Scavenging Flotation Tailings Using a Continuous Centrifugal Gravity Concentrator

Total Page:16

File Type:pdf, Size:1020Kb

Scavenging Flotation Tailings Using a Continuous Centrifugal Gravity Concentrator Scavenging Flotation Tailings using a Continuous Centrifugal Gravity Concentrator by Hassan Ghaffari B.A.Sc. & M.A.Sc. Department of Mining Engineering, Technical Faculty Tehran University, Iran, 1990 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Applied Science in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF MINING ENGINEERIG THE UNIVERSITY OF BRITISH COLUMBIA We accepted this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August 2004 © Hassan Ghaffari, 2004 THE UNIVERSITY OF BRITISH COLUMBIA FACULTY OF GRADUATE STUDIES Library Authorization In presenting this thesis in partial fulfillment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. H ASS A A/ GrMFFAR I 31 ,o%2t>4 Name of Author (please print) Date (dd/mm/yyyy) Title of Thesis: Degree: /l/l-A S C Year: Department of The University of British Columbiumbia ^ u c/ Vancouver, BC Canada grad.ubc.ca/forms/?formlD=THS page 1 of 1 last updated: 31-Aug-04 11 Summary A study was conducted to evaluate the Knelson Continuous Variable Discharge (CVD) concentrator as a scavenger for coarse middling particles from flotation tailings. The goal was to recover a product of suitable grade for recycling to the grinding circuit to improve liberation and aid subsequent recovery in flotation. Such a hybrid flotation- gravity circuit would result in improved metal recoveries, product grades and potentially lead to lower grinding costs. Froth flotation, a physico-chemical process, is the most commonly used process for treating base metal sulphides. Since separation is achieved on the basis of the surface hydrophobicity, mixed-phased particles or middlings are not efficiently treated by froth flotation. The coarser fractions in flotation feeds contain heavy and valuable liberated and non liberated minerals that cannot be floated efficiently. There is a top limit for particle size floatability which varies for different ores. The specific gravity of these particles plays an important role which causes decreasing the flotation performance. This study is based on the premise that the middling particles in tailings can be recovered efficiently by size enhanced density separation. The ability of gravity separators to treat fine particles has been limited by the lack of particle inertia relative to the surface drag forces. Particle inertia can be enhanced by the application of a centrifugal field. The Knelson CVD is a relatively new technology as a continuous centrifugal concentrator that recovers particles based primarily on density but also on size. Tailing samples from two mines were subjected to characterization, batch gravity and pilot scale CVD testing. Table 1 shows the specifications of the analyzed samples. Ill Table 1. Specification of the Analyzed Samples Grade Mine Sample Au (ppm) S% Ni% Eskay Creek (Barrick) Low Grade Tails (LGT) l.l 1.0 N/A High Grade Tails (HGT) 1.9 1.2 N/A Birchtree (INCO Thompson) Rougher-Scavenger Tails (AS-4) <1 3.0 0.2 Cleaner-Scavenger Tails (SC-4) <1 4.2 0.5 The sample characterization of the both Eskay Creek and INCO Thompson samples indicated that there is potential to upgrade gold and nickel in the coarsest fractions. A preliminary assessment of gold and nickel recovery was obtained using a batch Knelson concentrator and the results were similar to those predicted from the characterization results. Based on the characterization and batch gravity tests, there appeared to be a greater opportunity to recover a recyclable product from the LGT and the SC-4, samples