Subsidies to Ethanol in the United States
Total Page:16
File Type:pdf, Size:1020Kb
Chapter 4 Subsidies to Ethanol in the United States Doug Koplow and Ronald Steenblik Abstract Ethanol, or ethyl alcohol used for motor fuel, has long been used as a transport fuel. In recent years, however, it has been promoted as a means to pursue a multitude of public policy goals: reduce petroleum imports; improve vehicle emis- sions and reduce emissions of greenhouse gases; and stimulate rural development. Annual production of ethanol for fuel in the United States has trebled since 1999 and is expected to reach almost 7 billion gallons in 2007. This growth in production has been accompanied by billions of dollars of investment in transport and distribution infrastructure. Market factors, such as rising prices for petroleum products and state bans on methyl tertiary butyl ether (MTBE), a blending agent for which ethanol is one of the few readily available substitutes, drove some of this increase. But the main driving factor has been government support, provided at every point in the supply chain and from the federal to the local level. This chapter reviews the major policy developments affecting the fuel-ethanol industry of the United States since the late 1970s, quantifies their value to the industry, and evaluates the efficacy of ethanol subsidization in achieving greenhouse gas reduction goals. We conclude that not only is total support for ethanol already substantial — $5.8–7.0 billion in 2006 — and set to rise quickly, even under existing policy settings, but its cost effectiveness is low, especially as a means to reduce greenhouse gas emissions. Keywords Agriculture · biofuel · corn · energy · ethanol · policy · renewable energy · subsidies · support · United States D. Koplow Earth Track, Inc., 2067 Massachusetts Avenue, 4th Floor, Cambridge, MA 02140 e-mail: [email protected] R. Steenblik At the time of article submission, Director of Research for the Global Subsidies Initiative of the International Institute for Sustainable Development, Maison Internationalle de l’Environment 2, 9, chemin de Balexert, 1219 Chatelaineˆ Geneve,` Switzerland D. Pimentel (ed.), Biofuels, Solar and Wind as Renewable Energy Systems, 79 C Springer Science+Business Media B.V. 2008 80 D. Koplow, R. Steenblik Acronyms & abbreviations AFV: alternative fuel vehicle bgpy: billion U.S. gallons per year mgpy: million U.S. gallons per year CAFE: corporate average fuel economy CBERA: Caribbean Basin Economic Recovery Act CO2: carbon dioxide CRS: Congressional Research Service E10: a blended fuel comprised of 10% ethanol and 90% gasoline E85: a blended fuel comprised of 85% ethanol and 15% gasoline EIA: U.S. Energy Information Administration EPA: U.S. Environmental Protection Agency EPACT05: Energy Policy Act of 2005 FFV: flexible-fuel vehicle GHG: greenhouse gas GJ: gigajoule (109 joules) GSI: Global Subsidies Initiative IRS: Internal Revenue Service JCT: Joint Committee on Taxation (of the U.S. Congress) MPS: market price support MTBE: methyl tertiary-butyl ether NAFTA: North American Free Trade Agreement OECD: Organisation for Economic Co-operation and Development OTA: Office of Technology Assessment RFA: Renewable Fuels Association RFS: Renewable Fuels Standard USDA: U.S. Department of Agriculture VEETC: Volumetric Ethanol Excise Tax Credit 4.1 Introduction The modern U.S. ethanol industry was born subsidized. The Energy Tax Act of 1978 introduced the first major federal subsidy for ethanol, a 4 cents-per-gallon reduction in the federal excise tax on gasohol, or E10 (a blend of 10% ethanol and 90% gasoline). In that same year, the first commercial ethanol production capacity came online. Between 1980 and 1990, production capacity more than quintupled, ending the decade at around 900 million gallons per year (mgpy). Despite a slower period of growth from the late 1980s through the mid-1990s, production capacity has grown in recent years at a very fast pace over most of the last decade. According to the Renewable Fuels Association (RFA) the main ethanol trade group, production capacity increased from 1.7 billion gallons per year (bgpy) in 1999 to 7.3 bgpy at the end of 2007 (RFA, 2007a). An additional 6.2 bgpy of capacity were under 4 Subsidies to Ethanol in the United States 81 construction, the vast majority of which will rely on corn (RFA, 2007b).1 Mean- while, the supply side of the ethanol market is evolving towards ever larger plants, with the largest having annual capacities approaching 300 mgpy (Planet Ark, 2006). This trend will have important effects both on feedstock supply and on the market power of different portions of the supply chain. Conversion into ethanol serves as an increasingly important outlet for the indus- try’s main feedstock, corn. Estimates of the share of U.S. corn production used for ethanol vary, but most place it above 20% in 2007, and likely to rise above 30% within the next few years.2 Despite rapid growth in demand and diversion of corn into fuel, ethanol consumption for 2006 (5.4 bgpy) supplied less than 4% of the fuel used by gasoline-powered vehicles in that year (Fig. 4.1).3 8.0 7.0 6.0 5.0 4.0 3.0 2.0 Billions of gallons per year 1.0 0.0 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007e Capacity* Production Fig. 4.1 Fuel-ethanol production capacity1 and output2 in the United States, 1981 through 2007 1 Data for 2007 are authors’ estimates. Capacity data prior to 1999 are not available. 