PDF Linkchapter

Total Page:16

File Type:pdf, Size:1020Kb

PDF Linkchapter Index Accretion, in Andes, 102 Andes, see also Eastern Cordillera Araucanian orogeny, 71-73, 394 Adrian Jara Formation, stratigraphy of, Aptian-Albian paleogeography of, Arches, of South America, 65 195 112-113 Architecture Africa (southern), see also Pan-Africa and asthenosphere, 476-477 of Altiplano, 312-313, 320 basin evolution in, 5-44 backthrusting in, 475 of Gondwana, 8 data point analysis, 84 basement of, 271, 273-274 of South America, 65 Middle Devonian of, 257 basin-bounding features of, 243-244 of Venezuelan Coast Ranges crust, Aguada Villanueva, seismic reflection bend in, see Andean bend 667-677 profile of, 395 blind thrusting in, 650-651 Arequipa massif, 233-234, 243 Aguarague field, cross section of, 552 Cambrian-Devonian evolution of, 214 Argentina Aguaragiie range Carboniferous of, 233-237, 241 basement of, 271, 273-274 seismic reflection profile of, 534, 537 Cenozoic of, 118-119, 120-121, 122- basin evolution of, 251-265 structure of, 551-552 123, 225, 277-279 basin-bounding features of, 243-244 supersequence of, 255 of Colombia, 642-643 Cambrian-Ordovician of, 271-275 Algae, in organic matter, 414 compared to Canadian Cordillera, Carboniferous-Jurassic stratigraphy Alluvial fans, of Sierra Pampeanas, 341- 653-654, 656 of, 257-261 356 Cretaceous rift system of, 325-337 Carboniferous-Permian of, 276, 285- Altiplano Cretaceous paleogeography of, 110- 299 basin architecture of, 312-313, 320 111, 114-117 Cenozoic structures of, 277-279 basin evolution of, 305-322 cross sections of, 461, 465, 466, 467, correlation charts of, 134--135, 134-137, Bouguer gravity of, 310, 313, 314 475, 477, 643 136-137, 138-139, 270 Carboniferous stratigraphy of, 233- crustal structure of, 639-642 Cretaceous unconformity of, 548 237 data point analysis of, 82 Cretaceous-Tertiary subsidence of, correlation chart of, 321 Devonian of, 233-235, 240-241 276-277 geologic map of, 310-312 evolution of, 103-127 cross sections of, 153-158, 278 geologic setting of, 306-307, 512-514 geodynamics of, 244-245, 641-642 depocenters of, 275 geophysical data of, 308-309, 310-311, geologic setting of, 460-462, 512-514 gas fields of, 550 313-314, 322 hydrocarbon systems of, 104, 124--127 geologic maps of, 130-155, 272 hydrocarbons of, 307-308, 314--315 igneous events of, 242, 243-244, 271, geologic provinces of, 270 location map of, 512 273-274 glacial deposits of, 168-170, 173-174, seismic reflectionprofiles of, 316-319 intermontane basins of, 597-611 174-176 stratigraphic columns of, 309, 311 Jurassic paleogeography of, 108-109 hydrocarbons of, 279-280, 365-366 stratigraphy of, 308, 312 lithosphere of, 461, 477, 642-643 igneous events of, 243-244, 271, 273- structural inversion in, 321 location map of, 232, 648 274 structure of, 306, 315 new model for structure of, 652-653 paleogeography of, 383-400 and sub-Andean belt, 474 paleobiogeography of, 238-240 Permian of, 276 tectonostratigraphic chart of, 311 paleolatitudinal shift in, 231-246 petroleum geology of, 547-549 Alto Paraguay terrane, 39 palinspastic reconstruction of, 102- Phanerozoic history chart of, 270 Amazon basin, data point analysis of, 83 103 prerift geologic map of, 327 Ambo Group, 216, 235 Permian of, 233, 237-238, 241-243 regional map of, 404 Andean bend and pre-Andean extension, 490 rift system of, 307, 325-337 analogs of, 520 