than the HGT and AS-4 samples. They were therefore selected for pilot scale tests using the CVD6 separator. The objective was to produce a concentrate with a low mass yield and high gold and nickel upgrade ratios. Products from these tests were subjected to size/assay analysis. The results for Eskay Creek sample show that the gold distributions are significantly higher than sulphur and arsenic distributions, which indicates that free gold or gold associated with poorly floated minerals is being recovered. The best result was obtained from Test 3 in which 28% of the gold was recovered in a concentrate grading 12.5 ppm Au representing 3.3% of the feed mass. This represents a gold upgrade ratio of 8.7. The results for INCO Thompson show that the gold distributions are significantly higher than nickel and sulphur distributions, which indicates that free gold is being recovered. The best result was obtained from Test 3 in which 12.9% of the nickel was recovered in a concentrate grading 0.85% Ni representing 6.7% of the feed mass. It is iv worth noting that the Mg grade is decreased dramatically in the concentrate products. The Mg distribution in concentrate was just 1.7%. This is a good indication that the centrifugal concentrator can also remove the magnesium bearing minerals such as talc. In the case of gold, remarkable results were produced and the metallurgical balances showed gold recoveries ranging from 12.6 to 67.3% and gold grades from 1.4 to 10.0 ppm. Size partition curves were obtained for all tests, which demonstrated that the CVD operates as a size classifier as well as a density separator (size enhanced density separation). For the Eskay sample (Tests 3 and 6) and the INCO sample (Test 7), the cut size was about 300 microns. In conclusion, the pilot scale testing indicated that the CVD was effective at recovering gold, gold bearing sulfides and nickel bearing sulfides from the coarse particles of the flotation tailings and also at de-sliming. The nickel and gold recovered were primarily in the coarse size fractions, which would likely contain middling particles (sulfides + silicates). The results showed that the CVD is capable of rejecting the Mg bearing minerals as well. These results support the application of continuous centrifugal concentrators into hybrid flotation-gravity circuits that could lead to improved metallurgical performance. Plant trials testing are recommended to confirm the results and potential benefits. V TABLE OF CONTENTS Summary ii Table of Contents v List of Figures vii List of Tables x Acknowledgements xiii CHAPTER 1 Introduction 1 1.1. Background 1 1.2. Methodology 2 CHAPTER 2 Literature Review 4 2.1. Introduction 4 2.2. Relationship between Mineral Recovery and Particle Size 4 2.3. Enhanced Gravity Separation Process Technologies 7 2.4. Continuous Centrifugal Gravity Concentrators 8 2.4.1. Types 8 2.4.2. Applications 14 2.5. Conclusion 22 CHAPTER 3 Experimental Program 23 3.1. Analyzed Samples 23 3.1.1 Eskay Creek 23 3.1.2. INCO Thompson 24 3.2. Sample Characterization 25 3.2.1. Sample Preparation 25 3.2.2. Size/Assay Analysis 26 3.2.3. Mineralogical characterization 26 3.2.4. Density Fractionation 26 3.3. Batch Tests 28 3.4. Pilot Scale Tests 29 3.4.1. Products Characterization 3 0 3.4.2. Concentrate Density Fractionation Tests 31 3.4.3. Flotation Test and Proposed Flowsheet 31 CHAPTER 4 Results and Discussion 32 4.1. Eskay Creek Samples 32 4.1.1. Introduction 32 vi 4.1.2. Results and Discussion 33 4.1.3. Conclusion and Recommendation 47 4.2. INCO Thompson sample 49 4.2.1. Introduction 49 4.2.2. Results and Discussion 50 4.2.3. Conclusion and Recommendation 70 CHAPTER 5 Conclusions and Recommendations 73 5.1. Conclusions 