Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth

Total Page:16

File Type:pdf, Size:1020Kb

Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Subscriber access provided by RES CENTER OF ECO ENVIR SCI Article Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt#Cerium Composite Oxide Catalysts for N2O Decomposition Li Xue, Hong He, Chang Liu, Changbin Zhang, and Bo Zhang Environ. Sci. Technol., 2009, 43 (3), 890-895 • DOI: 10.1021/es801867y • Publication Date (Web): 05 January 2009 Downloaded from http://pubs.acs.org on January 31, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Environ. Sci. Technol. 2009, 43, 890–895 Promotion Effects and Mechanism such as Fe-ZSM-5 are more active in the selective catalytic reduction (SCR) of N2O by hydrocarbons than in the - ° of Alkali Metals and Alkaline Earth decomposition of N2O in a temperature range of 300 400 C (3). In recent years, it has been found that various mixed Metals on Cobalt-Cerium oxide catalysts, such as calcined hydrotalcite and spinel oxide, showed relatively high activities. Composite Oxide Catalysts for N2O One of the most active oxide catalysts is a mixed oxide containing cobalt spinel. Calcined hydrotalcites containing Decomposition cobalt, such as Co-Al-HT (9-12) and Co-Rh-Al-HT (9, 11), have been reported to be very efficient for the decomposition 2+ LI XUE, HONG HE,* CHANG LIU, of N2O. Yan et al. (13, 14) found that when the Co in Co3O4 + + + CHANGBIN ZHANG, AND BO ZHANG was partially replaced by Ni2 ,Zn2 ,orMg2 , the catalytic Research Center for Eco-Environmental Sciences, Chinese activity of cobalt spinel could be greatly improved. In our Academy of Sciences, 18 Shuangqing Road, previous work on the influence of preparation methods on Beijing 100085, PR China the cobalt-cerium composite oxide catalyst, a remarkable promotion effect of residual K was observed (15). The greatly 2+ Received July 22, 2008. Revised manuscript received improved redox ability of active site Co induced by residual November 21, 2008. Accepted November 21, 2008. K was supposed to be the main reason for the high catalytic activity of the catalyst. The presence of ceria in this catalyst was very important, because it could also improve the cobalt catalyst’s activity even in the presence of residual K (15, 16). A series of alkali metal- and alkaline earth metal-doped However, the promotion effect of alkali metals was much cobalt-cerium composite oxide catalysts were prepared by greater than that of ceria. Therefore, a detailed study of effect of alkali and alkaline earth metals on cobalt-cerium com- the citrate method and tested for the decomposition of N2O. Strong promotion effects of alkali and alkaline earth metals posite catalysts is very necessary. The promotion effects of alkali or alkaline earth metals on the activity of the catalyst were obtained in the order Li < < < < < < on the catalytic decomposition of N2O have also been Na K Rb Cs and Mg Ca Sr, Ba. The promotion observed by other researchers. For instance, Farris et al. (17) effects of alkaline earth metals were much weaker than the found in a scale-up process that an appropriate amount of effects of alkali metals. To investigate the origin of the promotion residual Na is very important for the catalytic activity of Co-Al - - effect, X-ray diffraction, Brunauer Emmett Teller surface hydrotalcite in N2O decomposition. Ohnishi et al. (18) area measurement, X-ray photoelectron spectroscopy, reported that alkali and alkaline earth metals could promote temperature-programmed desorption, and hydrogen temperature- the activity of a Co3O4 catalyst for N2O decomposition. The programmed reduction methods were used to characterize alkaline earth metals showed much greater promotion effects the alkali metal-doped catalyst. The analytical results indicated than alkali metals in their study. that alkali metals improved the redox ability of active site Alkali and alkaline earth metal compounds could serve Co2+ by acting as electronic promoters. Catalytic decomposition as textural or electronic promoters for catalysts in various catalytic processes. Haber et al. (19) reported that doping of N O proceeds through an oxidation-reduction mechanism 2 with alkali metals could influence the dispersion of rhodium with participation of electrons from Co2+, thus the increase in the on Al2O3, and then influence its catalytic activity for the redox ability of Co2+ should lead to an increase in the decomposition of N2O. Research by Konsolakis and Yentekakis activity of the catalyst. on the SCR of NO by propene over Pt/Al2O3 (20-22) showed that alkali and alkaline earth metals could promote the 1. Introduction adsorption of NO (electron-acceptor) on the catalyst surface s Catalytic decomposition of nitrous oxide (N2O) is an attractive by acting as electronic promoters. The