Cobalt Publications Rejected As Not Acceptable for Plants and Invertebrates

Total Page:16

File Type:pdf, Size:1020Kb

Cobalt Publications Rejected As Not Acceptable for Plants and Invertebrates Interim Final Eco-SSL Guidance: Cobalt Cobalt Publications Rejected as Not Acceptable for Plants and Invertebrates Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition ). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection ( Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding). No Dose Abdel-Sabour, M. F., El Naggr, H. A., and Suliman, S. M. 1994. Use of Inorganic and Organic Compounds as Decontaminants for Cobalt T-60 and Cesium-134 by Clover Plant Grown on INSHAS Sandy Soil. Govt Reports Announcements & Index (GRA&I) 15, 17 p. No Control Adams, S. N. and Honeysett, J. L. 1964. Some Effects of Soil Waterlogging on the Cobalt and Copper Status of Pasture Plants Grown in Pots. Aust.J.Agric.Res. 15, 357-367 OM, pH Adams, S. N., Honeysett, J. L., Tiller, K. G., and Norrish, K. 1969. Factors Controlling the Increase of Cobalt in Plants Following the Addition of a Cobalt Fertilizer 38333. Aust.J.Soil Res. 7, 29-42 No Dose Agarwala, S. C., Bisht, S. S., and Sharma, C. P. 1977. Relative Effectiveness of Certain Heavy Metals in Producing Toxicity and Symptoms of Iron Deficiency in Barley. Can J Bot 55, 1299-1307 Media Ahmed, M. B. and Twyman, E. S. 1953. The Relative Toxicity of Manganese and Cobalt to the Tomato Plant. J.Exp.Bot.(London) 4[11], 164-172 Media Ahmed, S. and Evans, H. J. 1959. Effect of Cobalt on the Growth of the Soybeans in the Absence of Supplied Nitrogen. Biochem.Biophys.Res.Comm. 1[5], 271-275 Media Ahmed, S. and Evans, H. J. 1960. Cobalt: A Micronutrient Element for the Growth of Soybean Platns Under Symbiotic Conditions. Soil Sci 90, 205-210 Mix Alberici, T. M., Sopper, W. E., Storm, G. L., and Yahner, R. H. 1989. Trace Metals in Soil Vegetation and Voles from Mine Land Treated with Sewage Sludge. J Environ Qual 18, 115-120 Mix Alegria, A., Barbera, R., Boluda, R., Errecalde, F., Farre, R., and Lagarda, M. J. 1992. Relationship Between Cobalt, Copper and Zinc Content of Soils and Vegetables. Nahrung 36[5], 451-460 FL Aleshin, E. P., Sheudzhen, A. K., Doseeva, O. A., and Rymar, V. T. 1987. Interim Final Eco-SSL Guidance: Cobalt September, 2002 Eco-SSL web site:http://www.epa.gov/ecotox/ecossl/index.html Interim Final Eco-SSL Guidance: Cobalt Cobalt Publications Rejected as Not Acceptable for Plants and Invertebrates Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition ). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection ( Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding). Photosynthetic and Respiratory Activity in Rice Leaves as a Function of Cobalt Supply to the Plants. Dokl.Vses.Akad.Sel'skokhoz.Nauk 2, 15-17 Media Amir, Hamid and Pineau, Rene. 1998. Effects of metals on the germination and growth of fungal isolates from new caledonian ultramafic soils. Soil Biology & Biochemistry 30[14], 2043-2054 Mix Anderson, A. J., Meyer, D. R., and Mayer, F. K. 1973. Heavy Metal Toxicities: Levels of Nickel, Cobalt, and Chromium in the Soil and Plants Associated with Visual Symptoms and Variation in Growth of an Oat Crop. Aust.J.Agric.Res. 24, 557-571 Mix Andreae, H. Verteilung Von Schwermetallen In Einem Forstlich Genutzten Wassereinzugsgebiet Unter Dem Einfluss Saurer Deposition Am Beispiel Der Soesemulde (Westharz). (Distribution Of Heavy Metals In A Wood Culture Water Catchment Area Under The Influence Of Acid De. Govt-Reports-Announcements-&- Index-(GRA&I),-Issue-21,-1995 OM, pH Askew, H. O. and Dixon, J. K. 1937. Influence of Cobalt Top-Dressing on the Cobalt Status of Pasture Plants. N.Z.J.Sci.Technol. 