73 5.2. Recommendations 75 REFERENCES 76 APPENDICES 81 Appendix I - Eskay Creek 81 Appendix IA Sample Characterization 82 Appendix IB Batch Tests 86 Appendix IC Pilot Scale Test Conditions and Results 87 Appendix ID Mineralogical Analysis 101 Appendix IE Flotation Test 104 Appendix II - INCO Thompson 105 Appendix IIA Sample Characterization 106 Appendix IIB Batch Tests 117 Appendix IIC Pilot Scale Test Conditions and Results 118 Appendix IID Density Fractionation Test Results 132 Appendix HE Flotation Test 141 List of Figures Figure2.1 Dependence of flotation efficiency on particle size for several ores 6 Figure2.2 Typical grinding throughput, product size and flotation Recovery relationship for a base metal concentrator 7 Figure2.3 Continuous Centrifugal Gravity Concentrators 9 Figure 3.1 Eskay Creek Flotation Circuit Sample Point 23 Figure 3.2 Birchtree Flotation Circuit Sample Points 24 Figure 3.3 Sampling procedure of wet tailing samples 25 Figure 3.4 Batch Knelson test procedure 28 Figure 4.1 Au Grade Distributions, LGT & HGT 34 Figure 4.2 S Grade Distributions, LGT & HGT 34 Figure 4.3 Au Grade Distributions in Concentrate and Tailing of Test 3, LGT 38 Figure 4.4 S Grade Distributions in Concentrate and Tailing of Test 3, LGT 39 Figure 4.5 Mass Yield and Au Recovery versus Pinch Valve Closed Time, LGT 40 Figure 4.6 Au Grade/Recovery versus Mass Yield, LGT 41 Figure 4.7 Au Upgrade Ratio/Recovery versus Mass Yield, LGT 41 Figure 4.8 Size Separation Partition Curves, LGT 42 Figure 4.9 Au Recovery versus Size, LGT 43 Figure 4.10 S Recovery versus Size, LGT 44 Figure 4.11 Au Recovery versus S Recovery, LGT 44 Figure 4.12 Proposed Flowsheet, Eskay Creek 46 Figure 4.13 Ni Grade for each Size Fraction, SC-4 & AS-4 51 Vlll Figure 4.14 Mg Grade for each Size Fraction, SC-4 & AS-4 52 Figure 4.15 S Grade for each Size Fraction, SC-4 & AS-4 52 Figure 4.16 Ni Grade for each Size Fraction of Concentrate & Tailing of Test 3, SC-4 56 Figure 4.17 Mg Grade for each Size Fraction of Concentrate & Tailing of Test 3, SC-4 57 Figure 4.18 S Grade for each Size Fraction of Concentrate & Tailing of Test 3, SC-4 57 Figure 4.19 Au Grade for each Size Fraction of Concentrate & Tailing of Test 3, SC-4 58 Figure 4.20 Mass Pull, Ni Grade/Recovery versus Pinch Valve Closed Time, SC-4 59 Figure 4.21 Ni Upgrade and Mg Downgrade Ratios versus Mass Pull, SC-4 60 Figure 4.22 Ni Grade/Recovery versus Cone.
Recommended publications
  • Contents 2009
    INNEHÅLLSFÖRTECKNING/CONTENTS Page Forssberg, Eric, Luleå University of Technology Energy in mineral beneficiation 1 Acarkan N., Kangal O., Bulut G., Önal G. Istanbul Technical University The comparison of gravity separation and flotation of gold and silver bearing ore 3 Ellefmo, Steinar & Ludvigsen, Erik, Norwegian University of Science and Technology Geological Modelling in a Mineral Resources Management Perspective 15 Hansson, Johan, Sundkvist, Jan-Eric, Bolin, Nils Johan, Boliden Mineral AB A study of a two stage removal process 25 Hulthén, Erik & Evertsson, Magnus, Chalmers University of Technology Optimization of crushing stage using on-line speed control on a cone crusher 37 Hooey1, P.L., Spiller2, D.E, Arvidson3, B.R., Marsden4, P., Olsson5, E., 1MEFOS, 2Eric Spiller Consultants LLC, 3Bo Arvidson Consulting LLC, 4, 5Northland Resources Inc. Metallurgical development of Northland Resources' IOCG resources 47 Ikumapayi, Fatai K., Luleå University of Technology, Sundkvist, Jan-Eric & Bolin, Nils-Johan, Boliden Mineral AB Treatment of process water from molybdenum flotation 65 Johansson, Björn, Boliden Mineral AB Limitations in the flotation process 79 Kongas, Matti & Saloheimo, Kari, Outotec Minerals Oy New innovations in on-stream analysis for flotation circuit management and control 89 Kuyumcu, Halit Z. & Rosenkranz, Jan, TU Berlin Investigation of Fluff Separation from Granulated Waste Plastics to be Used in 99 Blast Furnace Operation Mickelsson1, K-O, Östling2 J, Adolfsson3, G., 1LKAB Malmberget, 2Optimation AB Luleå, 3LKAB Kiruna