sandstone reservoirs of, 125-126 and sea level trends, 257 decollement levels in, 513 source rocks of, 124-125 sedimentation in, 177, 178 footwall morphology in, 515-516 strain of Tithonian rift of, 641-642 Silurian-Devonian stratigraphy of, models of formation of, 518 structure of, 208-209, 514-518, 531 253-257, 275-276 orocline interpretation of, 518-521 subduction in, 643 structural inversion in, 341-356, 359- paleogeography of, 518-519 tectonic evolution of, 269-281, 474- 366, 369-380 sedimentary thicknesses in, 517 477, 654 structure of, 549-554 structure of, 513-515 Tertiary compression in, 40 sub-Andean belt of, 549-554 Andean deformation, see also Andes Triassic-Jurassic paleogeography of, tectonic evolution of, 263, 269-281 in Boomerang Hills, 487-489 106-107 wildcat drilling in, 54--55 climax of, 74 Antarctica, data point analysis of, 84 Arica bend, lithospheric cross section of, early, 73-74 Apon Formation 477 Ordovician, 212 isopach map of, 708 Aruba seismic reflectionprofile of, 28 stratigraphy of, 707 geologic history of, 771-774 781 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3837163/9781629810836_backmatter.pdf by guest on 28 September 2021 782 Index interpreted seismic line of, 770 Jurassic, 70-72 tectonic map of, 232, 446 isopach map of, 772, 773, 775 late Paleozoic, 68-69 Triassic-Jurassic of, 219-221 stratigraphy of, 770-771 of Llanos basin, 660-663 wildcat drilling in, 54-55 subsidence rates of, 776, 777 of Malargiiebasin, 371-373 Bolivia basin, summary of, 245 Asuncion arch, cross section of, 85 in Mesozoic, 34-40 Bolivian Andes, data point analysis of, Asthenosphere, and Andes, 476-477 Neocomian, 71-73 82 Atuel half-graben, cross section of, 377 of Neuquen basin, 383-400 Bolivian orocline, 512 Atuel-Valenciana half-graben of Paganzo basin, 288, 293-296 Bolsones, definition of, 68 cross section of, 375, 377-378 Phanerozoic, 66-67 Bonaire basin, geologic setting of, 759 geometry of, 374, 376 of Rumichaca basin, 607-608 Boomerang Hills Ayacucho basin, stratigraphic column tectonic controls of, 5-44 Andean deformation in, 487-489 of, 602 Triassic, 69-70 cross section of, 447, 454, 456, 488 Azogues Formation, mega turbidites of, Basin resources, estimates of, 57-60 deformation s ary of, 497 umm 603 Bending, synorogenic, 512 fault map of, 487, 490 Azucar Group Beni basin, stratigraphy of, 216 hydrocarbons of, 490-494 paleocurrents in, 621 Beni-Chaco plain, structural setting of, isopach map of, 498 stratigraphy of, 620-621 208 oil and gas window in, 456 Berta Formation, stratigraphy of, 195 oil fields of, 483 Backthrusting Blind thrusting, in Eastern Cordillera, petroleum system of, 447, 454 in Andes, 475 650-651 pre-Andean deformation of, 489-490 cross section of, 475 Bolivia sedimentary wedge of, 449 definition of, 650 Andean bend in, 511-521 seismic reflection profiles of, 485, 486, Bahia Negra platform, hydrocarbons of, Andean deformation in, 481-498 491, 492, 493, 495, 496 199 basin-bounding features of, 243-244 stratigraphic col of, 483 umn Bajada Vidal trough, seismic reflection Cambrian-Caradoc of, 211-212 stratigraphy of, 483-486 profile of, 388 Carboniferous of, 32, 177, 215-218, structure of, 486-487, 488 Barda Colorado area, seismic reflection 233-237 Boomerang-Chiquitanas suture, 29 profile of, 393 Cenozoic of, 221-225 Bouguer gravity Barinas-Apure basin Chaco basin of, 15 of Altiplano, 310, 313, 314 cross section