N O bond was proposition from an environmental point of view because weakened at the same time, thus facilitating NO dissociation. - N2O is considered to be responsible for the depletion of the To clarify the role of alkali promoters in cobalt cerium ozone layer and for contributing to global warming (1-4). composite oxides (molar ratio of Ce/Co ) 0.05) (15, 16), a - Although N2O is not the major contributor to global warming, series of alkali and alkaline earth metal-doped cobalt cerium it is much more potent than either of the other two most composite oxides were prepared and tested for the decom- common anthropogenic greenhouse gases, CO2 and CH4.It position of N2O. A significant increase of catalytic activity has 310 and 21 times the global warming potential (GWP) of was found when these promoters were present on the - CO2 and CH4, respectively (3). catalysts. Methods of X-ray diffraction (XRD), Brunauer - N2O is produced by both natural and anthropogenic Emmett Teller (BET) surface area measurement, X-ray sources. To control the emission of N2O from chemical photoelectron spectroscopy (XPS), carbon dioxide temper- processes, catalysts for N2O decomposition have been widely ature-programmed desorption (CO2-TPD), oxygen temper- studied in the past decade; these catalysts include supported ature-programmed desorption (O2-TPD), and hydrogen metals, transition metal ion exchanged zeolites, and pure temperature-programmed reduction (H2-TPR) were used to and mixed oxides (1, 3, 5-14). Supported noble metal characterize these catalysts in order to investigate the origin catalysts, such as Rh and Au catalysts (5-7), show high of this significant promotion effect. activities in N2O decomposition reactions at 200-300 °C. However, the high cost of the noble metal limits their 2. Experimental Section application. Transition metal ion exchanged zeolite catalysts 2.1. Catalyst Preparation. All catalysts were prepared by the citrate method. Nitrates of cobalt, cerium and alkali, or * Corresponding author phone: +86-10-62849123; fax: +86-10- alkaline earth metals were used in appropriate quantities. 62923549; e-mail: [email protected]. The details of the method can be seen in the Supporting 890 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 43, NO. 3, 2009 10.1021/es801867y CCC: $40.75 2009 American Chemical Society Published on Web 01/05/2009 Information or in our previous paper (15). The catalyst is referred to as CC-M-x (M indicates the doping alkali or alkaline earth metal; x indicates the molar ratio of M/Co, so that x ) 0 for the undoped catalyst). 2.2. Catalytic Activity Measurement. The catalytic reac- tion was carried out in a fixed-bed quartz flow reactor containing approximately 0.5 g of catalyst in all the experi- ments. The reactor was heated by a temperature-controlled furnace. A thermocouple was placed on the outside of the reactor tube. Prior to the reaction all samples were pretreated for 30 min with 20% O2 in Ar at 400 °C to yield clean surfaces, followed by cooling to the reaction temperature in the same gas. A reaction mixture of N2O (1000 ppm) in Ar was then introduced into the reactor at a flow rate of 150 cm3 min-1, yielding a space time (W/F) of 0.2gscm-3. Analysis of the reaction products was carried out using a gas chromatograph (Agilent 6890N equipped with Porapak Q for the analysis of N2O, CO2, and molecular sieve 5A columns for the analysis of N2,O2 and NO). The reaction system was kept for1hat FIGURE 1. Catalytic activities of cobalt-cerium composite each reaction temperature to reach a steady state before oxide catalysts doped with optimal amounts of alkali metals for 3 -1 analysis of the product was performed. In all tests, N2 and N2O decomposition. Conditions: total flow, 150 cm min ; W/F -3 O2 were the only gaseous products that were observed. ) 0.2gscm ; gas composition, 1000 ppm N2O/Ar. 2.3. Catalyst Characterization. The details for the catalyst - characterization (X-rays diffraction (XRD), Brunauer used in the selective catalytic reduction (SCR) of NO by NH - x 3 Emmett Teller (BET), X-rays photoelectron spectroscopy (23).The presence of the poisoning element could block both (XPS)) can be seen in the Supporting Information. Brønsted acid and V5+ ) O sites of the catalysts, which play 2.4. O2-TPD, CO2-TPD and H2-TPR. The O2-TPD experi- a crucial role in the SCR mechanism. The opposite effects 3 -1 ments were performed in a flow of He (30 cm min ) over of the same metals in the SCR reaction and the decomposition ° -1 200 mg of catalyst using a heating rate of 30 C min . Prior reaction are understandable because the two reactions use to the TPD experiment, the catalysts were pretreated under different catalyst and they have totally different catalytic ° a flow of 2% N2O/Ar (or 10% O2/He) at 400 C for 1 h, followed mechanism.
