Interactions of Lanthanides and Liquid Alkali Metals for “Liquid-Like” Lanthanide Transport in U-Zr Fuel

Total Page:16

File Type:pdf, Size:1020Kb

Interactions of Lanthanides and Liquid Alkali Metals for “Liquid-Like” Lanthanide Transport in U-Zr Fuel Interactions of Lanthanides and Liquid Alkali Metals for “Liquid-Like” Lanthanide Transport in U-Zr Fuel THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jeremy Payton Isler Graduate Program in Nuclear Engineering The Ohio State University 2017 Master's Examination Committee: Dr. Jinsuo Zhang, Advisor Dr. Marat Khafizov, Co-Advisor Copyrighted by Jeremy Payton Isler 2017 Abstract One of the major limitations in achieving increased burnup in metallic U-Zr nuclear fuel is Fuel-Cladding Chemical Interaction (FCCI). The migration of the fission product lanthanides from within the fuel to the peripheral is one of the major contributors to FCCI. A “liquid-like” transport mechanism proposes the lanthanide transport is aided by liquid cesium and liquid sodium in the pores of the fuel and at the fuel peripheral. The purpose of this thesis was to provide additional experimental evidence towards this proposed mechanism. This thesis investigated the interaction between the lanthanides and cesium and sodium, with a focus on the solubility of the lanthanides in these liquid alkali metals. First, a prediction of the solubility was calculated using the Miedema model. This prediction was then compared to the inversion crucible solubility experiment performed in this thesis. The solubility experiment studied the temperature and liquid-composition dependence of the lanthanides in liquid sodium, cesium and sodium-cesium mixtures. In addition, the solubility in mixtures shows the various alkali metals concentration effect on the solubility. With the results of differential scanning calorimetry (DSC) experiments, updated phase diagrams for sodium-neodymium and cesium-neodymium were obtained from the experimental data in this thesis. The temperature dependence of neodymium in liquid cesium and the solubility differences in liquid sodium and liquid cesium provide key experimental data towards the theory of ‘liquid-like’ transfer. The greater understanding of the lanthanide transport in the U-Zr ii fuel allows for the fuel to be more efficiently engineered to mitigate FCCI and thus achieve to higher burnups. iii Dedication This document is dedicated to my friends and my family. iv Acknowledgments I would like to thank my advisor, Dr. Jinsuo Zhang, for all his guidance throughout my undergraduate and graduate studies. Not only am I grateful for his guidance but also the myriad of research opportunities he has provided me. I would also like to thank the entire faculty of the NE program. My entire time in the program was a positive one, and I am extremely thankful for all the time and energy they put into my education. I would also like to thank my fellow NE graduate students for all the great memories. I would like to thank the U.S. Department of Energy (DOE) for financially supporting this work. Lastly, but certainly not least, I would like to thank my family for all their support. Their constant support and encouragement of my education has helped to make this milestone in my life achievable. v Vita July 14, 1992 ................................................. Born – Windham, Ohio 2015 ............................................................... B.S. Materials Science and Engineering, The Ohio State University 2015 to present ............................................. Graduate Research Associate, The Ohio State University Publications Isler, J.; Zhang, J. “Examination of Solubility Models for the Determination of Transition Metals within Liquid Alkali Metals.” Metals 2016, 6, 144. Fields of Study Major Field: Nuclear Engineering vi Table of Contents Abstract ............................................................................................................................... ii Dedication .......................................................................................................................... iv Acknowledgments ............................................................................................................... v Vita ..................................................................................................................................... vi Table of Contents .............................................................................................................. vii List of Tables ...................................................................................................................... x List of Figures .................................................................................................................... xi Chapter 1: Introduction ....................................................................................................... 1 1.1 Problem Statement ............................................................................................... 1 1.2 Background and Motivation ...................................................................................... 2 1.2.1 Metallic U-Zr Fuel Development .................................................................. 3 1.2.2 U-Zr Microstructural Transformations ......................................................... 4 1.2.3 Fuel-Cladding Chemical Interaction (FCCI) ................................................ 7 1.2.4 Lanthanide Migration in U-Zr ...................................................................... 8 1.2.5 ‘Liquid-Like’ Transport ................................................................................ 9 vii 1.3 Project Objectives ................................................................................................... 12 Chapter 2: Theory and Literature Review ........................................................................ 13 2.1 Thermodynamic Theory ..................................................................................... 13 2.2 Literature Review of Solubility Experiments ..................................................... 15 2.2.1 Experimental Techniques ............................................................................ 16 2.2.2 Lanthanides and Alkalis Interactions .......................................................... 18 2.3 Miedema Model ................................................................................................. 