of, 687, 693 correlation chart of, 132-133, 138-139 of Gondwana, 9 geologic setting of, 682 Cretaceous rift basin of, 305-322 Brasiliano cycle, 11-19, 32, 186-187 location map of, 682 cross sections of, 153-158, 222, 461 Brazil Mesozoic-Cenozoic stratigraphy of, Devonian of, 213-215, 232-235 correlation charts of, 132-133, 134-135, 685-696 geochemical database of, 527 136-137 Paleozoic stratigraphy of, 682-685 geologic maps of, 130-155, 464, 482 geologic cross sections of, 153-158 Basement geologic setting of, 524 geologic maps of, 130-155 of Andes, 243-244 glacial deposits of, 174-176 glacial deposits of, 171-173, 176 of Argentina, 243-244, 271, 273-274 hydrocarbons of, 224-225, 451-457, wildcat drilling in, 54-55 basin forming, 66 526-531 Brazilian shield, igneous events of, 243 crustal evolution of, 8-10 Jurassic-Cretaceous of, 221 Bucaramanga fault, nature of, 651 extension in, 26 location map of, 460 Bulk strain, of Main sub-Andean thrust, of Maracaibo basin, 705 Mesozoic paleogeography of, 218, 471-473 of Paganzo basin, 287 220, 223, 224 Buried thrust fronts, definition of,650 of Patagonia, 405 oil correlation of, 527 shortening in Venezuelan Coast Ordovician of, 212, 213-215 Caipipendi Ranges, 674 paleobiogeography of, 238-240 cross section of, 541 structural trends of, 9 Paleozoic paleogeography of, 210- geologic history chart of, 531 Basin evolution 211, 218 geologic map of, 539 and 2-D modeling, 728 Pennsylvanian-Triassic of, 218-219 HI/OI diagram of, 528 of Altiplano, 305-322 Permian of, 215 seismic reflection profile of, 540, 541 of Argentina, 251-265, 271-276 petroleum geology of, 224-225, 451- Calentura Formation, stratigraphy of, block diagram of, 24 457 617 Carboniferous-Permian, 30-32 Phanerozoic stratigraphy of, 209-211, Campo Duran field of Caribbean pull-apart basin, 778 226-227 cross section of, 553 of coastal Ecuador, 626-629 Silurian of, 213-215 seismic modeling of, 553 Cretaceous, 72-73 source rocks of, 448-450 Campo Duran-Madrejones range, of Cuenca basin, 605-607 stratigraphic column of, 213, 215, 219, structure of, 552-554 early Paleozoic, 21-30, 68 221, 448 Canadian Cordillera, compared to of EasternVenezuelan basin, 743-745 stratigraphy of, 178, 254, 501-507 Andes, 653-654, 656 of intermontane basins, 604-608, 609, structural setting of, 208-209 Cancafiiri Formation, stratigraphy of, 611 sub-Andean belt of, 445-457 211-212, 213 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3837163/9781629810836_backmatter.pdf by guest on 28 September 2021 Index 783 Cangapi Formation, stratigraphy of, 259 Colombia of Bolivia, 153-158, 222, 461 Cape basin, evolution of, 21 Caribbean pull-apart basin of, 757- of Boomerang Hills, 488 Cape foldbelt, orogenesis of, 35 778 of Brazil, 153-158 Cape-Karoo basin Cordilleran crustal evolution of, 633- of Caipipendi,
Recommended publications
  • Palaxius Chosmalalensis N. Isp., a New Crustacean Microcoprolite from The
