South African Journal of Enology and Viticulture

Total Page:16

File Type:pdf, Size:1020Kb

South African Journal of Enology and Viticulture SOUTH AFRICAN JOURNAL OF ENOLOGY AND VITICULTURE ISSN NR 0253-939X VOLUME FORTY ONE· NUMBER TWO 41(2) 2020 LATEST IMPACT FACTOR: 1.833 MANUSCRIPTS ARE PUBLISHED ONLINE BY SUNJournals (http://www.journals.ac.za/index.php/sajev) Electronic copies of manuscripts are freely available at: http://www.sasev.org and on the internet via most search engines EDITOR Prof Leon M.T. Dicks E-mail: [email protected] ASSISTANT-EDITORS Dr Pia Addison (South Africa), Dr Elleunorah Allsopp (South Africa), Dr Rolene Bauer (South Africa), Prof Florian Bauer (South Africa), Dr Astrid Buica (South Africa), Prof Simone Castellarin (Canada), Dr Michael Costello (USA), Prof Benoit Divol (South Africa), Prof Maret du Toit (South Africa), Dr Ana M Fortes (Portugal), Dr Francois Halleen (South Africa), Dr Carolyn Howell (South Africa), Dr Lucilla Iacumin (Italy), Dr Neil Jolly (South Africa), Dr Sandra Lamprecht (South Africa), Dr Marianne McKay (South Africa), Dr John Moore (South Africa), Dr Lizel Mostert (South Africa), Dr Carlos Poblete-Echeverria (South Africa), Prof Doris Rauhut (Germany), Dr Evodia Setati (South Africa), Prof Giuseppe Spano (Italy), Janene Strydom (South Africa), Hanlé Theron (South Africa), Dr Philip Young (South Africa) Subscription for subscribers in South Africa = R850.00 (as from January 2021) Subscription for subscribers from outside South Africa = R2 100.00 (as from January 2021) Payment: Remittances to the correct amount must accompany all orders. Customers outside South Africa should preferably remit by bank drafts. Bank drafts must be calculated in, or for conversion into, South African Currency, free of all charges, and be made payable to SAWWV. Inquiries should be addressed to: SOUTH AFRICAN SOCIETY FOR ENOLOGY AND VITICULTURE Post Office Box 2092, Dennesig, Stellenbosch 7601, South Africa Page layout of this volume by André van der Merwe SAWWV · SASEV · PO Box 2092, Dennesig 7601 · Tel: +27-21-889 6311 or 889 6312 Fax: +27 21 889 6335 · E-mail: [email protected] Website: http://www.sasev.org VOLUME 41, NO 2, 2020 SOUTH AFRICAN JOURNAL OF ENOLOGY AND VITICULTURE CONTENTS Page A Review of Trimen’s False Tiger Moth, Agoma trimenii (Lepidoptera: Agaristidae): Seasonal Biology, Potential Monitoring and Control Techniques C.A. Morris, S.A. Johnson, J.Y. De Waal, A.P. Malan ......................................................................................................................................................... 128 Evaluation of South African Chenin Blanc Wines Made From Six Different Trellising Systems Using a Chemical and Sensorial Approach V. Panzeri, H.N. Ipinge, A. Buica .......................................................................................................................................................................................... 133 Pinking in White Wines – A Review A.P. Nel, W.J. du Toit, F.P. van Jaarsveld ............................................................................................................................................................................ 151 Modulation of Aroma and Sensory Properties of Prokupac Wines by a Bacillus-based Preparation Applied to Grapes Prior to Harvest M. Malićanin, B. Danilović, D. Cvetković, S. Stamenković-Stojanović, N. Nikolić, M. Lazić, I. Karabegović .................................................................. 158 Investigating the Concept of South African Old Vine Chenin Blanc M. Mafata, J. Brand, V. Panzeri, A. Buica ............................................................................................................................................................................. 168 RESEARCH NOTE Laboratory Bioassays on the Susceptibility of Trimen’s False Tiger Moth, Agoma trimenii (Lepidoptera: Agaristidae), to Entomopathogenic Nematodes and Fungi C. Morris, A.P. Malan, J.Y. De Waal, S. Johnson ................................................................................................................................................................ 