Towards the Recovery of Rare Earth Elements from End-Of-Life Products: Hydrometallurgical Routes and Mathematical Modelling of Extraction Systems
Total Page:16
File Type:pdf, Size:1020Kb
Chemical Engineering Department PhD Program: Chemical Processes Engineering TOWARDS THE RECOVERY OF RARE EARTH ELEMENTS FROM END-OF-LIFE PRODUCTS: HYDROMETALLURGICAL ROUTES AND MATHEMATICAL MODELLING OF EXTRACTION SYSTEMS Author: Eleonora Obón Estrada Director: Dr. Ana Maria Sastre Requena Codiretor: Dr. Agustín Fortuny Sanromà Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB) Universitat Politècnica de Catalunya, Barcelona, July 2019 Thesis presented to obtain the qualification of Doctor awarded by the Universitat Politècnica de Catalunya II Abstract The rare earth elements (REEs) are essential ingredients for the development of modern industry and the transition to a more sustainable economy model. The unique physicochemical features of these elements, such as their magnetism and optical properties, are greatly expanding their application. They have become key elements for the manufacture of many ordinary consumer goods like hybrid cars, fluorescent lamps or electronic devices like mobile phones or tablets. The growing popularity of the rare earth elements derivatives is leading to an increase in the global demand and the price of these elements. Unfortunately, the current availability of these resources is limited due to three main factors: their heterogeneous geological location, their low concentration in the ores, and the environmental issues related with their mining. All these disadvantages concerning the supply of the rare earth elements have led to the study of new techniques to obtain them, such as the recycling of end- of-life products. Recycling of REEs arises as a new secondary source of supply of REEs, especially in Europe where large amounts of technological waste are generated every year. Currently, the recycling of rare earth elements represents less than 1% of the global supply. Nevertheless, some studies in the literature assume that by 2050 the recovery rate of REEs will be 90% for wind turbines, 70% for electrical vehicles and 40% for the rest of derivative products. The research presented in this thesis relies on experimental investigation of new hydrometallurgical routes, the majority of them involving the use of ionic liquids, which could eventually be applied for the recovery of rare earth elements from end-of-life products. Matemathical modelling of the reported extraction systems has been carried out in order to provide a computational instrument that can be easily tailored for prediction of other collecting processes requiring minor adjustments. Keywords Rare Earth Elements; critical status; urban mining; hydrometallurgical routes; Solvent Extraction; Ionic Liquids; mathematical modelling; Supported Liquid Membranes; leaching process. III Resum Les terres rares son ingredients essencials per al desenvolupament de la indústria moderna i la transició cap a un model economic més sostenible. Les seves característiques fisico-químiques úniques, com el seu magnetisme i propietats òptiques, han precipitat un increment accelerat en l’aplicació d’aquests elements. Les terres rares s’han convertit en elements clau per a la fabricació de molts articles d’ús diari com per exemple, cotxes elèctrics i dispositius electrònics com telèfons mòbils i tabletes. La creixent popularitat dels productes que contenen aquests metalls està provocant un escalat en la demanda global i el preu de les terres rares. Desafortunadament, en l’actualitat, la disponibilitat d’aquests recursos a la natura és limitada degut bàsicament a tres factors: heterogènia localització geològica, baixa concentració als minerals que els contenen i inconvenients mediambientals relacionats amb la mineria. Els inconvenients relacionats amb el subministrament de les terres rares a nivell mundial han propiciat l’estudi de noves tècniques per a la obtenció d’aquests elements mitjançant el reciclatge de productes que els contenen. El reciclatge sorgeix com una font secundària alternativa a la mineria per tal d’assegurar el provisionament de terres rares especialment a Europa on generem grans quantitats de residus tecnològics cada any. Actualment, la taxa de reciclatge de terres rares se situa per sota l’1% del subministrament global. No obstant, alguns estudis publicats en la literatura assumeixen que l’any 2050, la taxa de recuperació haurà augmentat considerablement, de manera que es reciclarà fins a un 90% de les terres rares provinents d’aerogeneradors, 70% de vehicles elèctrics i 40% de la resta de productes que contenen aquests metalls. La recerca presentada en aquesta tesi es basa, principalment, en la investigació de noves rutes hidrometalúrgiques, la majoria d’elles utilitzant líquids iònics, que puguin ser implementades en