    [Show full text]
  • National Instrument 43-101 Technical Report
    ASANKO GOLD MINE – PHASE 1 DEFINITIVE PROJECT PLAN National Instrument 43-101 Technical Report Prepared by DRA Projects (Pty) Limited on behalf of ASANKO GOLD INC. Original Effective Date: December 17, 2014 Amended and Restated Effective January 26, 2015 Qualified Person: G. Bezuidenhout National Diploma (Extractive Metallurgy), FSIAMM Qualified Person: D. Heher B.Sc Eng (Mechanical), PrEng Qualified Person: T. Obiri-Yeboah, B.Sc Eng (Mining) PrEng Qualified Person: J. Stanbury, B Sc Eng (Industrial), Pr Eng Qualified Person: C. Muller B.Sc (Geology), B.Sc Hons (Geology), Pr. Sci. Nat. Qualified Person: D.Morgan M.Sc Eng (Civil), CPEng Asanko Gold Inc Asanko Gold Mine Phase 1 Definitive Project Plan Reference: C8478-TRPT-28 Rev 5 Our Ref: C8478 Page 2 of 581 Date and Signature Page This report titled “Asanko Gold Mine Phase 1 Definitive Project Plan, Ashanti Region, Ghana, National Instrument 43-101 Technical Report” with an effective date of 26 January 2015 was prepared on behalf of Asanko Gold Inc. by Glenn Bezuidenhout, Douglas Heher, Thomas Obiri-Yeboah, Charles Muller, John Stanbury, David Morgan and signed: Date at Gauteng, South Africa on this 26 day of January 2015 (signed) “Glenn Bezuidenhout” G. Bezuidenhout, National Diploma (Extractive Metallurgy), FSIAMM Date at Gauteng, South Africa on this 26 day of January 2015 (signed) “Douglas Heher” D. Heher, B.Sc Eng (Mechanical), PrEng Date at Gauteng, South Africa on this 26 day of January 2015 (signed) “Thomas Obiri-Yeboah” T. Obiri-Yeboah, B.Sc Eng (Mining) PrEng Date at Gauteng, South Africa on this 26 day of January 2015 (signed) “Charles Muller” C.
    [Show full text]
  • Stillwater Mine, 45°23'N, 109°53'W East Boulder Mine, 45°30'N, 109°05'W
    STILLWATER MINING COMPANY TECHNICAL REPORT FOR THE MINING OPERATIONS AT STILLWATER MINING COMPANY STILLWATER MINE, 45°23'N, 109°53'W EAST BOULDER MINE, 45°30'N, 109°05'W (BEHRE DOLBEAR PROJECT 11-030) MARCH 2011 PREPARED BY: MR. DAVID M. ABBOTT, JR., CPG DR. RICHARD L. BULLOCK, P.E. MS. BETTY GIBBS MR. RICHARD S. KUNTER BEHRE DOLBEAR & COMPANY, LTD. 999 Eighteenth Street, Suite 1500 Denver, Colorado 80202 (303) 620-0020 A Member of the Behre Dolbear Group Inc. © 2011, Behre Dolbear Group Inc. All Rights Reserved. www.dolbear.com Technical Report for the Mining Operations at Stillwater Mining Company March 2011 TABLE OF CONTENTS 3.0 SUMMARY ..................................................................................................................................... 1 3.1 INTRODUCTION .............................................................................................................. 1 3.2 EXPLORATION ................................................................................................................ 1 3.3 GEOLOGY AND MINERALIZATION ............................................................................ 2 3.4 DRILLING, SAMPLING METHOD, AND ANALYSES ................................................. 3 3.5 RESOURCES AND RESERVES ....................................................................................... 3 3.6 DEVELOPMENT AND OPERATIONS ........................................................................... 5 3.6.1 Mining Operation ..................................................................................................