183 Cold Hardiness of Primary Buds of Wine and Table Grape Cultivars in Poland J. Lisek, A. Lisek ................................................................................................................................................................................................................... 189 Complete Genome Sequencing of Lactobacillus plantarum UNQLp 11 Isolated from a Patagonian Pinot Noir Wine N.G. Iglesias, N.S. Brizuela, E.E. Tymczyszyn, A. Hollmann, D. Valdés La Hens, L. Semorile, B.M Bravo-Ferrada ........................................................ 197 Colour Evaluation of Pinot Noir and Merlot Wines after Malolactic Fermentation Carried out by Oenococcus oeni and Lactobacillus plantarum Patagonian Native Strains N.T. Olguin, L. Delfederico, L. Semorile .............................................................................................................................................................................. 210 A Review of Leaf-mining Insects and Control Options for their Management, with Special Reference to Holocacista capensis (Lepidoptera: Heliozelidae) in Vineyards in South Africa L.A.I. Steyn, H. Geertsema, A.P. Malan, P. Addison ........................................................................................................................................................... 218 Evolution of Phenolic Composition During Barrel and Bottle Aging J.L. Aleixandre-Tudo, W.J. du Toit ....................................................................................................................................................................................... 233 Alteration Index Three Facilitates Interpretation of β-Glucosidase, Acid-phosphatase and Urease Activities in Soils Irrigated with Diluted Winery Wastewater I. van Huyssteen, A.R. Mulidzi, A.H. Meyer, J. Wooldridge ............................................................................................................................................... 238 Is There a Link Between Coffee Aroma and the Level of Furanmethanethiol (FMT) in Pinotage Wines? G. Garrido-Bañuelos, A. Buica ............................................................................................................................................................................................. 245 PUBLISHED TWICE ANNUALLY BY THE SOUTH AFRICAN SOCIETY FOR ENOLOGY AND VITICULTURE Cover designed by Leon Dicks Jnr. A Review of Trimen’s False Tiger Moth, Agoma trimenii (Lepi- doptera: Agaristidae): Seasonal Biology, Potential Monitoring and Control Techniques C.A. Morris1, S.A. Johnson1,*, J.Y. De Waal2, A.P. Malan1 (1) Department of Conservation Ecology, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), South Africa (2) Corteva AgriscienceTM, South Africa Submitted for publication: February 2020 Accepted for publication: May 2020 Key words: Agoma trimenii, grapevine, monitoring, Trimen’s false tiger moth Trimen’s false tiger moth, Agoma trimenii (Lepidoptera: Agaristidae), has recently been found to occur in vineyards in the Northern Cape and Limpopo (Groblersdal area) provinces of South Africa. As little is known about the biology and behaviour of the moth, no official monitoring methods or economic thresholds relating to it exist. Consequently, management and registered control options still require development. The first aim of the current review was to gather and critically discuss all the available information on A. trimenii in the context of the information gained from field observations conducted in the Northern Cape during the 2016/2017 and 2017/2018 seasons. The paper also includes reporting on field observations made with regard to various aspects of the seasonal life cycle and ecology of A. trimenii, with a view to investigate, in future research, the potential biological control options available. Potential monitoring strategies of A. trimenii in the field were investigated. Various life stages of A. trimenii were identified, peak flight times were established, overlapping generations were determined, and the behavioural traits of all life stages were documented. Ultraviolet blue light traps proved to be the most promising potential monitoring strategy, with the prospect for an A. trimenii pheromone lure holding potential as an alternative monitoring strategy