edition, McGraw-Hill Book Co., New York, 1987, p. 373. 73) Assignee: E. A. FileNet, and Habermeier, J. etal, J. Poly. Science: Part C, 16, 2131-2141 Oechsner et al, "Reaction Pathway of the Cationically 21 Appl. No.: 424,918 Initiated Ring-Opening Copolymerization of THF and 1- Dicarboxylic Anhydrides', MAKROMOL CHEM., 150, 22 Filed: Apr. 19, 1995 1-23 (1971). O WPI Derwent Acc. No. 94-068607 (1994). Related U.S. Application Data WPI Acc. No. 76-67625x/36 (1976). 60 Division of Ser. No. 283,108, Jul. 29, 1994, which is a WE A. N. ST: $33. continuation-in-part of Ser. No. 198,024, Feb. 17, 1994, ce No. 1 (1987). - 9 abandoned, Ser. No. 141,160, Oct. 21, 1993, abandoned, Ser. Hayase, S. et al., “Photopolymerization of Epoxides', Mac No. 93,243, Jul. 16, 1993, abandoned, Ser. No. 93, 19, Jul. rolecules, 18(10), 1799–1804 (1985). 16, 1993, abandoned, Ser. No. 21,368, Feb. 23, 1993, Crivello, J. V. et al, "Novel Platinum Initiators for Rin abandoned, and Ser. No. 964,313, Oct. 21, 1992, abandoned. g-Opening Polymerizations', DIE Makromol.
    [Show full text]
  • 1 H 2 He 4 Be 5 B 6 C 7 N 11 Na 3 Li 8 O 9 F 10 Ne 12 Mg 13 Al 14 Si 15
    1 2 H He Hydrogen Helium Discovered 1766 Discovered 1895 ` From the Greek From the Greek for water-forming for sun, 1st found in the sun’s corona 3 4 5 6 7 8 9 10 Li Be B C N O F Ne Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Discovered 1817 Discovered 1797 Discovered 1808 Prehistoric Discovered 1772 Discovered 1774 Discovered 1886 Discovered 1898 ` From the Greek From the Greek From the Arabic From the Latin From the Greek From the Greek From the Latin From the Greek “lithos” (stone) for beryl, a “burqa” (borax) “carbo” (charcoal) for nitre-forming for acid-forming “fluere” (to flow) “neos” (new) gemstone 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar Sodium Magnesium Aluminum Silicon Phosphorus Sulfur Chlorine Argon Discovered 1807 Discovered 1755 Discovered 1825 Discovered 1824 Discovered 1669 Prehistoric Discovered 1774 Discovered 1894 ` From the English For Magnesia, a From the Latin From the Latin From the Greek Sanskrit “sulvere” From the Greek From the Greek “soda” district in Thessaly, “alum” “silex” (flint) for light-bringing or Latin “chloros” “argos” (idle) Greece (bitter salt) “sulfurium” (greenish yellow) 19 20 31 32 33 34 35 36 K CA Ga Ge As Se Br Kr Potassium Calcium Gallium Germanium Arsenic Selenium Bromine Krypton Discovered 1807 Discovered 1808 Discovered 1875 Discovered 1886 Discovered ~1250 Discovered 1817 Discovered 1826 Discovered 1898 ` From the English From the Latin From the Latin From the Latin From the Greek From the Greek From the Greek From the Greek “potash” “calex” (lime) name for France name for Germany “arsenikon” (a name for the “bromos” “kryptos” (hidden) (“Gallia”) (“Germania”) yellow pigment) moon (“Selene”) (stench) 1 Henry Cavendish 2 Helium was de- discovered hydro- tected in the sun by gen.
    [Show full text]
  • Studies in the Field of Rare Earth Elements
    Available online at www.sciencedirect.com ScienceDirect Procedia Chemistry 11 ( 2014 ) 171 – 175 1st International Symposium on Inorganic Fluorides: Chemistry and Technology, ISIF 2014 Studies in the field of rare earth elements A.V. Valkova, V.V. Sergievskiya, V.L. Sofronova,*, M.E. Kalaeva, Ya.V. Ermakovab aSeversk Technological Institute NRNU MEPhI, 65 Kommunisticheskij av., Seversk 636036, Tomsk region, Russia bTomsk Polytechnic University, 30 Lenina av., Tomsk 634050, Russia Abstract The article describes developed and implemented technologies in the field of rare earth elements. Besides, new promising technologies for the realization of the work, carried out at the Department of Chemistry MEPhI in recent years, are represented. © 20142014 PublishedThe Authors. by Elsevier Published B.V. byThis Elsevier is an open B.V. access article under the CC BY-NC-ND license Peer(http://creativecommons.org/licenses/by-nc-nd/3.0/-review under responsibility of the National). Research Tomsk Polytechnic University. Peer-review under responsibility of the National Research Tomsk Polytechnic University Keywords: rare earth elements ; extraction ; tri-n-butyl phosphate 1. Introduction Joint works of MCTI named after D.I. Mendeleev and Moscow polymetals plant (MPP) in the field of chemistry and technology of extraction separation of rare earth elements (REE) has been conducting since 1965. After the closure of REE production at MPP, the authors of the developments continued their studies in the field of REE technology in MEPhI. Changing of Russian
    [Show full text]