18, 688-693 FL Astapovich, N. I. and Grel, M. V. 1975. Effects of Various Cobalt Salts and Their Concentrations on the Activity of Pectolytic Enzymes Systemized by Microscopic Fungi. Biol.Akt.Veshchestva Mikroorg. 36-39 FL Austenfeld, F. A. 1979. Effects of Nickel, Cobalt and Chromium on Net Photosynthesis of Primary and Secondary Leaves of Phaseolus vulgaris L. (Nettophotosynthese der Primarund Folgeblatter von Phaseolus vulgaris L. unter dem Einfluss von Nickel, Kobalt und Chrom). Photosynthetica 13[4], 434-438 Media Baker, A. J. M., Brooks, R. R., Pease, A. J., and Malaisse, F. 1983. Studies on Copper and Cobalt Tolerance in Three Closely Related Taxa Within the Genus Silene L. (Caryophyllaceae) from Zaire. Plant Soil 73, 377-385 Media Barker, A. V. and Corey, K. A. 1991. Interrelationships of ammonium toxicity and ethylene action in tomato. Hortscience. 26[2], 177-180 Media Berry, W. L. 1978. Comparative Toxicity of VO3, CrO2-4, Ni2+, Cu2+, Zn2+, and Interim Final Eco-SSL Guidance: Cobalt September, 2002 Eco-SSL web site:http://www.epa.gov/ecotox/ecossl/index.html 2 Interim Final Eco-SSL Guidance: Cobalt Cobalt Publications Rejected as Not Acceptable for Plants and Invertebrates Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition ). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection ( Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding). Cd2+ to Lettuce Seedlings. In: D.C.Adriano and I.L.Brisbin,Jr.(Eds.), Environmental Cemistry and Cycling Processes, Proc.Symp.Held at Augusta, Georgia, April 18- May 1, 1976, Tech.Info.Center, U.S.Dep of Energy (U.S.NTIS CONF-760429) , 582-589 Media Bittell, J., Koeppe, D. E., and Miller, R. J. 1974. Sorption of Heavy Metals Cations by corn Mitochondria and the Effects on Electron and Energy Transfer Reactions. Physiol Plant 30, 226-230 Species Blankenship, M. L. and Wilbur, K. M. 1975. Cobalt Effects on Cell Division and Calcium Uptake in the Coccolithophoroid Cricosphaera carterae (Haptophyceae) 38589. J.Physiol. 11, 211-219 Media Bobak, M. 1974. Influence of Exogenous Added Cobalt upon the Submicroscopic Structure and the Chromosomes of Meristematic Cells of the Horse Bean (Vicia faba L.,C.V. Zborovicky). Physiol.Plant. 8, 17-24 Media Bolle-Jones, E. W. and Mallikarjuneswara, V. R. 1957. A Beneficial Effect of Cobalt on the Growth of the Rubber Plant (Hevea brasiliensis). Nature 179, 738-739 Rev Bozhenkov, V. P. 1968. Effect of Aluminum and Cobalt on the Nucleic Acid Content and Ribonuclease Acitivty in the Growth Points of Sunflower Under Water Deficit Conditions 37728. Russ.J.Plant Physiol.(Transl.of Fiziol.Rast.15(1):116-122) 68, 94-99 Media Brenchley, W. E. 1938. Comparative Effects of Cobalt, Nickel and Copper on Plant Growth. Ann.Appl.Biol. 25[4], 671-694 Dup Brenchley, W. E. 1938. Comparative Effects of Cobalt, Nickel, and Copper on Plant Growth 40004. Ann.Appl.Biol. 25[4], 671-694 No Control Brooks, R. R. 1977. Copper and Cobalt Uptake by Haumaniastrum Species. Plant Soil 48, 541-544 Rev Brooks, R. R., Reeves, R. D., Morrison, R. S., and Malaisse, F. 1980. Hyperaccumulation of Copper and Cobalt: A Review. Bull.Soc.R.Bot.Belgique 113, 166-172 FL Burca, S., Cachita-Cosma, D., Craciun, C., and Trifu, M. 1984. Modifications Interim Final Eco-SSL Guidance: Cobalt September, 2002 Eco-SSL web site:http://www.epa.gov/ecotox/ecossl/index.html 3 Interim Final Eco-SSL Guidance: Cobalt Cobalt Publications Rejected as Not Acceptable for Plants and Invertebrates Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened.