in the future. In summarising all current information on A. trimenii, recommendations for growers to monitor and control A. trimenii are presented towards the development of an integrated pest management system for the moth. INTRODUCTION South Africa is a major contributor to the worldwide export Knowledge relating to the biology and life cycle of of table grapes, having produced an estimate of 59.4 million A. trimenii is limited, and consequently there is a need for cartons during the 2018/2019 season (SATI, 2019). Table a monitoring system for this pest. Improved knowledge grapes are prone to outbreaks of various pest arthropods, of A. trimenii would assist in decision-making on and the and damage may occur directly to the fruit or indirectly by application of control options towards developing and weakening the plant. Both types of damage negatively affect implementing an integrated pest management (IPM) strategy grapevine production. for the pest. The aim of the current review and preliminary Agoma trimenii (Felder) (Lepidoptera: Agaristidae), research study was to gather and critically discuss all the Trimen’s false tiger moth, was first described in 1874 in available
Recommended publications
  • Archiv Für Naturgeschichte
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Bericht über die wissenschaftlichen Leistungen im Gebiete der Entomologie während der Jahre 1859 und 1860. (Zweite Hälfte). Von Dr. A. Gerstaecker in Berlin. Hymenoptera. Auf die Verschiedenheiten, welche die an der Costa der Hymenopteren-Hinterflüg-el befindlichen Häkchen, durch welche bekanntlich der Schluss der Flügel während des Fluges der Aderflügler bedingt wird , sowohl in Zahl als Anordnung darbieten, hat Miss Staveley in einer durch Abbildungen illustrirten Abhandlung „Observations on the neuration of the bind wings of Hymenopterous Insects, and on the hooks which join the forc and bind wings together in flight" (Transact. Linnean soc. of London XXIII. 1. p. 125— 137. tab.l6u. 17) hingewiesen. Diese Abhandlung ist eine weitere Ausführung einer schon von J. E. Gray (Annais of nat. bist. V. p. 339 ff.) mitgethcilton und von derselben Verfasserin herrührenden hürzeren Notiz : „On the hooks on the front edge of the hinder wings of certain Hymenoptera," in welcher zunächst nur auf die Modifika- tionen jener Flügelhäkchen bei einigen Ichneurnoniden hingewiesen wird. — in der genannten grösseren Abhand- lung geht die Verf. zunächst auf das bisher wenig beachtete Geäder der Hinterflügcl ein und glaubt die Verschieden- heiten desselben , besonders in Bezug auf das Verhalten der Costa , drei Categorieen zuertheilen zu müssen (die © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Gerstaecker: Bericht über die Wissenschaft).
    [Show full text]
  • DNA Barcodes for Bio-Surveillance
    Page 1 of 44 DNA Barcodes for Bio-surveillance: Regulated and Economically Important Arthropod Plant Pests Muhammad Ashfaq* and Paul D.N. Hebert Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada * Corresponding author: Muhammad Ashfaq Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada Email: [email protected] Phone: (519) 824-4120 Ext. 56393 Genome Downloaded from www.nrcresearchpress.com by 99.245.208.197 on 09/06/16 1 For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. Page 2 of 44 Abstract Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management.
    [Show full text]
  • African Butterfly News Can Be Downloaded Here
    LATE SUMMER EDITION: JANUARY / AFRICAN FEBRUARY 2018 - 1 BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to the first newsletter of 2018! I trust you all have returned safely from your December break (assuming you had one!) and are getting into the swing of 2018? With few exceptions, 2017 was a very poor year butterfly-wise, at least in South Africa. The drought continues to have a very negative impact on our hobby, but here’s hoping that 2018 will be better! Braving the Great Karoo and Noorsveld (Mark Williams) In the first week of November 2017 Jeremy Dobson and I headed off south from Egoli, at the crack of dawn, for the ‘Harde Karoo’. (Is there a ‘Soft Karoo’?) We had a very flexible plan for the six-day trip, not even having booked any overnight accommodation. We figured that finding a place to commune with Uncle Morpheus every night would not be a problem because all the kids were at school. As it turned out we did not have to spend a night trying to kip in the Pajero – my snoring would have driven Jeremy nuts ... Friday 3 November The main purpose of the trip was to survey two quadrants for the Karoo BioGaps Project. One of these was on the farm Lushof, 10 km west of Loxton, and the other was Taaiboschkloof, about 50 km south-east of Loxton. The 1 000 km drive, via Kimberley, to Loxton was accompanied by hot and windy weather. The temperature hit 38 degrees and was 33 when the sun hit the horizon at 6 pm.