    Volumen 77 (3): REVISTA DE LA DESARROLLOS RECIENTES EN ICNOLOGÍA ARGENTINA ASOCIACIÓN GEOLÓGICA ARGENTINA www.geologica.org.ar Septiembre 2020 Palaxius chosmalalensis n. isp., a new crustacean microcoprolite from the Lower Cretaceous of Argentina and new criteria for the classification of ichnospecies of Palaxius Diego A. KIETZMANN1,2 and Mariana S. OLIVO1,2 1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Ciudad Autónoma de Buenos Aires. 2CONICET-Universidad de Buenos Aires, Instituto de Geociencias Básicas, Ambientales y Aplicadas de Buenos Aires (IGeBA). Email: [email protected] Editor: Graciela S. Bressan y Diana E. Fernández Recibido: 12 de mayo de 2019 Aceptado: 2 de agosto de 2019 ABSTRACT Crustacean microcoprolites are abundant constituents in the Upper Jurassic–Lower Cretaceous of the Neuquén Basin (Argentina). A new record of these particles is described from the lowermost Olcostephanus (O.) atherstoni ammonite Zone (lower Valanginian) in the Mulichinco Formation at Puerta Curacó section, north of the Neuquén province. Coprolites come from shallow-water oyster-dominated biostromes and belong to a new ichnospecies, Palaxius chosmalalensis n. isp., which was previously described as P. decemlunulatus (Paréjas) from the Upper Cretaceous of Egypt. As a consequence of the description of the new ichnospecies, we propose to incor- porate quantitative criteria regarding the angle with which the canals are oriented, as well as its position with respect to the center of symmetry of the coprolite. Keywords: pellets, Callianassidae, ichnology, Cretaceous. RESUMEN Palaxius chosmalalensis n. isp., un nuevo microcoprolito de crustáceos del Cretácico Inferior de la Cuenca Neuquina, Argen- tina. Los microcoprolitos de crustáceos son constituyentes abundantes en el Jurásico Superior - Cretácico Inferior de la Cuenca Neuquina.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Basement Composition and Basin Geometry Controls on Upper-Crustal Deformation in the Southern Central Andes (30–36° S)
    Geol. Mag.: page 1 of 17 c Cambridge University Press 2016 1 doi:10.1017/S0016756816000364 Basement composition and basin geometry controls on upper-crustal deformation in the Southern Central Andes (30–36° S) ∗ ∗ ∗ JOSÉ F. MESCUA †, LAURA GIAMBIAGI , MATÍAS BARRIONUEVO , ∗ ∗ ANDRÉS TASSARA‡, DIEGO MARDONEZ , MANUELA MAZZITELLI ∗ & ANA LOSSADA ∗ Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Centro Científico Tecnológico Mendoza, CONICET. Av. Ruiz leal s/n Parque General San Martín, Mendoza (5500) Argentina ‡Departamento de Ciencias de la Tierra, Universidad de Concepción, Victor Lamas 1290, Barrio Universitario, Concepción, Casilla 160-C, Chile (Received 13 December 2015; accepted 5 April 2016) Abstract – Deformation and uplift in the Andes are a result of the subduction of the Nazca plate below South America. The deformation shows variations in structural style and shortening along and across the strike of the orogen, as a result of the dynamics of the subduction system and the features of the upper plate. In this work, we analyse the development of thin-skinned and thick-skinned fold and thrust belts in the Southern Central Andes (30–36° S). The pre-Andean history of the area determined the formation of different basement domains with distinct lithological compositions, as a result of terrane accretions during Palaeozoic time, the development of a widespread Permo-Triassic magmatic province and long-lasting arc activity. Basin development during Palaeozoic and Mesozoic times produced thick sedimentary successions in different parts of the study area. Based on estimations of strength for the different basement and sedimentary rocks, calculated using geophysical estimates of rock physical properties, we propose that the contrast in strength between basement and cover is the main control on structural style (thin- v.