2 Capacity represents an estimated mid-year value, obtained by taking the geometric mean of the values reported at the beginning of the year shown and the value at beginning of the following year. Sources: • 1981–2005: Energy Information Administration, Annual Energy Review 2006, Report No. DOE/EIA-0384(2006), Table 10.3, “Ethanol and Biodiesel Overview, 1981–2006”, Retrieved December 7, 2007 from; http://www.eia.doe.gov/emeu/aer/renew.html; • 2006: Renewable Fuels Association; “Industry Statistics”, Retrieved December 7, 2007, from http://ethanolrfa.org/ indus- try/statistics/. 1 Sugar from cane or beets, which is an important feedstock in ethanol production in regions such as Brazil and the European Union, has so far played a very small role within the United States. This is largely due to import quotas that make sugar too expensive as a feedstock. 2 See FAPRI, (2007, February), p. 11; USDA (2007, February), p. 39. 3 Ethanol consumption data from RFA (2007c); US gasoline consumption data from EIA (2007b). 82 D. Koplow, R. Steenblik Industry promotion of expanded purchase mandates and continued protection from imports demonstrate that producers are counting on the government to help keep production viable. Both policies were being considered by Congress in the au- tumn of 2007. Even more aggressive policy interventions have also been proposed, such as setting a floor price for oil in order to protect the domestic ethanol industry from low oil prices that would render ethanol uncompetitive (see, e.g., Lugar and Khosla, 2006). Clearly, in order to understand the industry, one has to understand the roll of government incentives. This analysis draws heavily on two in-depth studies conducted for the Global Subsidies Initiative (GSI) of the International Institute for Sustainable Development (Koplow, 2006; 2007) which in turn form part of a multi-country effort by the GSI to more thoroughly characterize and quantify subsidies to biofuels production, dis- tribution and consumption.4 This chapter first describes the evolution of government support for ethanol, fo- cusing on the major federal programs. Thereafter follows a more detailed discussion of federal and state support policies, arranged by their point of initial economic incidence. Virtually every production stage of ethanol is subsidized somewhere in the country; in many locations, producers can tap into multiple subsidies at once. Liquid biofuels have been subsidized largely on the premise that they are domes- tic substitutes for imported oil; that they reduce greenhouse gas (GHG) emissions; and that they encourage rural development. Critics of subsidization have argued that the production process of these fuels is itself fossil-fuel-intensive, obviating many of the benefits of growing the energy resource; and that there are less expensive options for both GHG mitigation and rural development. Although the most recent work (Farrell et al., 2006a; Hill et al., 2006; U.S. EPA, 2007a) suggests some net fossil fuel displacement when biofuels replace petroleum products, the gains remain moderate, especially for corn-based ethanol. Others strongly contest these conclu- sions (e.g., Patzek, 2004; Pimentel and Patzek, 2005). Importantly, as additional analysis on modeling life-cycle impacts expands the parameters of assessment to include nitrous oxide emissions from fertilization and associated land-use changes from increased biofuel production, the net benefits of using ethanol produced from dedicated starch crops are looking less positive. The second part of this chapter provides a variety of quantitative metrics on sub- sidy magnitude to illustrate how much support is being provided, not only per unit of biofuel produced, but also in terms of greenhouse gas (GHG) reductions. These values are intended to help in evaluating whether other options to diversify transport fuels or mitigate climate change might be more cost-effective. 4.2 Evolution of Federal Policies Supporting Liquid Biofuels Subsidization of ethanol production at the federal level began with the Energy Tax Act of 1978. That Act granted a 4 cents-per-gallon reduction in the federal motor fuels excise tax for gasohol, a blend of 10% ethanol and 90% gasoline, also called 4 A complete list of the GSI’s studies can be found at http://www.globalsubsidies.org. 4 Subsidies to Ethanol in the United States 83 E10. This rate translates to 40 cents per gallon of pure ethanol at the time, and is equivalent to about $1.00 per gallon in 2007 dollars.