    [Show full text]
  • Artisanal and Small-Scale Gold Mining
    GUIDANCE DOCUMENT Developing a National Action Plan to Reduce, and Where Feasible, Eliminate Mercury Use in Artisanal and Small Scale Gold Mining Working Draft August 17, 2015 Foreword The Minamata Convention on Mercury, opened for signature in October 2013 in Japan, creates a blueprint for actions to protect human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds. Article 7 of the Minamata Convention addresses the largest anthropogenic source of mercury pollution, artisanal and small scale gold mining (ASGM). Under Article 7, countries where mercury is used in ASGM are required to take steps to reduce and, where feasible, eliminate the use of mercury. Because the ASGM sector is closely tied to complex economic development and poverty issues, the Convention allows flexible, country-specific solutions through the development of an ASGM National Action Plan (NAP). Although each country’s NAP process will be unique, Annex C of the Minamata Convention provides a list of elements that must be included in each NAP. This document represents an expansion of the UNEP’s Guidance Document: Developing a National Strategic Plan to Reduce Mercury Use in Artisanal and Small Scale Gold Mining (UNEP 2011), and is intended to reflect Convention obligation and other advances in understanding of the ASGM sector. This document provides guidance to countries in formulating NAPs that are compliant with the requirements of the Minamata Convention, and provides technical, legal and policy information on issues related to ASGM, which can be useful when preparing and implementing the NAP. Although the use of this guidance is not a requirement under the Minamata Convention, this guidance is intended to assist countries with the preparation of their NAPs.
    [Show full text]
  • Gravity Concentration in Artisanal Gold Mining
    minerals Review Gravity Concentration in Artisanal Gold Mining Marcello M. Veiga * and Aaron J. Gunson Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] * Correspondence: [email protected] Received: 21 September 2020; Accepted: 13 November 2020; Published: 18 November 2020 Abstract: Worldwide there are over 43 million artisanal miners in virtually all developing countries extracting at least 30 different minerals. Gold, due to its increasing value, is the main mineral extracted by at least half of these miners. The large majority use amalgamation either as the final process to extract gold from gravity concentrates or from the whole ore. This latter method has been causing large losses of mercury to the environment and the most relevant world’s mercury pollution. For years, international agencies and researchers have been promoting gravity concentration methods as a way to eventually avoid the use of mercury or to reduce the mass of material to be amalgamated. This article reviews typical gravity concentration methods used by artisanal miners in developing countries, based on numerous field trips of the authors to more than 35 countries where artisanal gold mining is common. Keywords: artisanal mining; gold; gravity concentration 1. Introduction Worldwide, there are more than 43 million micro, small, medium, and large artisanal miners extracting at least 30 different minerals in rural regions of developing countries (IGF, 2017) [1]. Approximately 20 million people in more than 70 countries are directly involved in artisanal gold mining (AGM), with an estimated gold production between 380 and 450 tonnes per annum (tpa) (Seccatore et al., 2014 [2], Thomas et al., 2019 [3], Stocklin-Weinberg et al., 2019 [4], UNEP, 2020 [5]).