    [Show full text]
  • 112 Appendix B Hydrogeologic and Soils Factors
    APPENDIX B HYDROGEOLOGIC AND SOILS FACTORS INFLUENCING LEAKAGE POTENTIAL FROM THE CONCHAS-HUDSON CANAL SYSTEM, ARCH HURLEY CONSERVANCY DISTRICT, QUAY AND SAN MIGUEL COUNTIES, NEW MEXICO by John W. Hawley, Senior Hydrogeologist New Mexico Water Resources Research Institute and John F. Kennedy, GIS Specialist/Hydrogeologist New Mexico Water Resources Research Institute October 2005 INTRODUCTION The following discussion of geology and soils in the Arch Hurley Conservancy District (District) study area introduces the major landscape features (landforms) and surficial geologic units of the Conchas-Hudson Canal system between Conchas Reservoir in San Miguel County and the eastern part of the Tucumcari (irrigation) Project in Quay County. Emphasis is on hydrogeologic and soils factors that influence leakage from not only the canal corridor but also the complex network of laterals, ditches and field- drainage features that characterize irrigated parts of the District. Of particular importance is the historic role played by Project operations (since 1946) in recharge of the shallow- alluvial and bedrock (Entrada Sandstone) aquifer systems of the Tucumcari Metropolitan area. The latter topic was first addressed in detail by Trauger and Bushman (1964) and is only briefly covered here. 112 The geologic setting of the entire study area is the subject of a recent comprehensive review paper that was written specifically for a general audience by Adrian Hunt (Director, New Mexico Museum of Natural History and Science; 1998). Hydrogeologic characteristics of major stratigraphic units exposed or shallowly buried along the canal corridor are summarized in Table B1, which also includes a list of supporting references. Distribution patterns and leakage potential of surficial-geologic units and soils are summarized in Tables B2-B5 in Attachment B1 to this Appendix.
    [Show full text]
  • Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
    Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74,
    [Show full text]
  • IV. Northern South America EIA/ARI World Shale Gas and Shale Oil Resource Assessment
    IV. Northern South America EIA/ARI World Shale Gas and Shale Oil Resource Assessment IV. NORTHERN SOUTH AMERICA SUMMARY Northern South America has prospective shale gas and shale oil potential within marine- deposited Cretaceous shale formations in three main basins: the Middle Magdalena Valley and Llanos basins of Colombia, and the Maracaibo/Catatumbo basins of Venezuela and Colombia, Figure IV-1. The organic-rich Cretaceous shales (La Luna, Capacho, and Gacheta) sourced much of the conventional gas and oil produced in Colombia and western Venezuela, and are similar in age to the Eagle Ford and Niobrara shale plays in the USA. Ecopetrol, ConocoPhillips, ExxonMobil, Shell, and others have initiated shale exploration in Colombia. Colombia’s petroleum fiscal regime is considered attractive to foreign investment. Figure IV-1: Prospective Shale Basins of Northern South America Source: ARI 2013 May 17, 2013 IV-1 IV. Northern South America EIA/ARI World Shale Gas and Shale Oil Resource Assessment For the current EIA/ARI assessment, the Maracaibo-Catatumbo Basin was re-evaluated while new shale resource assessments were undertaken on the Middle Magdalena Valley and Llanos basins. Technically recoverable resources (TRR) of shale gas and shale oil in northern South America are estimated at approximately 222 Tcf and 20.2 billion bbl, Tables IV-1 and IV- 2. Colombia accounts for 6.8 billion barrels and 55 Tcf of risked TRR, while western Venezuela has 13.4 billion barrels and 167 Tcf. Eastern Venezuela may have additional potential but was not assessed due to lack of data. Colombia’s first publicly disclosed shale well logged 230 ft of over-pressured La Luna shale with average 14% porosity.
    [Show full text]
  • 0101123731101000.Pdf
    ~ J I RESU"EN El ~rea suroriental de la denominada Zona de Reserva Nacional para Esmeraldas de Muzo-Coscuez, forma parte de las estribaciones occidentales de la Cordillera Oriental de Colombia en el departamento de Boyac~. Mediante la aplicación de técnicas qeolóqicas, geoQuímicas y mineralóqicas e interpretación geoestadística conjugada de resultados. se establecieron las principales características r de la mineralización esmeraldífera, seleccion~ndose seis ! sectores potencialmente mineralizados. I Geológicamente el ~rea est~ conformada por sedimentítas de car~cter lutítico de edad Cret~ceo Inferior, afectadas estructuralmente por sistemas de fallas y fracturas, y eventos mineralizantes de emplazamiento preferencial dentro de niveles litolóqicos definidos, en zonas de intensa distensión tectónica producto de la acción compresiva regional. La mineralización esmeraldífera de mayor expresión se restringe estratiqrÁficamente al nivel lutítico de facies calcÁreo-carbonosa localizado hacia el techo de la Unidad de Lulitas CalcÁreas (Kv!) y base de la Unidad de Lutitas Carbonosas (Kv2), pertenecientes a la Formación Villeta. i. Los sistemas de fallamiento y fracturamiento N40-50W y Nl0-20E controlaron la migración de fluidos con los elementos mineralizantes que al reaccionar con los cromóforos de la roca encajante produjeron la formación de las esmeraldas. La presencia de cloritoide generado por fallas compresionales aisla los fluidos limitando su movilidad. La mineralización de esmeraldas presenta una asociación paragen~tica de calcita rombo~drica, pirita, albita y pirofilita, minerales de baja temperatura de formación. ocasionados por procesos post-magmáticos hidrotermales- neumatolíticos. Geoquímicamente se establece que los procesos de albitización favorecen la formación de esmeraldas, mientras que el metasomatismo potásico relacionado a metamorfismo regional y efectos tectónicos dinámicos, inhibe la albitización al generar temperaturas superiores a la de formación de albita y por ende a la de cristalización de esmeraldas.