processos de recuperació de terres rares a partir de residus tecnològics. D’altra banda, s’han elaborat models matemàtics d’alguns dels sistemes d’extracció reportats que pretenen convertir-se en una eina computacional, fàcilment adaptable, per a la predicció del comportament d’extracció en d’altres processos de recuperació amb diferents condicions experimentals. IV Preface The increasing concerns about the environmental impact of fossil fuels and the uncertainty about their supply to be used as energy sources in the future are motivating a global switch towards new clean alternatives of emerging eco- efficient and globally competitive technologies. The rare earth elements (REE) are vital to the modern technologies since their unique chemical features such as their magnetism and optical properties are needed to supply the required functionality in many high tech components, green technologies and material industries of NiHM batteries, hybrid cars, wind turbines, compact fluorescent lamps (CFLs), fluorescent lightning, liquid crystal displays (LCDs) and lasers, among other products (Kumar Jha et al., 2016). The accelerating technological innovation cycles and the growth of emerging economies have led to increasing global demand of metals and minerals and securing access to a stable supply of many raw materials has become a major challenge (European Commission, 2017). Thus, the extraction costs are transferred to their prices since the sources of high quality ores have reduced and so lower quality mines must be now exploited. About one hundred million tons of rare earth oxide reserves are presently accessible in the world, scattered in more than 30 countries. Nonetheless, the global mine production of rare earth metals is just 110.000 metric tons. The critical status of the rare earth elements is strongly tied to their heterogeneous geological location, low concentration in the ores and the environmental issues related with their mining due to the high volume of concentrate acids that are needed to separate them from their ores and the high amount of secondary waste generated after this process (Wübbeke, 2013). Urban mining is a new concept based on reclaiming raw materials from end-of- life products. Higher recycling rates can reduce the pressure on demand for primary raw materials and minimise the energy consumption and other negative environmental impact from extraction and processing. The urban mining of REEs from end-of-life products and industrial waste streams started receiving more and more attention since it can provide another source of metals, alongside conventional mining in geological deposits (Tunsu et al., 2015a). This thesis focuses on the development of hydrometallurgical routes for neodymium, terbium, and dysprosium recovery from aqueous solutions using ionic liquids. Mathematical modelling of the extraction systems developed has been carried out in order to predict the extraction extension of the metals providing a basis for further investigation on rare earth elements recycling from end-of-life products and contributing to the state of art on hydrometallurgical V REEs recovery. This work has been performed at the Chemical Engineering department of the Universitat Politècnica de Catalunya (UPC) in the framework of three research projects: Técnicas avanzadas de separación utilizando liquidos iónicos como extractantes disolventes en tecnología de membranas con renovación de membrana liquida y en procesos (CTQ2011·22412); Separación/Recuperación de tierras raras mediante procesos de sorción en biopolímeros, composites y membranas (CTM2014-52770-R) and Estrategias de reciclado de residuos que contienen tierras raras: procesos de sorción mediante nanocomposites magnéticos y membranas líquidas para su separación y recuperación (CTM2017-83581-R) funded by the Spanish Ministry of Science and Innovation (MICINN). A short stay in the Chalmers University of Technology also financed by the MICINN (Ref. EEBB-I-16-10674) completed the doctoral training. VI Acknowledgements This thesis has been conducted thanks to the Spanish Ministry of Science and Innovation (MICINN) since they have funded the three projects that have been the framework for the development of the whole investigation. I consider myself very fortunate to have spent the last five years under the supervision of my thesis director Dr. Ana Sastre Requena whom has always kept an eye on me during all this time no matter how busy her schedule was. Thank you for your valuable advise, for taking me out of my confort zone when I was not convinced to go abroad and for encouraging me to keep going and never surrender. I can say now, that this experience has enabled me to grow personally and professionally. I would like to thank my thesis codirector Agustí Fortuny and the professor Mª Teresa Coll for teaching me everything I know, and helping