Recommended publications
  • Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth
    Subscriber access provided by RES CENTER OF ECO ENVIR SCI Article Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt#Cerium Composite Oxide Catalysts for N2O Decomposition Li Xue, Hong He, Chang Liu, Changbin Zhang, and Bo Zhang Environ. Sci. Technol., 2009, 43 (3), 890-895 • DOI: 10.1021/es801867y • Publication Date (Web): 05 January 2009 Downloaded from http://pubs.acs.org on January 31, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Environ. Sci. Technol. 2009, 43, 890–895 Promotion Effects and Mechanism such as Fe-ZSM-5 are more active in the selective catalytic reduction (SCR) of N2O by hydrocarbons than in the - ° of Alkali Metals and Alkaline Earth decomposition of N2O in a temperature range of 300 400 C (3). In recent years, it has been found that various mixed Metals on Cobalt-Cerium oxide catalysts, such as calcined hydrotalcite and spinel oxide, showed relatively high activities. Composite Oxide Catalysts for N2O One of the most active oxide catalysts is a mixed oxide containing cobalt spinel. Calcined hydrotalcites containing Decomposition cobalt, such as Co-Al-HT (9-12) and Co-Rh-Al-HT (9, 11), have been reported to be very efficient for the decomposition 2+ LI XUE, HONG HE,* CHANG LIU, of N2O.
    [Show full text]
  • Stable Isotopes of Cobalt Properties of Cobalt
    Stable Isotopes of Cobalt Isotope Z(p) N(n) Atomic Mass Natural Abundance Nuclear Spin Co-59 27 32 58.93320 100.00% 7/2- Cobalt was discovered in 1735 by Georg Brandt. Its name derives from the German word kobald, meaning "goblin" or "evil spirit." Minerals containing cobalt were used by the early civilizations of Egypt and Mesopotamia for coloring glass deep blue. Cobalt oxide is used today to add a pink or blue color to glass. It is also an important trace element in soils and necessary for animal nutrition. The most important modern use of cobalt is in the manufacture of various wear-resistant and superalloys. Its alloys have shown high resistance to corrosion and oxidation at high temperatures. Radioactive Cobalt-60 is used in radiography and in the sterilization of food. A silvery-white, shining, hard, ductile, somewhat malleable metal, cobalt is also ferromagnetic, with permeability two-thirds that of iron. It has exceptional magnetic properties in alloys. It is attached by dilute hydrochloric and sulfuric acids. It corrodes readily in air, and it has unusual coordinating properties, especially the trivalent ion. It is noncombustible except in powder form. Cobalt occurs in two allotropic modifications over a wide range of temperatures: the crystalline close-packed- hexagonal form is known as the alpha form, which turns into the beta (or gamma) form above 417 ºC. In finely powdered form, cobalt ignites spontaneously in air. Reactions with acetylene and bromine pentafluoride proceed to incandescence and can become violent. The metal is moderately toxic by ingestion. Inhalation of dusts can damage lungs.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • The Periodic Table of Elements