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Life Table and Biological Characteristics of the Parasitoid Semielacher Petiolatus Reared on Phyllocnistis Citrella
    Bulletin of Insectology 74 (1): 129-137, 2021 ISSN 1721-8861 eISSN 2283-0332 Life table and biological characteristics of the parasitoid Semielacher petiolatus reared on Phyllocnistis citrella Argyro KALAITZAKI1, Dionyssios PERDIKIS2, Antonios TSAGKARAKIS2, Ioannis KOUFAKIS1,3, Dionyssios LYKOURESSIS2 1Hellenic Agricultural Organization ‘DEMETER’, Institute of Olive Tree, Subtropical Plants and Viticulture, Cha- nia, Greece 2Agricultural University of Athens, Laboratory of Agricultural Zoology and Entomology, Athens, Greece 3Democritus University of Thrace, Department of Agricultural Development, Laboratory of Agricultural Entomology and Zoology, Orestiada, Greece Abstract Semielacher petiolatus (Girault) (Hymenoptera Eulophidae) is an ectoparasitoid of the citrus leaf miner Phyllocnistis citrella Stain- ton (Lepidoptera Gracillariidae) that has been widely released in several Mediterranean countries. In an attempt to evaluate the insects temperature adaptations that play a significant role in its establishment potential, life table parameters and the effect of temperature on its fecundity, longevity, host-instar choice, superparasitism and host feeding were studied. Tests were conducted at 20, 25 and 30 ± 0.5 °C with 60 ± 10% RH and a 14L:10D photoperiod. S. petiolatus oviposition period was 21.05 ± 2.54 days at 30 °C but as short as 2.25 ± 0.23 days at 20 °C. Fecundity had a maximum value (173.3 ± 27.09) at 30 °C followed by 143.57 ± 22.67 and 5.13 ± 0.81 at 25 and 20 °C, respectively while, 28.57% of the females failed to oviposit at 20 °C. Female longevity averaged between 25.20 and 20.57 days at 30 and 25 °C, respectively but dropped to just 5.77 days at 20 °C.
    [Show full text]
  • September 2000 Edition
    D O C U M E N T A T I O N AUSTRIAN WINE SEPTEMBER 2000 EDITION AVAILABLE FOR DOWNLOAD AT: WWW.AUSTRIAN.WINE.CO.AT DOCUMENTATION Austrian Wine, September 2000 Edition Foreword One of the most important responsibilities of the Austrian Wine Marketing Board is to clearly present current data concerning the wine industry. The present documentation contains not only all the currently available facts but also presents long-term developmental trends in special areas. In addition, we have compiled important background information in abbreviated form. At this point we would like to express our thanks to all the persons and authorities who have provided us with documents and personal information and thus have made an important contribution to the creation of this documentation. In particular, we have received energetic support from the men and women of the Federal Ministry for Agriculture, Forestry, Environment and Water Management, the Austrian Central Statistical Office, the Chamber of Agriculture and the Economic Research Institute. This documentation was prepared by Andrea Magrutsch / Marketing Assistant Michael Thurner / Event Marketing Thomas Klinger / PR and Promotion Brigitte Pokorny / Marketing Germany Bertold Salomon / Manager 2 DOCUMENTATION Austrian Wine, September 2000 Edition TABLE OF CONTENTS 1. Austria – The Wine Country 1.1 Austria’s Wine-growing Areas and Regions 1.2 Grape Varieties in Austria 1.2.1 Breakdown by Area in Percentages 1.2.2 Grape Varieties – A Brief Description 1.2.3 Development of the Area under Cultivation 1.3 The Grape Varieties and Their Origins 1.4 The 1999 Vintage 1.5 Short Characterisation of the 1998-1960 Vintages 1.6 Assessment of the 1999-1990 Vintages 2.