Recommended publications
  • Redox Models in Chemistry
    Redox models in chemistry A depiction of the conceptions held by secondary school students of redox reactions Lise-Lotte Österlund Department of Chemistry 901 87 Umeå Umeå 2010 Copyright©Lise-Lotte Österlund ISBN: 978-91-7459-053-1 ISSN: 1652-5051 Cover picture: Photographer, Lise-Lotte Österlund Printed by: VMC, KBC, Umeå University Umeå, Sweden 2010 T0 my family Abstract According to previous research, students show difficulties in learning redox reactions. By the historical development different redox models exist to explain redox reactions, the oxygen model, the hydrogen model, the electron model and the oxidation number model. This thesis reports about three studies concerning conceptions held by secondary school students of redox reactions. A textbook analysis is also included in the thesis. The first study was an investigation of the students’ use of redox models in inorganic contexts, their use of the activity series of metals, and the students’ ability to transfer redox knowledge. Then the students’ work with an open- ended biochemical task, where the students had access of the textbook was studied. The students talk about redox reactions, the questions raised by the students, what resources used to answer the questions and what kind of talk developed were investigated. A textbook analysis based on chemistry books from Sweden and one book from England was performed. The redox models used as well as the dealing with redox related learning difficulties was studied. Finally, the students’ conceptions about redox in inorganic, organic and biochemistry after completed chemistry courses were studied. The results show that the students were able to use the electron model as a tool to explain inorganic redox reactions and the mutuality of oxidation and reduction was fundamental.
    [Show full text]
  • Prebiological Evolution and the Metabolic Origins of Life
    Prebiological Evolution and the Andrew J. Pratt* Metabolic Origins of Life University of Canterbury Keywords Abiogenesis, origin of life, metabolism, hydrothermal, iron Abstract The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution. 1 Introduction: Chemoton Subsystems and Evolutionary Pathways Living cells are autocatalytic entities that harness redox energy via the selective catalysis of biochemical transformations.
    [Show full text]
  • Stable Isotopes of Cobalt Properties of Cobalt
    Stable Isotopes of Cobalt Isotope Z(p) N(n) Atomic Mass Natural Abundance Nuclear Spin Co-59 27 32 58.93320 100.00% 7/2- Cobalt was discovered in 1735 by Georg Brandt. Its name derives from the German word kobald, meaning "goblin" or "evil spirit." Minerals containing cobalt were used by the early civilizations of Egypt and Mesopotamia for coloring glass deep blue. Cobalt oxide is used today to add a pink or blue color to glass. It is also an important trace element in soils and necessary for animal nutrition. The most important modern use of cobalt is in the manufacture of various wear-resistant and superalloys. Its alloys have shown high resistance to corrosion and oxidation at high temperatures. Radioactive Cobalt-60 is used in radiography and in the sterilization of food. A silvery-white, shining, hard, ductile, somewhat malleable metal, cobalt is also ferromagnetic, with permeability two-thirds that of iron. It has exceptional magnetic properties in alloys. It is attached by dilute hydrochloric and sulfuric acids. It corrodes readily in air, and it has unusual coordinating properties, especially the trivalent ion. It is noncombustible except in powder form. Cobalt occurs in two allotropic modifications over a wide range of temperatures: the crystalline close-packed- hexagonal form is known as the alpha form, which turns into the beta (or gamma) form above 417 ºC. In finely powdered form, cobalt ignites spontaneously in air. Reactions with acetylene and bromine pentafluoride proceed to incandescence and can become violent. The metal is moderately toxic by ingestion. Inhalation of dusts can damage lungs.