21 2.3.1 Background ................................................................................................. 21 2.3.2 Model Description ...................................................................................... 22 2.4 Differential Scanning Calorimetry (DSC) .......................................................... 23 2.4.1 Method Background .................................................................................... 23 Chapter 3: Model of Solubility ......................................................................................... 27 3.1 Solubility Calculation ......................................................................................... 27 3.2 Model Comparison to Previous Solubility Experiments .................................... 29 3.3 Model Results for the Lanthanides Solubility .................................................... 35 Chapter 4: Inversion Crucible Solubility Experiment ...................................................... 38 4.1 Experimental Procedure ..................................................................................... 38 4.2 Solubility Results ............................................................................................... 42 4.2.1 Stock Alkali Metal Impurity Concentration ............................................... 43 viii 4.2.2 Time Dependence ....................................................................................... 44 4.2.3 Temperature Dependence ........................................................................... 48 4.2.4 Concentration Dependence ......................................................................... 53 4.2.5 Control Tests in Sodium ............................................................................. 54 Chapter 5: Differential Scanning Calorimetry (DSC) Experiments ................................. 59 5.1 DSC Experimental Technique ............................................................................ 59 5.2 DSC Results ....................................................................................................... 63 5.2.1 Na-Sn .......................................................................................................... 63 5.2.2 Na-Nd .......................................................................................................... 68 5.2.3 Cs-Nd .......................................................................................................... 72 Chapter 6: Conclusion ....................................................................................................... 77 6.1 Summary ............................................................................................................ 77 6.2 Impact on Motivation ......................................................................................... 81 6.3 Recommendations for Future Work ................................................................... 82 References ......................................................................................................................... 83 Appendix A: Experimental Solubility Data ...................................................................... 94 Appendix B: Additional Data of DSC
Recommended publications
  • The Important Role of Dysprosium in Modern Permanent Magnets
    The Important Role of Dysprosium in Modern Permanent Magnets Introduction Dysprosium is one of a group of elements called the Rare Earths. Rare earth elements consist of the Lanthanide series of 15 elements plus yttrium and scandium. Yttrium and scandium are included because of similar chemical behavior. The rare earths are divided into light and heavy based on atomic weight and the unique chemical and magnetic properties of each of these categories. Dysprosium (Figure 1) is considered a heavy rare earth element (HREE). One of the more important uses for dysprosium is in neodymium‐iron‐ boron (Neo) permanent magnets to improve the magnets’ resistance to demagnetization, and by extension, its high temperature performance. Neo magnets have become essential for a wide range of consumer, transportation, power generation, defense, aerospace, medical, industrial and other products. Along with terbium (Tb), Dysprosium (Dy) Figure 1: Dysprosium Metal(1) is also used in magnetostrictive devices, but by far the greater usage is in permanent magnets. The demand for Dy has been outstripping its supply. An effect of this continuing shortage is likely to be a slowing of the commercial rollout or a redesigning of a number of Clean Energy applications, including electric traction drives for vehicles and permanent magnet generators for wind turbines. The shortage and associated high prices are also upsetting the market for commercial and industrial motors and products made using them. Background Among the many figures of merit for permanent magnets two are of great importance regarding use of Dy. One key characteristic of a permanent magnet is its resistance to demagnetization, which is quantified by the value of Intrinsic Coercivity (HcJ or Hci).
    [Show full text]
  • Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth
    Subscriber access provided by RES CENTER OF ECO ENVIR SCI Article Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt#Cerium Composite Oxide Catalysts for N2O Decomposition Li Xue, Hong He, Chang Liu, Changbin Zhang, and Bo Zhang Environ. Sci. Technol., 2009, 43 (3), 890-895 • DOI: 10.1021/es801867y • Publication Date (Web): 05 January 2009 Downloaded from http://pubs.acs.org on January 31, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Environ. Sci. Technol. 2009, 43, 890–895 Promotion Effects and Mechanism such as Fe-ZSM-5 are more active in the selective catalytic reduction (SCR) of N2O by hydrocarbons than in the - ° of Alkali Metals and Alkaline Earth decomposition of N2O in a temperature range of 300 400 C (3). In recent years, it has been found that various mixed Metals on Cobalt-Cerium oxide catalysts, such as calcined hydrotalcite and spinel oxide, showed relatively high activities. Composite Oxide Catalysts for N2O One of the most active oxide catalysts is a mixed oxide containing cobalt spinel. Calcined hydrotalcites containing Decomposition cobalt, such as Co-Al-HT (9-12) and Co-Rh-Al-HT (9, 11), have been reported to be very efficient for the decomposition 2+ LI XUE, HONG HE,* CHANG LIU, of N2O.
