J. Appl. Entomol. ORIGINAL CONTRIBUTION Temperature-dependent phenology and growth potential of the Andean potato tuber moth, Symmetrischema tangolias (Gyen) (Lep., Gelechiidae) M. Sporleder1, B. Schaub2, G. Aldana3 & J. Kroschel1 1 International Potato Center (CIP), Lima, Peru 2 Institute of Plant Production and Agroecology in the Tropics and Subtropics (380), Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany 3 Agroklinge SA, Ate, Lima, Peru Keywords Abstract development rate models, life table statistics, modelling, Phthorimaea operculella, potato The Andean potato tuber moth, Symmetrischema tangolias (Gyen) [Lepi- pests, potato tuber moth, temperature- doptera, Gelechiidae], is an economically important pest of potato (Sola- dependent development num tuberosum L.) in the mid-elevated Andean region and an invasive pest of partially global importance. Determination of the pest’s population life Correspondence table parameters is essential for understanding population development Marc Sporleder (corresponding author), and growth under a variety of climates and as part of a pest risk analysis. International Potato Center (CIP), Lange Straße 59, 37 139 Adelebsen, Germany. The development, mortality and reproduction were studied in two pest E-mail:
[email protected] populations (from Peru and Ecuador) in which cohorts of each life stage were exposed to different constant temperatures ranging from 10°Cto Received: August 20, 2015; accepted: Febru- 28°C. Using the Insect Life Cycle Modeling software, nonlinear equations ary 25, 2016. were fitted to the data and an overall phenology model established to sim- ulate life table parameters based on temperature. The temperature-depen- doi: 10.1111/jen.12321 dent development curve was statistically well described for eggs by Ratkowsky’s model and for larvae and pupae by Taylor’s model.