    The Periodic Table of Elements 1 2 6 Atomic Number = Number of Protons = Number of Electrons HYDROGENH HELIUMHe 1 Chemical Symbol NON-METALS 4 3 4 C 5 6 7 8 9 10 Li Be CARBON Chemical Name B C N O F Ne LITHIUM BERYLLIUM = Number of Protons + Number of Neutrons* BORON CARBON NITROGEN OXYGEN FLUORINE NEON 7 9 12 Atomic Weight 11 12 14 16 19 20 11 12 13 14 15 16 17 18 SODIUMNa MAGNESIUMMg ALUMINUMAl SILICONSi PHOSPHORUSP SULFURS CHLORINECl ARGONAr 23 24 METALS 27 28 31 32 35 40 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 POTASSIUMK CALCIUMCa SCANDIUMSc TITANIUMTi VANADIUMV CHROMIUMCr MANGANESEMn FeIRON COBALTCo NICKELNi CuCOPPER ZnZINC GALLIUMGa GERMANIUMGe ARSENICAs SELENIUMSe BROMINEBr KRYPTONKr 39 40 45 48 51 52 55 56 59 59 64 65 70 73 75 79 80 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 RUBIDIUMRb STRONTIUMSr YTTRIUMY ZIRCONIUMZr NIOBIUMNb MOLYBDENUMMo TECHNETIUMTc RUTHENIUMRu RHODIUMRh PALLADIUMPd AgSILVER CADMIUMCd INDIUMIn SnTIN ANTIMONYSb TELLURIUMTe IODINEI XeXENON 85 88 89 91 93 96 98 101 103 106 108 112 115 119 122 128 127 131 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 CESIUMCs BARIUMBa HAFNIUMHf TANTALUMTa TUNGSTENW RHENIUMRe OSMIUMOs IRIDIUMIr PLATINUMPt AuGOLD MERCURYHg THALLIUMTl PbLEAD BISMUTHBi POLONIUMPo ASTATINEAt RnRADON 133 137 178 181 184 186 190 192 195 197 201 204 207 209 209 210 222 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 FRANCIUMFr RADIUMRa RUTHERFORDIUMRf DUBNIUMDb SEABORGIUMSg BOHRIUMBh HASSIUMHs MEITNERIUMMt DARMSTADTIUMDs ROENTGENIUMRg COPERNICIUMCn NIHONIUMNh
    [Show full text]
  • Undocumented Water Column Sink for Cadmium in Open Ocean Oxygen-Deficient Zones
    Undocumented water column sink for cadmium in open ocean oxygen-deficient zones David J. Janssena, Tim M. Conwayb, Seth G. Johnb, James R. Christianc, Dennis I. Kramera, Tom F. Pedersena, and Jay T. Cullena,1 aSchool of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada V8W 2Y2; bDepartment of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208; and cFisheries and Oceans Canada, Victoria, BC, Canada V8W 3V6 Edited by Edward A. Boyle, Massachusetts Institute of Technology, Cambridge, MA, and approved April 4, 2014 (received for review February 6, 2014) 3− Cadmium (Cd) is a micronutrient and a tracer of biological this sink induces local changes in Cd:PO4 must be understood productivity and circulation in the ocean. The correlation between to correctly interpret paleoceanographic records. dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient Results and Discussion distributions. However, linking Cd to marine biological processes Cadmium and other trace metals such as copper (Cu) and zinc requires constraints on marine sources and sinks of Cd. Here, we (Zn) are known to form solid sulfide precipitates in the ocean show a decoupling between Cd and major nutrients within oxygen- under conditions of anoxia where sulfide is present. For example, deficient zones (ODZs) in both the Northeast Pacific and North precipitation of Cd sulfide (CdS) (13) leading to dissolved Cd Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation depletion is observed at oxic–anoxic interfaces in stratified basins in euxinic microenvironments around sinking biological particles.