    [Show full text]
  • Indium, Caesium Or Cerium Compounds for Treatment of Cerebral Disorders
    Europaisches Patentamt 298 644 J European Patent Office Oy Publication number: 0 A3 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 88305895.0 © intci.s A61K 31/20, A61K 31/28, A61K 33/24 @ Date of filing: 29.06.88 © Priority: 07.07.87 GB 8715914 © Applicant: EFAMOL HOLDINGS PLC Efamol House Woodbridge Meadows © Date of publication of application: Guildford Surrey GU1 1BA(GB) 11.01.89 Bulletin 89/02 @ Inventor: Horrobin, David Frederick © Designated Contracting States: c/o Efamol House Woodbridge Meadows AT BE CH DE ES FR GB GR IT LI LU NL SE Guildford Surrey GU1 1BA(GB) Inventor: Corrigan, Frank ® Date of deferred publication of the search report: c/o Argyll & Bute Hospital 14.11.90 Bulletin 90/46 Lochgilphead, Argyll PA3T 8ED Scotland(GB) © Representative: Caro, William Egerton et al J. MILLER & CO. Lincoln House 296-302 High Holborn London WC1V 7 JH(GB) © Indium, caesium or cerium compounds for treatment of cerebral disorders. © A method of treatment of schizophrenia or other chronic cerebral disorder in which cerebral atrophy is shown, is characterised in that one or more as- similable or pharmaceutically acceptable indium caesium or cerium compounds is associated with a pharmaceutically acceptable diluent or carrier. CO < CD 00 O> Xerox Copy Centre PARTIAL EUROPEAN SEARCH REPORT Application number European Patent J which under Rule 45 of the European Patent Convention Office shall be considered, for the purposes of subsequent EP 88 30 5895 proceedings, as the European search report DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE ategory of relevant passages to claim APPLICATION (Int.
    [Show full text]
  • Historical Development of the Periodic Classification of the Chemical Elements
    THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Atomic Weights of the Elements 1995
    Atomic Weights of the Elements 1995 Cite as: Journal of Physical and Chemical Reference Data 26, 1239 (1997); https:// doi.org/10.1063/1.556001 Submitted: 02 May 1997 . Published Online: 15 October 2009 T. B. Coplen ARTICLES YOU MAY BE INTERESTED IN Atomic Weights of the Elements 1999 Journal of Physical and Chemical Reference Data 30, 701 (2001); https:// doi.org/10.1063/1.1395055 Journal of Physical and Chemical Reference Data 26, 1239 (1997); https://doi.org/10.1063/1.556001 26, 1239 © 1997 American Institute of Physics and American Chemical Society. Atomic Weights of the Elements 1995a) T. B. Coplen U. S. Geological Survey, Reston, Virginia 20192 Received May 2, 1997; revised manuscript received June 13, 1997 The biennial review of atomic weight, Ar~E!, determinations and other cognate data has resulted in changes for the standard atomic weight of 21 elements. The five most significant changes are: boron from 10.81160.005 to 10.81160.007; carbon from 12.01160.001 to 12.010760.0008; arsenic from 74.9215960.00002 to 74.9216060.00002; cerium from 140.11560.004 to 140.11660.001; and platinum 195.0860.03 to 195.07860.002. An annotation for potassium has been changed in the Table of Standard Atomic Weights. To eliminate possible confusion in the reporting of relative lithium isotope-ratio data, the Commission recommends that such data be ex- pressed using 7Li/6Li ratios and that reporting using 6Li/7Li ratios be discontinued. Be- cause relative isotope-ratio data for sulfur are commonly being expressed on noncorre- sponding scales, the Commission recommends that such isotopic data be expressed relative to VCDT ~Vienna Can˜on Diablo Troilite! on a scale such that 34S/32S of IAEA- S-1 silver sulfide is 0.9997 times that of VCDT.
