Praseodymium Unpaired Adrian Dingle Relates How One ‘Element’ That Fell of the Periodic Table Was Eventually Replaced by Two

Total Page:16

File Type:pdf, Size:1020Kb

Praseodymium Unpaired Adrian Dingle Relates How One ‘Element’ That Fell of the Periodic Table Was Eventually Replaced by Two in your element Praseodymium unpaired Adrian Dingle relates how one ‘element’ that fell of the periodic table was eventually replaced by two. f there’s a single thread that runs through elements neodymium (the new twin) and the history of the lanthanoids, it’s the praseodymium (the green twin) would Imanner in which they persistently resisted ultimately be isolated. easy distinction from one another. The Despite the death of didymium as an similarity in the chemistry of the 4f elements element, the name lives on in the specialized confounded nineteenth-century chemists glass used in the lenses of goggles worn by for decades, and it took a new analytical welders and glassblowers. The combination technique to finally tease praseodymium of praseodymium and neodymium allows from its hiding place. the filtering out of both yellow light and The story of element 59 starts with Carl infrared wavelengths, thus protecting the Gustav Mosander in 1841, and his discovery wearer’s eyes from potentially harmful of what he thought was a new element radiation without affecting their vision. in cerite. He named it didymium1, Greek Credit: imageBROKER / Alamy Stock Photo As is the same for all of the lanthanoids, for ‘twin element’, because it so closely the chemistry of praseodymium is resembled lanthanum. As it turned out, his dominated by the + 3 oxidation state — but choice of name could hardly have been a spectral fingerprints. Taken together its electronic configuration of [Xe]4f36s2 better one, although for an entirely different with the fractional precipitation and makes it a good candidate for creating reason. crystallization method and the higher oxidation states, including that of In addition to didymium (which turned development of the periodic system, they + 5. In 2016, a Pr(v) centre was reported5 + out to be fictional), by 1843, the actual led to a new surge of rare-earth discovery in PrO2 . One year later, NPr(v)O was elements cerium, lanthanum, erbium and between 1878 and 1886, yielding described, together with NPr(iv)O− — both terbium of the modern 4f series had all holmium, ytterbium, samarium, thulium, featuring a Pr≡ N triple bond and a Pr= O been discovered. There then came a pause gadolinium, praseodymium, neodymium double bond6. in the discovery of the remainder of the and dysprosium. Another oxide of praseodymium has lanthanoids. The traditional analytical It is Carl Auer von Welsbach who is found use as a spacer layer in a potentially method of the time — the extraordinarily credited with the separation of didymium super-conducting material7. The compound tedious fractional precipitation and into neodymium and praseodymium. Pr4Ni3O8, whose structure can be described crystallization — had reached the end of its Long before his successful fractional as three layers of a nickel oxide separated useful life as a technique able to, on its own, crystallization of the double ammonium by two layers of praseodymium oxide, distinguish between elements so similar nitrates3, though, the potential for didymium represents a chance for high-temperature to each other: they looked the same and to be something other than the singular superconductors to become a reality — and behaved in similar ways. Further discoveries substance Mosander proposed was one where praseodymium is literally at the would only come with a new impetus, which recognized by several chemists. Jean-Charles centre of things. ❐ came from both practice and theory. Galissard de Marignac, Paul-Émile Lecoq de The advent, and subsequent perfection, Boisbaudran, and Adrian Dingle of Bunsen and Kirchhoff’s spectroscopy2 Per Teodor Cleve were among the prominent Author of ‘Te Elements: An Encyclopedic throughout the early 1860s coincided with names of the time to believe didymium Tour of the Periodic Table’, teaches at Westminster, an increased understanding of patterns was not pure. Two others went further and Atlanta, GA, USA. in the properties of elements, which embarked on spectroscopic studies: Marc e-mail: [email protected] culminated with Mendeleev’s first periodic Delafontaine in 1878, and in 1882 Bohuslav Twitter: @adchempages table of 1869. At the time didymium was Brauner, who like Auer von Welsbach was a sufficiently well established as an ‘element’ student of Bunsen’s in Heidelberg. Published online: 19 April 2018 to appear on Mendeleev’s table with the But despite apparently having written https://doi.org/10.1038/s41557-018-0050-7 symbol Di — it is the only one from the a note to the Austrian newspaper Wiener original table that does not appear on the Anzeiger4, it seems that Brauner never References 1. Mosander, C. G. Philos. Mag. 23, 241–254 (1843). contemporary version. formally published his work. In 1885, 2. Kirchhof, G. & Bunsen, R. Ann. Phys. Chem. 110, 161–189 (1860). The advances in spectroscopy enabled Auer von Welsbach announced to the 3. v. Welsbach, C. A. Mon. Chem. 6, 477 (1885). chemists to finally distinguish lanthanides Vienna Academy of Sciences his successful 4. Weeks, M. E. Discovery of the Elements 7th edn, 689 (Journal of from each other thanks to their unique separation of didymium into two ‘earths’ Chemical Education, 1968). 5. Zhang, Q. et al. Angew. Chem. Int. Ed. 55, 6896–6900 (2016). (as oxides were then known): neodymia 6. Hu, S.-X. et al. Chem. Sci. 8, 4035–4043 (2017). and praseodymia, from which the 7. Zhang, J. et al. Nat. Phys. 13, 864–869 (2017). Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta WReOs 576 NATURE CHEMISTRY | VOL 10 | MAY 2018 | 576 | www.nature.com/naturechemistry © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved..