    [Show full text]
  • Wyoming Residents Grow Grapes for Wines, Jellies
    UW Cooperative Extension Service April 2010 Page 3 Wyoming residents grow grapes for wines, jellies By Sandra Frost Bucking horses, coal mines, gas wells, and high, cold desert are images that come to mind first when asked about Wyoming. Grapes and wine are not near the top of the list. Grapes are successfully grown in Wyoming, though, at both the homeowner and commercial scales. Grape varieties may be suitable for juice, jams, and jellies, table grapes, or wine production. Grape variety research was done at the University of Wyoming Sheridan Research and Extension Center (SREC) over several years (www. uwyo.edu/uwexpstn/Sheridan.asp). Colorado State University bhas also conducted grape variety trials under conditions similar to Wyoming and makes variety recommendations (www.coopext. colostate.edu/TRA/PLANTS/fruit.shtml). Photo courtesy of South Dakota State University Site and variety selec- tion are the most important factors for growing grapes in Wyoming. A site on the sunny south side of a house that provides protection on the north and west sides from snow and wind is ideal. Winter hardiness is Farm bill disaster aid programs available an important variety char- By James Sedman and John Hewlett must have a minimum of cata- of the smaller of either the monthly acteristic since grape vines Past federal farm bill legisla- strophic coverage (CAT) crop feed cost for the total number of may live many years. tion dealt with disaster aid on insurance policy for all insurable livestock covered or the monthly Taking soil samples a case-by-case basis requiring crops and Non-Insured Disaster feed cost calculated by using the and having them tested special votes and appropriations Assistance Program (NAP) cover- normal carrying capacity of the for grape production is each time a disaster payment was age for all non-insurable crops.
    [Show full text]
  • Field Bindweed in California
    ers, seeds, or seed capsules. The most Field bindweed in California destructive organisms are the seed bee- tles (Bruchidae), especially Sperrnopha- The outlook for biological control gus sericeus (Geoffroy). In Greece, smut caused by the fungus Thecophora se- minis-convolvuli (Desmaz.) Lioro infects Sara S. Rosenthal 0 Lloyd A. Andres 0 Carl B. Huffaker up to 17 percent of the seeds. Stem and root feeders. The remain- ing Mediterranean natural enemies at- tack the stems and roots. The agromyzid fly, Melanagromyza albocilia Hendel, is Biological control is seldom attempt- fornia, we have found a pattern that the most widespread stem borer. The ed against weeds on cultivated lands, may be used to help select the most pyralid moth, Noctuelia floralis because herbicides generally provide suitable European organisms for bio- (Huebner), attacks stems and roots ex- economical, efficient control, and farm- logical control. ternally. The most common root feeder ing practices may interfere with the Our discussion focuses on such spe- is the larva of the flea beetle, Longitar- biological agents. Field bindweed, how- cies and excludes many insects attract- sus pellucidus Foudras (or very near). ever, reproduces from seeds that may ed to the flowers for pollen or nectar as The adult feeds on the leaves. remain alive in the soil for more than 40 well as many crop pests for which field years and from an extensive perennial bindweed is an alternate host. For ex- California plant feeders root system. Control by cultivation or ample, we did not include the spider Foliage feeders. As might be expect- chemicals is difficult, at best.
    [Show full text]
  • 2017, Jones Road, Near Blackhawk, RAIN (Photo: Michael Dawber)
    Edited and Compiled by Rick Cavasin and Jessica E. Linton Toronto Entomologists’ Association Occasional Publication # 48-2018 European Skippers mudpuddling, July 6, 2017, Jones Road, near Blackhawk, RAIN (Photo: Michael Dawber) Dusted Skipper, April 20, 2017, Ipperwash Beach, LAMB American Snout, August 6, 2017, (Photo: Bob Yukich) Dunes Beach, PRIN (Photo: David Kaposi) ISBN: 978-0-921631-53-7 Ontario Lepidoptera 2017 Edited and Compiled by Rick Cavasin and Jessica E. Linton April 2018 Published by the Toronto Entomologists’ Association Toronto, Ontario Production by Jessica Linton TORONTO ENTOMOLOGISTS’ ASSOCIATION Board of Directors: (TEA) Antonia Guidotti: R.O.M. Representative Programs Coordinator The TEA is a non-profit educational and scientific Carolyn King: O.N. Representative organization formed to promote interest in insects, to Publicity Coordinator encourage cooperation among amateur and professional Steve LaForest: Field Trips Coordinator entomologists, to educate and inform non-entomologists about insects, entomology and related fields, to aid in the ONTARIO LEPIDOPTERA preservation of insects and their habitats and to issue Published annually by the Toronto Entomologists’ publications in support of these objectives. Association. The TEA is a registered charity (#1069095-21); all Ontario Lepidoptera 2017 donations are tax creditable. Publication date: April 2018 ISBN: 978-0-921631-53-7 Membership Information: Copyright © TEA for Authors All rights reserved. No part of this publication may be Annual dues: reproduced or used without written permission. Individual-$30 Student-free (Association finances permitting – Information on submitting records, notes and articles to beyond that, a charge of $20 will apply) Ontario Lepidoptera can be obtained by contacting: Family-$35 Jessica E.