    [Show full text]
  • Some Structural Aspects of Neodymium Praseodymium Oxalate Single Crystals Grown in Hydro Silica Gels
    Bull. Mater. Sci., Vol. 20, No. 1, February 1997, pp. 37-48. © Printed in India. Some structural aspects of neodymium praseodymium oxalate single crystals grown in hydro silica gels CYRIAC JOSEPH, M A ITTYACHEN and K S RAJU* School of Pure and Applied Phy~cs, Mahatma Gandhi University, Kottayam 686 031, India *Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India MS received 25 September 1996; revised 14 November 1996 Abstract. The mixed crystals of neodymium praseodymium oxaiate are grown by the diffusion of a mixture of aqueous solutions of neodymium nitrate and praseodymium nitrate (as an upper reactant) into the set gel embedded with oxalic acid. By varying the concentration (by volume) of rare earth nitrates in the upper reactant, the incorporation of Nd and Pr in the mixed crystals has been studied. Tabular crystals with the well defined hexagonal basal planes are observed in the mixed crystals of varying concentrations. X-ray diffraction patterns of these powdered samples reveal that these mixed crystals are 'isostructural', while IR and FTIR spectra establish the presence of oxalate groups. TGA and DSC analyses show the correctness of the chemical formula for the mixed crystals, by the release of water molecules (endothermic) and of CO and CO2 (exothermic), with the rare earth oxides as the stable residue. X-ray fluorescence (XRF) and energy dispersive X-ray analyses (EDAX) establish the presence of heavy rare earth elements qualitatively and to a good extent quantitatively. X-ray photo- electron spectroscopic (XPS) studies confirm the presence of rare earth elements (Nd and Pr) as their respective oxides.
    [Show full text]
  • Electrodeposition of Alloys Or Compounds in Molten Salts and Applications
    Journal of Mining and Metallurgy, 39 (1‡2) B (2003) 177 - 200. ELECTRODEPOSITION OF ALLOYS OR COMPOUNDS IN MOLTEN SALTS AND APPLICATIONS P. Taxil, P. Chamelot, L. Massot and C. Hamel Laboratoire de Génie Chimique, Département Procédés Electrochimiques et Matériaux, CNRS UMR 5503, Université Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, France (Received 12 February 2003; accepted 18 April 2003) Abstract This article deals with the different modes of preparation of alloys or intermetallic compounds using the electrodeposition in molten salts, more particularly molten alkali fluorides. The interest in this process is to obtain new materials for high technology, particularly the compounds of reactive components such as actinides, rare earth and refractory metals. Two ways of preparation are considered: (i) electrocoating of the more reactive metal on a cathode made of the noble one and reaction between the two metals in contact, and (ii) electrocoating on an inert cathode of the intermetallic compound by coreduction of the ions of each elements. The kinetic is controlled by the reaction at the electrolyte interface. A wide bibliographic survey on the preparation of various compounds (intermetallic compounds, borides, carbides…) is given and a special attention is paid to the own experience of the authors in the preparation of these compounds and interpreta- tion of their results. Keywords: Electrosynthesis, alloys, intermetallic, compounds, molten salts, alkali fluorides, co-reduction, reactive electrodeposition 1. Introduction Laboratories of chemical engineering are often interested in high technology processes to prepare coatings of new materials or compounds; most of these compounds J. Min. Met. 39 (1 ‡ 2) B (2003) 177 taxil.indd 1 6/26/03, 12:06 PM P.
    [Show full text]
  • Metallurgy Materials Programs
    WASH-1181-73 METALLURGY AND MATERIALS PROGRAMS 0 FY 1973 UNITED STATES ATOMIC ENERGY COMMISSION DIVISION of PHYSICAL RESEARCH LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission. nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. WASH-1181-73 METALLURGY AND MATERIALS PROGRAMS Fiscal Year 1973 July 1973 U. S. Atomic Energy Commission Division of Physical Research FORWORD The Metallurgy and Materials Program constitutes one portion of a wide range of research supported by the AEC Division of Physical Research. Other programs are administered by the Division's Chemistry, High Energy Physics, and Physics and Mathematics Offices. Metallurgy and Materials research is supported primarily at AEC National Laboratories and Univer- sities. The research covers a wide spectrum of scientific and engineering areas of interest to the Atomic Energy Commission and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, and Physical Chemistry. This report contains a listing of all research underway in FY 1973 together with a convenient index to the program. Donald K. Stevens Assistant Director (for Metallurgy and Materials Programs) Division of Physical Research i INTRODUCTION The purpose of this report is to provide a convenient compilation and index of the AEC's Metallurgy and Materials Programs.