    [Show full text]
  • Correspondence. the Concentration and Sizing Of
    90 DISCCSSIO-U ON SIZING OF CRUSHED NIBEEhLS. [Minutes Of Mr. Commans. Au!hor, when speaking of the digiculty of screening particles less than l& to 1 nlillimetre in diameter, was referring to screening in a wet condition, as commonly was the case with ore, and did not intend to referto thescreening or sieving of drymaterial, as Mr. J. H. Saunderson would seem to suppose. On the other hand, undoubtedly, even withdry material, a difficulty wasoften experienced with fine sieves of the meshes getting choked ; and if that was obviated in themachine referred to byMr. Saunderson, it was certainlya step in the right direction. With Mr. Garland's remarks about the jigger bottom having a forward inclination, he quite agreed. That plan should never be adopted, and whatever fall was required toassist the movement of the ore shouldbe obtained by slightly lowering each successive sieve, or the depth of the bedding, the sieves themselves remaining horizontal. Correspondence. JIr. Bartsch. Mr. W. J. BARTSCH,of Siegen,supplemented theAuthor's description by some details of results obtained with the Bartsch concentrator. As wouldbe seen from Figs. 45, that appliance consisted of a convex circular table carried at the centre on a bearing b, and at the circumference by rollers c. Radial blows were imparted by a cam f, and the slime and wash-water dis- tributors revolved over thetable, the main water-pipe being bent in a parabolic curve. The usual diameter of the table was 134 feet. For every 30 revolutions of the shaft, 120 bumps were imparted to the table, in which time(one minute) the distributors made half a revolution of the table.
    [Show full text]
  • On the Association of Palladium-Bearing Gold, Hematite and Gypsum in an Ouro Preto Nugget
    473 The Canadian Mineralogist Vol. 41, pp. 473-478 (2003) ON THE ASSOCIATION OF PALLADIUM-BEARING GOLD, HEMATITE AND GYPSUM IN AN OURO PRETO NUGGET ALEXANDRE RAPHAEL CABRAL§ AND BERND LEHMANN Institut für Mineralogie und Mineralische Rohstoffe, Technische Universität Clausthal, Adolph-Roemer-Str. 2A, D-38678 Clausthal-Zellerfeld, Germany ROGERIO KWITKO-RIBEIRO§ Centro de Desenvolvimento Mineral, Companhia Vale do Rio Doce, Rodovia BR 262/km 296, Caixa Postal 09, 33030-970 Santa Luzia – MG, Brazil RICHARD D. JONES 1636 East Skyline Drive, Tucson, Arizona 85178, U.S.A. ORLANDO G. ROCHA FILHO Mina do Gongo Soco, Companhia Vale do Rio Doce, Fazenda Gongo Soco, Caixa Postal 22, 35970-000 Barão de Cocais – MG, Brazil ABSTRACT An ouro preto (black gold) nugget from Gongo Soco, Minas Gerais, Brazil, has a mineral assemblage of hematite and gypsum hosted by Pd-bearing gold. The hematite inclusion is microfractured and stretched. Scattered on the surface of the gold is a dark- colored material that consists partially of Pd–O with relics of palladium arsenide-antimonides, compositionally close to isomertieite and mertieite-II. The Pd–O coating has considerable amounts of Cu, Fe and Hg, and a variable metal:oxygen ratio, from O-deficient to oxide-like compounds. The existence of a hydrated Pd–O compound is suggested, and its dehydration or deoxygenation at low temperatures may account for the O-deficient Pd-rich species, interpreted as a transient phase toward native palladium. Although gypsum is a common mineral in the oxidized (supergene) zones of gold deposits, the hematite–gypsum- bearing palladian gold nugget was tectonically deformed under brittle conditions and appears to be of low-temperature hydrother- mal origin.