    [Show full text]
  • Grape Varieties for Indiana
    Commercial • HO-221-W Grape Varieties for Indiana COMMERCIAL HORTICULTURE • DEPARTMENT OF HORTICULTURE PURDUE UNIVERSITY COOPERATIVE EXTENSION SERVICE • WEST LAFAYETTE, IN Bruce Bordelon Selection of the proper variety is a major factor for fungal diseases than that of Concord (Table 1). Catawba successful grape production in Indiana. Properly match- also experiences foliar injury where ozone pollution ing the variety to the climate of the vineyard site is occurs. This grape is used primarily in white or pink necessary for consistent production of high quality dessert wines, but it is also used for juice production and grapes. Grape varieties fall into one of three groups: fresh market sales. This grape was widely grown in the American, French-American hybrids, and European. Cincinnati area during the mid-1800’s. Within each group are types suited for juice and wine or for fresh consumption. American and French-American Niagara is a floral, strongly labrusca flavored white grape hybrid varieties are suitable for production in Indiana. used for juice, wine, and fresh consumption. It ranks The European, or vinifera varieties, generally lack the below Concord in cold hardiness and ripens somewhat necessary cold hardiness to be successfully grown in earlier. On favorable sites, yields can equal or surpass Indiana except on the very best sites. those of Concord. Acidity is lower than for most other American varieties. The first section of this publication discusses American, French-American hybrids, and European varieties of wine Other American Varieties grapes. The second section discusses seeded and seedless table grape varieties. Included are tables on the best adapted varieties for Indiana and their relative Delaware is an early-ripening red variety with small berries, small clusters, and a mild American flavor.
    [Show full text]
  • Sweetpotato Leaf Miner (341)
    Pacific Pests and Pathogens - Fact Sheets https://apps.lucidcentral.org/ppp/ Sweetpotato leaf miner (341) Photo 1. Larval mines of the sweetpotato leafminer, Photo 1. Adult sweetpotato leafminer, Bedellia Bedellia somnulentella. somnulentella. Photo 3. Adult sweetpotato leafminer, Bedellia somnulentella, showing the fringed fore and hindwings. Common Name Sweetpotato leaf miner, morning glory leafminer Scientific Name Bedellia somnulentella; previously known as Bedellia ipomoeae. Distribution Worldwide. Asia, Africa, North America, Europe, Oceania. It is present in Australia, Fiji1, New Zealand, and Papua New Guinea. Hosts Sweet potato, kangkong (Ipomoea aquatica), and bindweeds (Calstegia and Convolvulus species). Symptoms & Life Cycle The damage is done by the larvae. Mines are at first serpentine (snake-like), and filled with frass; they become yellow-brown and later grow in width, forming blotches (Photo 1). At this stage, the larvae protrude from the blotch to defaecate. Later still, holes are produced in the leaves as the blotches are destroyed. The eggs are laid on the leaves, usually on the underside near the midrib, veins or base of the leaf blade. The larvae are yellowish with pink spots along the back, developing into red rounded projections on all segments. When mature, the larvae are 5.5 mm long. They exit the mines and make a network of silk threads on the underside of the leaf. When not feeding, they move around inside the threads, above the leaf surface. Frass often catches in the web of threads. The larvae pupate there. Adults are greyish brown, 3.5-4 mm long, with a tuft of light yellow to brown hairs on the head, and wingspan of 8-10 mm (Photos 2&3).
    [Show full text]