    [Show full text]
  • High-Temperature Heat Content of Selected Rare Earth Metals by Levitation Calorimetry Lawrence Albert Stretz Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1973 High-temperature heat content of selected rare earth metals by levitation calorimetry Lawrence Albert Stretz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Stretz, Lawrence Albert, "High-temperature heat content of selected rare earth metals by levitation calorimetry " (1973). Retrospective Theses and Dissertations. 4976. https://lib.dr.iastate.edu/rtd/4976 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Uptake of Nanoparticles of Cerium Oxide and Yttrium Oxide by Acanthamoeba Castellanii (Protozoa) and Daphnia Magna (Crustacea) James R
    Virginia Journal of Science Volume 62, 1 & 2 Spring 2011 Uptake of Nanoparticles of Cerium Oxide and Yttrium Oxide by Acanthamoeba castellanii (Protozoa) and Daphnia magna (Crustacea) James R. Palmieri1, Geneva Gehring, Catherine Minichino, and Shaadi F. Elswaifi Department of Microbiology, Infectious, and Emerging Diseases, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, Virginia, USA 24060 ABSTRACT Currently, nanoparticles are synthesized and used at an unprecedented rate for industrial, medical, and research applications. The use of cerium oxide nanoparticles (CeONP) and yttrium oxide nanoparticles (YtONP) results in their spread as contaminants into the environment. Once in the environment, CeONP and YtONP can be taken up by organisms in the food chain where they may pose a public health risk. In this study we determine whether Acanthamoeba castellanii and Daphnia magna uptake CeONP or YtONP from their environment and thereby play a role in the transmission of the nanoparticles. Using electron microscopy, organisms exposed to the nanoparticles were examined. Our results indicate that the nanoparticles are associated with cell and organelle membranes. These findings have implications for the health risks associated with environmental contamination by CeONP and YtONP. INTRODUCTION In this study we determine whether protists and crustaceans play a role in the transfer of cerium oxide nanoparticles (CeONP) and yttrium oxide nanoparticles (YtONP) from the environment to other organisms within the aquatic food chain. Acanthamoeba castellanii, a common protist, and Daphnia magna, a planktonic crustacean, are important components in many aquatic ecosystems. Because acanthamoebae, such as A. castellanni, are aggressive feeders they consume inorganic and organic compounds from their environment, thereby serving as a link by transferring normally unavailable inorganic components to the food chain (Weekers et al.
    [Show full text]
  • Electrical Properties and Defect Structure of Praseodymium-Cerium Oxide Solid Solutions
    Electrical Properties and Defect Structure of Praseodymium-Cerium Oxide Solid Solutions by Todd Stanley Stefanik BS Ceramic Engineering New York State College of Ceramics at Alfred University, 1995 SM Materials Science and Engineering Massachusetts Institute of Technology, 1998 SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CERAMICS FEBRUARY 2004 © 2003 Massachusetts Institute of Technology. All rights reserved. Signature of Author Todd Stanley Stefanik January 23rd, 2004 Certified by Harry L. Tuller Professor of Ceramics and Electronic Materials Thesis Supervisor Accepted by Harry L. Tuller Professor of Ceramics and Electronic Materials Chairperson, Departmental Committee on Graduate Students 2 Electrical Properties and Defect Structure of Praseodymium-Cerium Oxide Solid Solutions by Todd Stanley Stefanik Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Ceramics Abstract A defect chemistry model consistent with observed trends in the pO2 and temperature dependence of electrical conductivity in praseodymium cerium oxide (PCO) was -18 developed. Four point DC conductivity measurements were made from 1 atm to 10 atm pO2 over isotherms ranging from 600-1000°C in materials containing 0-20% Pr. A pO2-dependent ionic conductivity was observed at high pO2 values in compositions containing 0.5% and 1% Pr. This behavior was attributed to oxidation of Pr3+ to Pr4+ under oxidizing conditions, thereby decreasing the concentration of acceptor dopants in the PCO material. In compositions containing 10% and 20% Pr, an electron hopping conductivity was observed at high pO2 values.
    [Show full text]