    [Show full text]
  • Soft Magnetic Cobalt-Iron Alloys Vacoflux and Vacodur
    SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX AND VACODUR ADVANCED MAGNETIC SOLUTIONS THE COMPANY VACUUMSCHMELZE ADVANCED MAGNETIC SOLUTIONS VAC is a leading manufacturer of magnetic materials as well as our refined solutions and their special magnetic and solutions. We passionately advance the tech- properties are the key to making our customers’ nologies of today and tomorrow. As a reliable partner, systems smaller, lighter, more efficient and, last but we work with our customers to develop application not least, safer. Thereby we contribute significantly to solutions that make it possible to meet constantly the saving of resources and the protection of our increasing requirements. We push technical boundaries environment. with groundbreaking solutions. The use of our materials 2 SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX® AND VACODUR® THE COMPANY VACUUMSCHMELZE Contents Introduction Page 4 Magnetic properties Page 7 DC magnetic properties of strip material Page 8 DC magnetic properties of solid material Page 9 Specific iron losses of strip material Page 9 Mechanical properties Page 10 Mechanical properties of strip material Page 11 Mechanical properties of solid material Page 11 Physical properties Page 12 Corrosion resistance of VACOFLUX 9 CR Page 13 Processing Page 14 Magnetic final annealing Page 14 Adjusting mechanical properties for VACODUR strip material Page 16 General processing information Page 17 Forms of supply Page 18 SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX® AND VACODUR® 3 INTRODUCTION VACUUMSCHMELZE is one of the world’s leading manufac- Our range of soft magnetic materials comprises nickel-iron, turers of special alloys with a particular focus on magnetic silicon-iron and cobalt-iron alloys, as well as amorphous and and specific physical properties.
    [Show full text]
  • Evaluation of the Trace Metal Supplements for a Synthetic Low Lactose Diet
    Arch Dis Child: first published as 10.1136/adc.58.6.433 on 1 June 1983. Downloaded from Archives of Disease in Childhood, 1983, 58, 433-437 Evaluation of the trace metal supplements for a synthetic low lactose diet P J AGGETT, J MORE, J M THORN, H T DELVES, M CORNFIELD, AND B E CLAYTON Department of Chemical Pathology, Institute of Child Health, London SUMMARY A trace element supplement used with a synthetic low lactose milk (Galactomins 17 and 18) has been evaluated by means of metabolic balance studies in 4 infants with dissacharide intolerances. The supplement was considered satisfactory for iron and manganese but increases in its zinc and copper content are probably necessary to ensure adequate retentions ofthese metals. Diets used in the management of infants with synthetic low lactose milks (Galactomins 17 and 18, inborn errors of metabolism or dietary intolerances Cow and Gate Ltd) has been assessed. There may have an inadequate essential trace element are three similar Galactomin products which are content."-3 This deficiency may be quantitative in derived from demineralised casein and which are as much as these micronutrients are lost during prepared according to a formula elaborated in this manufacture of the diet, or it may be a qualitative department.5 They are used in the management of defect resulting from postulated interactions between dietary lactose intolerances (Galactomins 17, 18, and these elements and other inorganic and organic 19) and of inborn errors of galactose metabolism dietary constituents which reduce intestinal
    [Show full text]
  • Determination of Acute Toxicity of Copper and Cobalt for Tilapia Nilotica
    Journal of Bioresource Management Volume 2 Issue 1 Article 3 Determination of Acute Toxicity of Copper and Cobalt for Tilapia nilotica Asif Naseem Rai University of Agriculture Faisalabad, [email protected] Asmat Ullah Hazara University, Mansehra Jibran Haider Forest and Wildlife Department, Gilgit-Baltistan Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Biodiversity Commons, and the Biology Commons Recommended Citation Rai, A. N., Ullah, A., & Haider, J. (2015). Determination of Acute Toxicity of Copper and Cobalt for Tilapia nilotica, Journal of Bioresource Management, 2 (1). DOI: 10.35691/JBM.5102.0012 ISSN: 2309-3854 online This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Determination of Acute Toxicity of Copper and Cobalt for Tilapia nilotica © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited. Journal of Bioresource Management does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved. For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or Journal of Bioresource Management’s prior written permission.