    [Show full text]
  • NEUQUÉN BASIN, ARGENTINA Latin American Journal of Sedimentology and Basin Analysis, Vol
    Latin American Journal of Sedimentology and Basin Analysis ISSN: 1669-7316 [email protected] Asociación Argentina de Sedimentología Argentina TUNIK, Maisa A.; PAZOS, Pablo J.; IMPICCINI, Agnes; LAZO, Darío; AGUIRRE- URRETA, María Beatriz DOLOMITIZED TIDAL CYCLES IN THE AGUA DE LA MULA MEMBER OF THE AGRIO FORMATION (LOWER CRETACEOUS), NEUQUÉN BASIN, ARGENTINA Latin American Journal of Sedimentology and Basin Analysis, vol. 16, núm. 1, enero-julio, 2009, pp. 29-43 Asociación Argentina de Sedimentología Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=381740363004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LATIN AMERICAN JOURNAL OF SEDIMENTOLOGY AND BASIN ANALYSIS | VOL. 16 (1) 2009, 29-43 © Asociación Argentina de Sedimentología - ISSN 1669 7316 DOLOMITIZED TIDAL CYCLES IN THE AGUA DE LA MULA MEMBER OF THE AGRIO FORMATION (LOWER CRETACEOUS), NEUQUÉN BASIN, ARGENTINA Maisa A. TUNIK 1, Pablo J. PAZOS 2, Agnes IMPICCINI 3, Darío LAZO 4 and María Beatriz AGUIRRE-URRETA 4 1Laboratorio de Tectónica Andina, Universidad de Buenos Aires. CONICET. Actualmente en: CIMAR - Universidad Nacional del Comahue. Av. Buenos Aires 1400, Neuquén. Argentina. E-mail: [email protected] 2Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires. Argentina. 3Universidad Nacional del Comahue, Av. Buenos Aires 1400, Neuquén, Argentina. 4Laboratorio de Bioestratigrafía de Alta Resolución. Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires. Argentina. Abstract: The Agrio Formation (Valanginian to early Barremian) is a siliciclastic and carbonate unit of the Neuquén Basin in west central Argentina.
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Detrital Zircon Record of Phanerozoic Magmatism in the Southern Central Andes GEOSPHERE, V
    Research Paper GEOSPHERE Detrital zircon record of Phanerozoic magmatism in the southern Central Andes GEOSPHERE, v. 17, no. 3 T.N. Capaldi1,*, N.R. McKenzie2, B.K. Horton1,3, C. Mackaman-Lofland1, C.L. Colleps2, and D.F. Stockli1 1Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA https://doi.org/10.1130/GES02346.1 2Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China 3Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA 11 figures; 1 table; 1 set of supplemental files CORRESPONDENCE: [email protected] ABSTRACT arc width reflects shallower slab dip. Comparisons geodynamic processes, upper-plate deformation, among slab dip calculations with time-averaged and subduction- related magmatism. CITATION: Capaldi, T.N., McKenzie, N.R., Horton, B.K., Mackaman-Lofland, C., Colleps, C.L., and Stockli, D.F., The spatial and temporal distribution of arc εHf and Th/U zircon results exhibit a clear trend of The South American plate at 28°S –33°S is com- 2021, Detrital zircon record of Phanerozoic magmatism magmatism and associated isotopic variations decreasing (enriched) magma compositions with posed of numerous north-south–trending terranes in the southern Central Andes: Geosphere, v. 17, no. 3, provide insights into the Phanerozoic history increasing arc width and decreasing slab dip. Col- of variable composition that may have induced a p. 876– 897, https://doi.org/10.1130 /GES02346.1. of the western margin of South America during lectively, these data sets demonstrate the influence spatial control on the geochemical signatures of Science Editor: Shanaka de Silva major shifts in Andean and pre-Andean plate inter- of subduction angle on the position of upper-plate subsequent Andean tectono-magmatic regimes Associate Editor: Christopher J.