    [Show full text]
  • Proceedings of the Ninth Annual Alaska Conference on Placer Mining
    PROCEEDINGS OF THE NINTH ANNUAL ALASKA CONFERENCE ON PLACER MINING 'PLACER MINING - JOBS FOR ALASKA" MARCH 18-25. 1987 Compiled by Mary Albanese and Bruce Campbell Prom cover: Tlra Colomdo Creek mammoth skull being wmpped In 0 plaallc jacket in prepamrlon lor rhbment lo the LiAF Jlureurn. Photo rourtrJv Uniuerrity 01 Alarka Mureum. SPONSORED BY Placer Miners of Alaska Alaska Miners Association Alaska Women in Mining - Mining Advocacy Council ORGANIZING COMMITTEE Gail Ackles,,...... ................... Circle Mining District Mary Albanese.. .......................Alaska DivlsFon of Geological and Geophysical Surveys Lela Bouton ...........................Koyukuk Mining District Roger Burggraf ........................Fairbanks Mining District Jeff Burton ...........................Tanana Valley Community College Bruce Campbell ........................Special Technical Assistant Karen Clautice ........................ Alaska Division of Geological and Geophysical Surveys Judy Geraghty livengood- good-Toovaa Mining District Kathy Gaff........... .................Alaeka Miners Association Charles Green .........................Alaska Division of Mnerals and Forest Products Brent Aamil ...........................University of Alaska Jim Madonna ........................... University of Alaska Rose Rybachek .........................Alaska Miners Association Rosalyn Stowell ....................... Alaska Women in Mining Mary-Lou Teal., ....................... Alaska Women in Mining Dan Walsh...... .......................University of Alaska,
    [Show full text]
  • The Geological Occurrence, Mineralogy, and Processing by Flotation of Platinum Group Minerals (Pgms) in South Africa and Russia
    minerals Review The Geological Occurrence, Mineralogy, and Processing by Flotation of Platinum Group Minerals (PGMs) in South Africa and Russia Cyril O’Connor 1,* and Tatiana Alexandrova 2 1 Department of Chemical Engineering, Centre for Minerals Research, University of Cape Town, Cape Town 7701, South Africa 2 Department of Minerals Processing, St Petersburg Mining University, St Petersburg 199106, Russia; [email protected] * Correspondence: [email protected] Abstract: Russia and South Africa are the world’s leading producers of platinum group elements (PGEs). This places them in a unique position regarding the supply of these two key industrial commodities. The purpose of this paper is to provide a comparative high-level overview of aspects of the geological occurrence, mineralogy, and processing by flotation of the platinum group minerals (PGMs) found in each country. A summary of some of the major challenges faced in each country in terms of the concentration of the ores by flotation is presented alongside the opportunities that exist to increase the production of the respective metals. These include the more efficient recovery of minerals such as arsenides and tellurides, the management of siliceous gangue and chromite in the processing of these ores, and, especially in Russia, the development of novel processing routes to recover PGEs from relatively low grade ores occurring in dunites, black shale ores and in vanadium-iron-titanium-sulphide oxide formations. Keywords: Russia; South Africa; PGMs; geology; mineralogy; flotation Citation: O’Connor, C.; Alexandrova, T. The Geological Occurrence, Mineralogy, and Processing by Flotation of Platinum Group Minerals (PGMs) in South 1. Introduction Africa and Russia.
    [Show full text]
  • Non-Renewable Resources Curriculum