Recommended publications
  • Gadolinium Information
    Gadolinium Information Gadolinium contrast agents are frequently utilized during MRI examinations in order to improve the exam and interpretation. They are not always needed. Your radiologist will determine whether or not gadolinium contrast is needed for your MRI examination. Gadolinium contrast agents are quickly eliminated from the body in healthy individuals. With normal functioning kidneys, the retention of gadolinium in soft tissues of the body is very small and may not even be detectable. However, some patients who receive multiple doses of contrast, including pregnant women and children, might be at increased risk of gadolinium remaining in the body for longer periods of time. To date, there are no known harmful effects of gadolinium remaining in the body for long periods of time in patients who have normal kidneys. In patients who have poorly functioning kidneys, a condition called nephrogenic systemic sclerosis (NSF) can occur. This causes debilitating thickening of the skin and other tissues. This only occurs in patients with poorly functioning kidneys. Your kidney function will be checked prior to receiving gadolinium contrast agent if needed. Other side-effects can occur even in patients with healthy kidneys. Some patients report pain, tiredness, and muscle aches after receiving gadolinium contrast but these conditions have not been directly linked to the administration of the gadolinium. Allergic reactions can also occur, as with any drug. If you have questions regarding your MRI examination today, please ask your MRI Technologist. MEDICATION GUIDE MULTIHANCE® (məl-tē-han(t)s) (gadobenate dimeglumine) Injection for intravenous use What is MULTIHANCE? • MULTIHANCE is a prescription medicine called a gadolinium-based contrast agent (GBCA).
    [Show full text]
  • The Important Role of Dysprosium in Modern Permanent Magnets
    The Important Role of Dysprosium in Modern Permanent Magnets Introduction Dysprosium is one of a group of elements called the Rare Earths. Rare earth elements consist of the Lanthanide series of 15 elements plus yttrium and scandium. Yttrium and scandium are included because of similar chemical behavior. The rare earths are divided into light and heavy based on atomic weight and the unique chemical and magnetic properties of each of these categories. Dysprosium (Figure 1) is considered a heavy rare earth element (HREE). One of the more important uses for dysprosium is in neodymium‐iron‐ boron (Neo) permanent magnets to improve the magnets’ resistance to demagnetization, and by extension, its high temperature performance. Neo magnets have become essential for a wide range of consumer, transportation, power generation, defense, aerospace, medical, industrial and other products. Along with terbium (Tb), Dysprosium (Dy) Figure 1: Dysprosium Metal(1) is also used in magnetostrictive devices, but by far the greater usage is in permanent magnets. The demand for Dy has been outstripping its supply. An effect of this continuing shortage is likely to be a slowing of the commercial rollout or a redesigning of a number of Clean Energy applications, including electric traction drives for vehicles and permanent magnet generators for wind turbines. The shortage and associated high prices are also upsetting the market for commercial and industrial motors and products made using them. Background Among the many figures of merit for permanent magnets two are of great importance regarding use of Dy. One key characteristic of a permanent magnet is its resistance to demagnetization, which is quantified by the value of Intrinsic Coercivity (HcJ or Hci).
    [Show full text]
  • Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
    Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding.