    [Show full text]
  • Chemical Composition of Fluid Inclusions in Colombian Emerald Deposits
    Chemical composition of fluid inclusions in Colombian emerald deposits G. Giuliani", A. Cheilletz233, J. Dubessy4 and C. T. Rodriguez5 ORSTOM, University of Brasília, 70910 Brasília DF, Brazil C.R.P.G., BP 20, 54501 Vandoeuvre Cedex, France E.N.S.G., BP 452, 54001 Nancy Cedex, France CREGU, BP 23, 54501 Vandoeuvre Cedex, France MINERALCO S.A., calle 32, "'13-07, Apartado 17878, Bogotà, Colombia With 7 figures Abstract. The chemical composition of fluid inclusions in emerald deposits from Colombia was investigated by microthermometry, scanning electron microscopy and Raman spectrometry. Fluid inclusions in emerald can be subdivided into two types: type 1 corresponds to halite-saturated fluid inclusions containing a cubic crystal of halite (12-15 vol.%), a brine (75 vol.%) and a gas phase (10-13 vol.%); type 2 are daughter mineral-rich fluid inclusions with NaCl, KC1, (Ca, Fe)Cl mixtures and various carbonate phases. The vapour phase is composed of H,O, CO,, and N, in variable proportions. The mineralizing fluid is interpreted as homogeneous and hypersaline, and belongs to the H,O- NaCI-CaC1,-KC1-CO,-N, system. The salt components may derive from leaching of the evaporitic strata interbedded within the Lower Cretaceous series; the CO,, N,, and Ca components may be related to the black shale wall rocks. Introduction The genesis of the emerald deposits of Colombia can be related to an epigenetic hydrothermal process confined to the black shale series of the Eastern Cordillera (Forero, 1987). Previous fluid inclusion studies have demonstrated that the paleofluids involved in the genesis of emeralds are commonly of high salinity and great complexity (Gubelin, 1957; Touray & Poirot, 1968; Roedder, 1963; 1972).
    [Show full text]
  • U.S. Geoligical Survey Scientific Investigations Report 2012–5238
    Prepared in cooperation with San Miguel County, New Mexico Characterization of the Hydrologic Resources of San Miguel County, New Mexico, and Identification of Hydrologic Data Gaps, 2011 Scientific Investigations Report 2012–5238 U.S. Department of the Interior U.S. Geological Survey Cover: Canadian escarpment rising above the plains, northeastern San Miguel County (photograph by David Lutz). Characterization of the Hydrologic Resources of San Miguel County, New Mexico, and Identification of Hydrologic Data Gaps, 2011 By Anne Marie Matherne and Anne M. Stewart Prepared in cooperation with San Miguel County, New Mexico Scientific Investigations Report 2012–5238 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This and other USGS information products are available at http://store.usgs.gov/ U.S. Geological Survey Box 25286, Denver Federal Center Denver, CO 80225 To learn about the USGS and its information products visit http://www.usgs.gov/ 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Matherne, A.M., and Stewart, A.M., 2012, Characterization of the hydrologic resources of San Miguel County, New Mexico, and identification of hydrologic data gaps, 2011: U.S. Geological Survey Scientific Investigations Report 2012–5238, 44 p.
    [Show full text]