    DOCUMENT RESUME ED 322 354 CE 055 476 TITLE Non-Renewable Resomrces Curriculum. INSTITUTION Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education. PUB DATE 88 NOTE 80p. PUB TYPE Guides - Classroom Use - Guides (For Teachers) (052) EDRS PRICE MF01/PC04 Plus Postage. DESCRIPTORS Citizenship; Competency Based Education; Curriculum Development; Educational Objectives; Employment Qualifications; *Entry Workers; *Fuels; Leadership; *Mining; *Natural Resources; *Occupational Information; Postsecondary Education; Secondary Education; *State Curriculum Guides; Vocational Education IDENTIFIERS *Alaska ABSTRACT This document is designed to help teachers and administrators in Alaska develop secondary and postsecondary training in nonrenewable natural resources. Its competencies reflect those needed for entry-level employment in the following industriesas identified by international businesses surveyed in Alaska:gas and petroleum, coal, placer, and underground mining. Section 1introduces the concept of competency-based curriculum and the role of vocational educators in curriculum planning, in_lementation, and evaluation. Section 2 describes the scope and sequence of nonrenewable natural resource competencies. Section 3 presents basic and advanced competencies and accompanying tasks in leadership and ritizenship, introduction to nonrenewable natural resources, gas and petroleum, and mining. Section 4 contains four course descriptions that provide a framework for the design and implementation of a balancedprogram in nonrenewable
    [Show full text]
  • Exploitation Strategic Plan and Business Model - Final
    Exploitation strategic plan and business model - final Deliverable 8.4 © Copyright 2019 The INTMET Consortium Project Funded by the European Commission under the Horizon 2020 Framework Programme. Grant Agreement No 689515 EXPLOITATION PLAN-FINAL D8.4 PROGRAMME H2020 – Environment and Resources GRANT AGREEMENT NUMBER 689515 PROJECT ACRONYM INTMET DOCUMENT Deliverable 8.4 TYPE (DISTRIBUTION LEVEL) ☒ Public ☐ Confidential ☐ Restricted DUE DELIVERY DATE M36 DATE OF DELIVERY January 31 2019 STATUS AND VERSION NUMBER OF PAGES WP / TASK RELATED WP 8, task 8.4, 8.5 WP / TASK RESPONSIBLE MinPol AUTHOR (S) Prof. Dr. Horst Hejny, Dr. Angelika Brechelmacher, Prof. Dr. Günter Tiess PARTNER(S) CONTRIBUTING FILE NAME Exploitation strategic plan and business model - final DOCUMENT HISTORY VERS ISSUE DATE CONTENT AND CHANGES 1.0 30/01/2019 First Revision 1.1 31/01/2019 Small corrections ClC final 31/01/2019 for submission DOCUMENT APPROVERS PARTNER APPROVER CLC Francisco Sánchez 2 | 34 EXPLOITATION PLAN-FINAL D8.4 TABLE OF CONTENTS 1. PURPOSE ............................................................................................................................................................................................... 6 2. BUSINESS MODEL .................................................................................................................................................................................. 7 2.1 BASIC IDEA ...............................................................................................................................................................................................
    [Show full text]
  • NI 43-101 Report Template
    Report to: Technical Report on the Magino Property, Wawa, Ontario Document No. 1295890100-REP-R0001-02 1295890100-REP-R0001-02 Report to: TECHNICAL REPORT ON THE MAGINO PROPERTY,WAWA,ONTARIO EFFECTIVE DATE:OCTOBER 4, 2012 Prepared by Patrick Huxtable, MAIG (RPGeo) Todd McCracken, P.Geo. Todd Kanhai, P.Eng. PT/JW/jc 1295890100-REP-R0001-02 Report to: TECHNICAL REPORT ON THE MAGINO PROPERTY,WAWA,ONTARIO EFFECTIVE DATE:OCTOBER 4, 2012 “Original document signed by Prepared by Patrick Huxtable, MAIG (RPGeo)” Date October 4, 2012 Patrick Huxtable, MAIG (RPGeo) “Original document signed by Prepared by Todd McCracken, P.Geo.” Date October 4, 2012 Todd McCracken, P.Geo. “Original document signed by Prepared by Todd Kanhai, P.Eng.” Date October 4, 2012 Todd Kanhai, P.Eng. “Original document signed by Reviewed by Jeff Wilson, Ph.D., P.Geo.” Date October 4, 2012 Jeff Wilson, Ph.D., P.Geo. “Original document signed by Authorized by Jeff Wilson, Ph.D., P.Geo.” Date October 4, 2012 Jeff Wilson, Ph.D., P.Geo. PT/JW/jc Suite 900, 330 Bay Street, Toronto, Ontario M5H 2S8 Phone: 416-368-9080 Fax: 416-368-1963 1295890100-REP-R0001-02 REVISION HISTORY REV. PREPARED BY REVIEWED BY APPROVED BY NO ISSUE DATE AND DATE AND DATE AND DATE DESCRIPTION OF REVISION 00 2012/09/20 Patrick Huxtable Jeff Wilson Jeff Wilson Draft to Client for review. Todd McCracken 01 2012/09/27 Patrick Huxtable Jeff Wilson Jeff Wilson Draft to Client for review. Todd McCracken 02 2012/10/04 Patrick Huxtable Jeff Wilson Jeff Wilson Final to Client.
    [Show full text]