    [Show full text]
  • Historical Development of the Periodic Classification of the Chemical Elements
    THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Atomic Weights of the Elements 1995
    Atomic Weights of the Elements 1995 Cite as: Journal of Physical and Chemical Reference Data 26, 1239 (1997); https:// doi.org/10.1063/1.556001 Submitted: 02 May 1997 . Published Online: 15 October 2009 T. B. Coplen ARTICLES YOU MAY BE INTERESTED IN Atomic Weights of the Elements 1999 Journal of Physical and Chemical Reference Data 30, 701 (2001); https:// doi.org/10.1063/1.1395055 Journal of Physical and Chemical Reference Data 26, 1239 (1997); https://doi.org/10.1063/1.556001 26, 1239 © 1997 American Institute of Physics and American Chemical Society. Atomic Weights of the Elements 1995a) T. B. Coplen U. S. Geological Survey, Reston, Virginia 20192 Received May 2, 1997; revised manuscript received June 13, 1997 The biennial review of atomic weight, Ar~E!, determinations and other cognate data has resulted in changes for the standard atomic weight of 21 elements. The five most significant changes are: boron from 10.81160.005 to 10.81160.007; carbon from 12.01160.001 to 12.010760.0008; arsenic from 74.9215960.00002 to 74.9216060.00002; cerium from 140.11560.004 to 140.11660.001; and platinum 195.0860.03 to 195.07860.002. An annotation for potassium has been changed in the Table of Standard Atomic Weights. To eliminate possible confusion in the reporting of relative lithium isotope-ratio data, the Commission recommends that such data be ex- pressed using 7Li/6Li ratios and that reporting using 6Li/7Li ratios be discontinued. Be- cause relative isotope-ratio data for sulfur are commonly being expressed on noncorre- sponding scales, the Commission recommends that such isotopic data be expressed relative to VCDT ~Vienna Can˜on Diablo Troilite! on a scale such that 34S/32S of IAEA- S-1 silver sulfide is 0.9997 times that of VCDT.
    [Show full text]
  • The Rare Earths II
    Redis co very of the Elements The Ra re Earth s–The Con fusing Years I A gallery of rare earth scientists and a timeline of their research I I James L. Marshall, Beta Eta 1971 , and Virginia R. Marshall, Beta Eta 2003 , Department of Chemistry, University of North Texas, Denton, TX 76203-5070, [email protected] The rare earths after Mosander. In the pre - vi ou s HEXAGON “Rediscovery” article, 1p we were introduced to the 17 rare earths, found in the f-block and the Group III chemical family of Figure 1. Important scientists dealing with rare earths through the nineteenth century. Johan Gadolin the Periodic Table. Because of a common (1760 –1852) 1g —discovered yttrium (1794). Jöns Jacob Berzelius (1779 –1848) and Martin Heinrich valence electron configuration, the rare earths Klaproth (1743 –1817) 1d —discovered cerium (1803). Carl Gustaf Mosander (1787 –1858) 1p —discovered have similar chemical properties, and their lanthanum (1839), didymium (1840), terbium, and erbium (1843). Jean-Charles deGalissard Marignac chemical separation from one another can be (1817 –1894) 1o —discovered ytterbium (1878) and gadolinium (1880). Per Teodor Cleve (1840 –1905) 1n — difficult. From preparations of the first two rare discovered holmium and thulium (1879). Lars Fredrik Nilson (1840 –1899) 1n —discovered scandium earth element s—yttrium and ceriu m—the (1879). Paul-Émile Lecoq de Boisbaudran (1838 –1912) —discovered samarium (1879) and dysprosium Swedish chemist Carl Gustaf Mosander (Figure (1886). 1b Carl Auer von Welsbach (1858 –1929) 1c —discovered praseodymium and neodymium (1885); 1, 2) was able to separate four additional ele - co-discovered lutetium (1907).
    [Show full text]
  • Gadolinium Speciation
    Gadolinium Speciation Peter Caravan Martinos Center for Biomedical Imaging Institute for Innovation in Imaging Massachusetts General Hospital and Harvard Medical School Conflicts of Interest Stock ownership (>5%): Reveal Pharmaceuticals; Collagen Medical; Factor 1A LLC. Research grants: Pfizer; Pliant Pharmaceuticals; Biogen; Agilent; Pharmakea; Siemens. Consulting: Guerbet; Bayer; Collagen Medical; UCB Biopharma; Pfizer. What do we mean by speciation? What is the chemical form of the gadolinium in tissue? Chelated Gd Dissociated Gd The GBCA remains intact Dissociation of the GBCA Gd3+ ion Is Gd bound to a low molecular weight ligand? Is Gd part of some inorganic material like hydroxyapatite? Is Gd bound to a macromolecule? If so, which one? Where is the Gd distributed within tissue? Extra vs intracellular? In which cellular compartments? Why do we care about speciation? • The chemical form of Gd may inform its potential toxicity • Mineralized, insoluble Gd may be less toxic than soluble protein bound Gd (hypothesis) • The chemical form may also inform whether the Gd will be ultimately eliminated. Intact chelate may be expected to eventually clear the body (hypothesis). • The chemical form and location may guide chelation therapy strategies. Hierarchy of relevance of the data Human in vivo Human ex vivo Animal in vivo Animal ex vivo Solutions To model ex vivo Water solutions Tweedle MF. Gadolinium deposition: Is it chelated or dissociated gadolinium? How can we tell? Magn Reson Imaging. 2016;34(10):1377–82. How do GBCAs differ • Thermodynamics:
    [Show full text]
  • High-Temperature Heat Content of Selected Rare Earth Metals by Levitation Calorimetry Lawrence Albert Stretz Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1973 High-temperature heat content of selected rare earth metals by levitation calorimetry Lawrence Albert Stretz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Stretz, Lawrence Albert, "High-temperature heat content of selected rare earth metals by levitation calorimetry " (1973). Retrospective Theses and Dissertations. 4976. https://lib.dr.iastate.edu/rtd/4976 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Rounding up Lutetium
    Rounding up lutetium Downloaded from: https://research.chalmers.se, 2019-05-11 19:07 UTC Citation for the original published paper (version of record): Öhrström, L. (2018) Rounding up lutetium Nature Chemistry, 10(3): 372- http://dx.doi.org/10.1038/nchem.2938 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) in your element Rounding up lutetium Lars Öhrström suspects that as time goes by, we may see more of lutetium — the last of the lanthanoids. e’ll always have Paris” Rick says motexafn (based on the ‘texaphyrins’), a “ to Ilsa in their fnal goodbye on sub-class of porphyrin-like macrocycles Wthe foggy airstrip of Casablanca with fve instead of four nitrogen atoms in in the eponymous flm. However, the an approximately planar ring. Motexafn question among chemists about the element lutetium, which features Lu3+ and two lutetium, named afer Lutetia, as the French acetate counter-ions coordinated on either capital was known in Roman times, is not so side of the macrocycle, is potentially a good much about having it (it is more abundant photosensitizer in dynamic phototherapy than silver in the Earth’s crust), but rather and has been going through phase I trials where to place it on the map. against prostate cancer2. With its valence electron confguration Uses of the naturally occurring element [Xe]4f 146s25d1, element 71 seems to belong are otherwise scarce, but its isotope Lu-177 is to group 3, but we ofen see it placed at successfully used in experimental and clinical BRITTA LANGEN, LANGEN, BRITTA SWEDEN UNIVERSITY OF GOTHENBURG, the very end of the lanthanoid series.
    [Show full text]
  • Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010
    Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010 By Donald I. Bleiwas and Joseph Gambogi Open-File Report 2013–1072 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order other USGS information products, visit http://store.usgs.gov Suggested citation: Bleiwas, D.I., and Gambogi, Joseph, 2013, Preliminary estimates of the quantities of rare-earth elements contained in selected products and in imports of semimanufactured products to the United States, 2010: U.S. Geological Survey Open–File Report 2013–1072, 14 p., http://pubs.usgs.gov/of/2013/1072/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Cover. Left: Aerial photograph of Molycorp, Inc.’s Mountain Pass rare-earth oxide mining and processing facilities in Mountain Pass, California.
    [Show full text]
  • ACR Manual on Contrast Media
    ACR Manual On Contrast Media 2021 ACR Committee on Drugs and Contrast Media Preface 2 ACR Manual on Contrast Media 2021 ACR Committee on Drugs and Contrast Media © Copyright 2021 American College of Radiology ISBN: 978-1-55903-012-0 TABLE OF CONTENTS Topic Page 1. Preface 1 2. Version History 2 3. Introduction 4 4. Patient Selection and Preparation Strategies Before Contrast 5 Medium Administration 5. Fasting Prior to Intravascular Contrast Media Administration 14 6. Safe Injection of Contrast Media 15 7. Extravasation of Contrast Media 18 8. Allergic-Like And Physiologic Reactions to Intravascular 22 Iodinated Contrast Media 9. Contrast Media Warming 29 10. Contrast-Associated Acute Kidney Injury and Contrast 33 Induced Acute Kidney Injury in Adults 11. Metformin 45 12. Contrast Media in Children 48 13. Gastrointestinal (GI) Contrast Media in Adults: Indications and 57 Guidelines 14. ACR–ASNR Position Statement On the Use of Gadolinium 78 Contrast Agents 15. Adverse Reactions To Gadolinium-Based Contrast Media 79 16. Nephrogenic Systemic Fibrosis (NSF) 83 17. Ultrasound Contrast Media 92 18. Treatment of Contrast Reactions 95 19. Administration of Contrast Media to Pregnant or Potentially 97 Pregnant Patients 20. Administration of Contrast Media to Women Who are Breast- 101 Feeding Table 1 – Categories Of Acute Reactions 103 Table 2 – Treatment Of Acute Reactions To Contrast Media In 105 Children Table 3 – Management Of Acute Reactions To Contrast Media In 114 Adults Table 4 – Equipment For Contrast Reaction Kits In Radiology 122 Appendix A – Contrast Media Specifications 124 PREFACE This edition of the ACR Manual on Contrast Media replaces all earlier editions.
    [Show full text]