    [Show full text]
  • Cobalt Publications Rejected As Not Acceptable for Plants and Invertebrates
    Interim Final Eco-SSL Guidance: Cobalt Cobalt Publications Rejected as Not Acceptable for Plants and Invertebrates Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition ). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection ( Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding). No Dose Abdel-Sabour, M. F., El Naggr, H. A., and Suliman, S. M. 1994. Use of Inorganic and Organic Compounds as Decontaminants for Cobalt T-60 and Cesium-134 by Clover Plant Grown on INSHAS Sandy Soil. Govt Reports Announcements & Index (GRA&I) 15, 17 p. No Control Adams, S. N. and Honeysett, J. L. 1964. Some Effects of Soil Waterlogging on the Cobalt and Copper Status of Pasture Plants Grown in Pots. Aust.J.Agric.Res. 15, 357-367 OM, pH Adams, S.
    [Show full text]
  • Indium, Caesium Or Cerium Compounds for Treatment of Cerebral Disorders
    Europaisches Patentamt 298 644 J European Patent Office Oy Publication number: 0 A3 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 88305895.0 © intci.s A61K 31/20, A61K 31/28, A61K 33/24 @ Date of filing: 29.06.88 © Priority: 07.07.87 GB 8715914 © Applicant: EFAMOL HOLDINGS PLC Efamol House Woodbridge Meadows © Date of publication of application: Guildford Surrey GU1 1BA(GB) 11.01.89 Bulletin 89/02 @ Inventor: Horrobin, David Frederick © Designated Contracting States: c/o Efamol House Woodbridge Meadows AT BE CH DE ES FR GB GR IT LI LU NL SE Guildford Surrey GU1 1BA(GB) Inventor: Corrigan, Frank ® Date of deferred publication of the search report: c/o Argyll & Bute Hospital 14.11.90 Bulletin 90/46 Lochgilphead, Argyll PA3T 8ED Scotland(GB) © Representative: Caro, William Egerton et al J. MILLER & CO. Lincoln House 296-302 High Holborn London WC1V 7 JH(GB) © Indium, caesium or cerium compounds for treatment of cerebral disorders. © A method of treatment of schizophrenia or other chronic cerebral disorder in which cerebral atrophy is shown, is characterised in that one or more as- similable or pharmaceutically acceptable indium caesium or cerium compounds is associated with a pharmaceutically acceptable diluent or carrier. CO < CD 00 O> Xerox Copy Centre PARTIAL EUROPEAN SEARCH REPORT Application number European Patent J which under Rule 45 of the European Patent Convention Office shall be considered, for the purposes of subsequent EP 88 30 5895 proceedings, as the European search report DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE ategory of relevant passages to claim APPLICATION (Int.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Atomic Weights of the Elements 1995
    Atomic Weights of the Elements 1995 Cite as: Journal of Physical and Chemical Reference Data 26, 1239 (1997); https:// doi.org/10.1063/1.556001 Submitted: 02 May 1997 . Published Online: 15 October 2009 T. B. Coplen ARTICLES YOU MAY BE INTERESTED IN Atomic Weights of the Elements 1999 Journal of Physical and Chemical Reference Data 30, 701 (2001); https:// doi.org/10.1063/1.1395055 Journal of Physical and Chemical Reference Data 26, 1239 (1997); https://doi.org/10.1063/1.556001 26, 1239 © 1997 American Institute of Physics and American Chemical Society. Atomic Weights of the Elements 1995a) T. B. Coplen U. S. Geological Survey, Reston, Virginia 20192 Received May 2, 1997; revised manuscript received June 13, 1997 The biennial review of atomic weight, Ar~E!, determinations and other cognate data has resulted in changes for the standard atomic weight of 21 elements. The five most significant changes are: boron from 10.81160.005 to 10.81160.007; carbon from 12.01160.001 to 12.010760.0008; arsenic from 74.9215960.00002 to 74.9216060.00002; cerium from 140.11560.004 to 140.11660.001; and platinum 195.0860.03 to 195.07860.002. An annotation for potassium has been changed in the Table of Standard Atomic Weights. To eliminate possible confusion in the reporting of relative lithium isotope-ratio data, the Commission recommends that such data be ex- pressed using 7Li/6Li ratios and that reporting using 6Li/7Li ratios be discontinued. Be- cause relative isotope-ratio data for sulfur are commonly being expressed on noncorre- sponding scales, the Commission recommends that such isotopic data be expressed relative to VCDT ~Vienna Can˜on Diablo Troilite! on a scale such that 34S/32S of IAEA- S-1 silver sulfide is 0.9997 times that of VCDT.