    [Show full text]
  • Silver & Cobalt
    JULY 2020 CORPORATE PRESENTATION High-Grade and Technology Leader in Canada’s Silver-Cobalt Heartland SILVER & COBALT CANADA’S SILVER-COBALT HEARTLAND TSX-V CCW | OTC CCWOF | FRANKFURT 4T9B Forward-Looking Statements D I S C L A I M E R Q U A L I F I E D P E R S O N Neither the TSX Venture Exchange nor its Regulation Service Provider (as The technical information in that term is defined in the policies of the TSX Venture Exchange) this corporate presentation was accepts responsibility for the adequacy or accuracy of this material. This prepared under the supervision of presentation may contain forward-looking statements including but not Canada Silver Cobalt Works Inc.’s limited to comments regarding the timing and content of upcoming work President and CEO, Frank J. Basa, programs, geological interpretations, receipt of property titles, potential P.Eng., who is a member of mineral recovery processes, etc. Professional Engineers Ontario and is a Qualified Person in accordance with Forward-looking statements address future events and conditions and National Instrument 43-101. therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. TSX-V CCW | OTC CCWOF | FRANKFURT 4T9B 2 CCW’s High-Grade Castle East Discovery Meets Robust New Silver Bull Market! The Right Location! Scale Potential Top-Tier Grades Team with Proven Local Success Strategy To Leverage Discovery & Resource TSX-V CCW | OTC CCWOF | FRANKFURT 4T9B 3 Breaking News Matt Halliday New President and Chief Operating Officer • Powerful, expanded team with fresh leadership and energy to take CCW to next level.
    [Show full text]
  • Structures of Cobalt, Zinc and Lead Niobates Based On
    1 Structures at the Atomic Level of Cobalt, Zinc and Lead Niobates Raji Heyrovska Institute of Biophysics, Academy of Sciences of the Czech Republic, 135 Kralovopolska, 612 65 Brno, Czech Republic. Email: [email protected] The author has found in recent years that bond lengths are exact sums of the radii of adjacent atoms and or ions, where the ions have Golden ratio based radii. This work was prompted by the exciting observation last year of the Golden ratio in the magnetic properties of cobalt niobate. It is shown here that in cobalt and zinc niobates, cobalt, zinc and oxygen ions have Golden ratio based ionic radii, whereas in lead niobate, all atoms have covalent radii. Also, the angles at the single bond oxygen anion and atom are close to 1080, as in a pentagon. 1-3 The experimental finding of the E8 symmetry in the magnetic properties of cobalt niobate, CoNb2O6 provoked the author's interest to look into the atomic Nature Precedings : hdl:10101/npre.2011.6059.1 Posted 24 Jun 2011 structures of niobates. It was found4-7 in recent years that the Golden sections of the covalent bond lengths d(AA) between two atoms of the same kind are sums of the radii of Pauling's ionic resonance forms8, which are the cations and anions of the atom (A), i.e., d(AA) = d(AA)/φ + d(AA)/φ2, where φ (= 51/2 + 1)/2 is the Golden ratio. In particular, the inter-ionic distances in all alkali halides (M+X-) were shown to be exact sums of the Golden ratio based ionic radii, d(M+) = d(MM)/φ2 and d(X-) = d(XX)/φ.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • Trace Metal Toxicity from Manure in Idaho: Emphasis on Copper
    Proceedings of the 2005 Idaho Alfalfa and Forage Conference TRACE METAL TOXICITY FROM MANURE IN IDAHO: EMPHASIS ON COPPER Bryan G. Hopkins and Jason W. Ellsworth1 TRACE METALS: TOXIC OR ESSENTIAL Plants have need for about 18 essential nutrients. Of these essential nutrients, several are classified as trace metals, namely: zinc, iron, manganese, copper, boron, molybdenum, cobalt, and nickel. In addition, other trace metals commonly exist in soil that can be taken up, such as arsenic, chromium, iodine, selenium, and others. Some of these elements are more or less inert in the plant and others can be utilized although they are not essential. Animals also have requirements for trace elements. Although plants require certain trace elements, excessive quantities generally cause health problems. Plants typically show a variety of symptoms that depend on element and species, but there is generally a lack of vigor and root growth, shortened internodes, and chlorosis. Boron and copper are the two micronutrients most likely to induce toxicity. However, one time high rates of copper have been shown to be tolerated in some cases, but accumulations have been shown to be toxic in others. Copper has been used for centuries as a pesticide and, although bacteria and fungi are relatively more susceptible to it, excessively high exposure is detrimental to plants. Manganese toxicity is also common, but generally only in very acidic soils. Lime application raises pH and reduces the manganese solubility. Zinc and iron have a similar pH relationship, but are less frequently toxic in acid soils. Zinc, iron, manganese, and copper have a known relationship with phosphorus as well.
    [Show full text]