    [Show full text]
  • The Periodic Table of Elements
    The Periodic Table of Elements 1 2 6 Atomic Number = Number of Protons = Number of Electrons HYDROGENH HELIUMHe 1 Chemical Symbol NON-METALS 4 3 4 C 5 6 7 8 9 10 Li Be CARBON Chemical Name B C N O F Ne LITHIUM BERYLLIUM = Number of Protons + Number of Neutrons* BORON CARBON NITROGEN OXYGEN FLUORINE NEON 7 9 12 Atomic Weight 11 12 14 16 19 20 11 12 13 14 15 16 17 18 SODIUMNa MAGNESIUMMg ALUMINUMAl SILICONSi PHOSPHORUSP SULFURS CHLORINECl ARGONAr 23 24 METALS 27 28 31 32 35 40 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 POTASSIUMK CALCIUMCa SCANDIUMSc TITANIUMTi VANADIUMV CHROMIUMCr MANGANESEMn FeIRON COBALTCo NICKELNi CuCOPPER ZnZINC GALLIUMGa GERMANIUMGe ARSENICAs SELENIUMSe BROMINEBr KRYPTONKr 39 40 45 48 51 52 55 56 59 59 64 65 70 73 75 79 80 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 RUBIDIUMRb STRONTIUMSr YTTRIUMY ZIRCONIUMZr NIOBIUMNb MOLYBDENUMMo TECHNETIUMTc RUTHENIUMRu RHODIUMRh PALLADIUMPd AgSILVER CADMIUMCd INDIUMIn SnTIN ANTIMONYSb TELLURIUMTe IODINEI XeXENON 85 88 89 91 93 96 98 101 103 106 108 112 115 119 122 128 127 131 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 CESIUMCs BARIUMBa HAFNIUMHf TANTALUMTa TUNGSTENW RHENIUMRe OSMIUMOs IRIDIUMIr PLATINUMPt AuGOLD MERCURYHg THALLIUMTl PbLEAD BISMUTHBi POLONIUMPo ASTATINEAt RnRADON 133 137 178 181 184 186 190 192 195 197 201 204 207 209 209 210 222 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 FRANCIUMFr RADIUMRa RUTHERFORDIUMRf DUBNIUMDb SEABORGIUMSg BOHRIUMBh HASSIUMHs MEITNERIUMMt DARMSTADTIUMDs ROENTGENIUMRg COPERNICIUMCn NIHONIUMNh
    [Show full text]
  • Soft Magnetic Cobalt-Iron Alloys Vacoflux and Vacodur
    SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX AND VACODUR ADVANCED MAGNETIC SOLUTIONS THE COMPANY VACUUMSCHMELZE ADVANCED MAGNETIC SOLUTIONS VAC is a leading manufacturer of magnetic materials as well as our refined solutions and their special magnetic and solutions. We passionately advance the tech- properties are the key to making our customers’ nologies of today and tomorrow. As a reliable partner, systems smaller, lighter, more efficient and, last but we work with our customers to develop application not least, safer. Thereby we contribute significantly to solutions that make it possible to meet constantly the saving of resources and the protection of our increasing requirements. We push technical boundaries environment. with groundbreaking solutions. The use of our materials 2 SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX® AND VACODUR® THE COMPANY VACUUMSCHMELZE Contents Introduction Page 4 Magnetic properties Page 7 DC magnetic properties of strip material Page 8 DC magnetic properties of solid material Page 9 Specific iron losses of strip material Page 9 Mechanical properties Page 10 Mechanical properties of strip material Page 11 Mechanical properties of solid material Page 11 Physical properties Page 12 Corrosion resistance of VACOFLUX 9 CR Page 13 Processing Page 14 Magnetic final annealing Page 14 Adjusting mechanical properties for VACODUR strip material Page 16 General processing information Page 17 Forms of supply Page 18 SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX® AND VACODUR® 3 INTRODUCTION VACUUMSCHMELZE is one of the world’s leading manufac- Our range of soft magnetic materials comprises nickel-iron, turers of special alloys with a particular focus on magnetic silicon-iron and cobalt-iron alloys, as well as amorphous and and specific physical properties.
    [Show full text]
  • Redox Potential Measurements M.J
    Redox Potential Measurements M.J. Vepraskas NC State University December 2002 Redox potential is an electrical measurement that shows the tendency of a soil solution to transfer electrons to or from a reference electrode. From this measurement we can estimate whether the soil is aerobic, anaerobic, and whether chemical compounds such as Fe oxides or nitrate have been chemically reduced or are present in their oxidized forms. Making these measurements requires three basic pieces of equipment: 1. Platinum electrode 2. Voltmeter 3. Reference electrode The basic set-up is shown below: Voltmeter 456 mv Soil surface Reference Pt wire electrode Fig. 1. The Pt wire is buried into the soil to be in contact with the soil solution. The reference electrode must also be in contact with the soil solution. It has a ceramic tip, which can be placed in the soil, or the electrode can be placed in a salt bridge, which is itself placed in the soil. Wires from both the Pt electrode and reference electrode are connected to the voltmeter. Pt Electrodes Platinum electrodes consist of a small piece of platinum wire that is soldered or fused to wire made another metal. Platinum conducts electrons from the soil solution to the wire to which it is attached. Platinum is used because it is assumed to be an inert metal. This means it does not give up its own electrons (does not oxidize) to the wire or soil solution. Iron containing materials such as steel will oxidize themselves and send their own electrons to the voltmeter. As a result the voltage we measure will not result solely from electrons being transferred to or from the soil.
    [Show full text]
  • Determination of Acute Toxicity of Copper and Cobalt for Tilapia Nilotica
    Journal of Bioresource Management Volume 2 Issue 1 Article 3 Determination of Acute Toxicity of Copper and Cobalt for Tilapia nilotica Asif Naseem Rai University of Agriculture Faisalabad, [email protected] Asmat Ullah Hazara University, Mansehra Jibran Haider Forest and Wildlife Department, Gilgit-Baltistan Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Biodiversity Commons, and the Biology Commons Recommended Citation Rai, A. N., Ullah, A., & Haider, J. (2015). Determination of Acute Toxicity of Copper and Cobalt for Tilapia nilotica, Journal of Bioresource Management, 2 (1). DOI: 10.35691/JBM.5102.0012 ISSN: 2309-3854 online This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Determination of Acute Toxicity of Copper and Cobalt for Tilapia nilotica © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited. Journal of Bioresource Management does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved. For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or Journal of Bioresource Management’s prior written permission.
    [Show full text]
  • Uptake of Nanoparticles of Cerium Oxide and Yttrium Oxide by Acanthamoeba Castellanii (Protozoa) and Daphnia Magna (Crustacea) James R
    Virginia Journal of Science Volume 62, 1 & 2 Spring 2011 Uptake of Nanoparticles of Cerium Oxide and Yttrium Oxide by Acanthamoeba castellanii (Protozoa) and Daphnia magna (Crustacea) James R. Palmieri1, Geneva Gehring, Catherine Minichino, and Shaadi F. Elswaifi Department of Microbiology, Infectious, and Emerging Diseases, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, Virginia, USA 24060 ABSTRACT Currently, nanoparticles are synthesized and used at an unprecedented rate for industrial, medical, and research applications. The use of cerium oxide nanoparticles (CeONP) and yttrium oxide nanoparticles (YtONP) results in their spread as contaminants into the environment. Once in the environment, CeONP and YtONP can be taken up by organisms in the food chain where they may pose a public health risk. In this study we determine whether Acanthamoeba castellanii and Daphnia magna uptake CeONP or YtONP from their environment and thereby play a role in the transmission of the nanoparticles. Using electron microscopy, organisms exposed to the nanoparticles were examined. Our results indicate that the nanoparticles are associated with cell and organelle membranes. These findings have implications for the health risks associated with environmental contamination by CeONP and YtONP. INTRODUCTION In this study we determine whether protists and crustaceans play a role in the transfer of cerium oxide nanoparticles (CeONP) and yttrium oxide nanoparticles (YtONP) from the environment to other organisms within the aquatic food chain. Acanthamoeba castellanii, a common protist, and Daphnia magna, a planktonic crustacean, are important components in many aquatic ecosystems. Because acanthamoebae, such as A. castellanni, are aggressive feeders they consume inorganic and organic compounds from their environment, thereby serving as a link by transferring normally unavailable inorganic components to the food chain (Weekers et al.
    [Show full text]