Cell Cycle Regulation in the Florida Red Tide Dinoflagellate, Karenia Brevis

Total Page:16

File Type:pdf, Size:1020Kb

Cell Cycle Regulation in the Florida Red Tide Dinoflagellate, Karenia Brevis Medical University of South Carolina MEDICA MUSC Theses and Dissertations 2011 Cell Cycle Regulation in the Florida Red Tide Dinoflagellate, Karenia brevis Stephanie Alexandra Brunelle Medical University of South Carolina Follow this and additional works at: https://medica-musc.researchcommons.org/theses Recommended Citation Brunelle, Stephanie Alexandra, "Cell Cycle Regulation in the Florida Red Tide Dinoflagellate, Karenia brevis" (2011). MUSC Theses and Dissertations. 176. https://medica-musc.researchcommons.org/theses/176 This Dissertation is brought to you for free and open access by MEDICA. It has been accepted for inclusion in MUSC Theses and Dissertations by an authorized administrator of MEDICA. For more information, please contact [email protected]. Cell Cycle Regulation in the Florida Red Tide Dinoflagellate, Karenia brevis By Stephanie Alexandra Brunelle A dissertation submitted to the faculty of the Medical University of South Carolina in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Graduate Studies. Department of Molecular and Cellular Biology and Pathobiology 2011 Approved by: Chairman, Advisory Committee TABLE OF CONTENTS ACKNOWLEDGMENTS .............................................................................................. i LIST OF FIGURES .............................................................................. ii LIST OF TABLES .............................................................................................. v LIST OF ABBREVIATIONS ................................................................... vi ABSTRACT ....................................................................................... vii CHAPTER 1: Introduction ................................................................................... l CHAPTER 2: Global protein and translation patterns in Karenia brevis over the diel cycle ................................................................................................. 13 Introduction ......................................................................................................... 14 Methods ............................................................................................................... 20 Results ................................................................................................................. 29 Discussion ............................................................................................................ 36 CHAPTER 3: Characterization and regulation ofS-phase genes and proteins in K. brevis Introduction ............................................................................... 65 Methods .................................................................................... 70 Results ..................................................................................... 79 Discussion .................................................................................. 88 CHAPTER 4: S-phase Expression of PCNA: Possible Post-translational Modifications, CDK Dependence, and its Potential Utility as a Biomarker of Growth Status in Karenia brevis Red Tides ............................................................................... 118 Introduction ........................................................................... 119 Methods ................................................................................ 122 Results ...............................................' ................................... 130 Discussion .............................................................................. 139 CHAPTER 5: Conclusions, Significance, and Future Directions ........................ 179 REFERENCES ................................................................................. 191 APPENDIX 1 ..................................................................................210 APPENDIX 2 .................................................................................. 217 ACKNOWLEDGMENTS I would like to extend a heart felt thank you to my mentor, Dr. Fran Van Dolah. Throughout this endeavor, she provided wonderful support and training. I would also like to thank my committee members who provided advice and shared knowledge that made this project successful: Dr. Michael Janech, Dr. Lauren Ball, Dr. David Kurtz and Dr. Paul McDermott. The members of the Van Dolah laboratory were immensely helpful and were not only wonderful colleagues but dear friends as well: Jeanine Morey, Emily Monroe, Jillian Johnson, Mackenzie Zippay and Peter Feltman. I would also like to thank the members of the Marine Biotoxins Program including Tod Leighfield and the Marine Biomedicine and Environmental Sciences students. Lastly, I need to thank my family, Alyce and Roger Brunelle who provided the love and encouragement I required to complete this PhD program. 1 LIST OF FIGURES CHAPTER 1 FIGURE 1: Tree of life ............................................................................. 12 CHAPTER 2 FIGURE 1: Polysome profile of L. polyedrum over circadian time .......................... 47 FIGURE 2: Polysome profile of K. brevis cultures during the light and dark phase ...... 48 FIGURE 3: Flow cytometry over the K. brevis cell cycle: polysome experiment. ........ 49 FIGURE 4: Analysis of translational activity over the cell cycle/diel cycle of K. brevis: polysome fractionation ............................................................................ 50 FIGURE 5: Two-dimensional gels of K. brevis proteins: extraction optimization ........ 52 FIGURE 6: Flow cytometry over the K. brevis cell cycle: 20 study ....................... 53 FIGURE 7: 20 gels of K. brevis proteins over the cell cycle ................................. 54 FIGURE 8: Flow cytometry over the K. brevis cell cycle: OIGE study .................... 55 FIGURE 9: 20 gels: resolved proteins labeled with Cy2, Cy3 and Cy5 .................. 56 FIGURE 10: Significantly changing proteins as determined by OIGE in K. brevis ...... 57 FIGURE 11: Scans of experimental gels: resolved proteins stained with SYPRO Ruby ................................................................................................ 60 FIGURE 12: Trends of significantly changing proteins in K. brevis ........................61 FIGURE 13: 20E gels of K. brevis nuclear proteins ..........................................62 CHAPTER 3 FIGURE 1: Multiple Alignments of the amino acid sequences of S-phase proteins ...... 95 FIGURE 2: Phylogenetic tree ofPCNA ...................................................... 102 FIGURE 3: Three-dimensional protein models of K. brevis PCNA ...................... 104 11 FIGURE 4: Spliced leader sequences on S-phase transcripts .............................. 105 FIGURE 5: Flow cytometry over the cell cycle .............................................. 106 FIGURE 6: qPCR analysis of S-phase transcripts over the cell cycle in K. brevis ...... l 07 FIGURE 7: Western blot analysis ofS-pha~e over the cell cycle in K. brevis ........... .108 FIGURE 8: Peptide competition assay of anti-K. brevis PCNA ........................... 109 FIGURE 9: Immunolocalization of PCNA ................................................... 110 FIGURE 10: Flow cytometry of the cell population after an extended dark phase ...... 112 CHAPTER 4 FIGURE 1: Multiple alignments of the SUMO and ubiquitin polypeptides .............. 157 FIGURE 2: K. brevis PCNA amino acid sequence: analysis of potential sumoylation and ubiquitin sites ...................................................................................... 158 FIGURE 3: The ubiquitin and SUMO proteins in K. brevis ................................ .159 FIGURE 4: Immunoprecipitation of K. brevis PCNA ....................................... 160 FIGURE 5: Immunoprecipitation of K. brevis PCNA, western blot with anti-SUMO antibody ..................................................................................................................... 161 FIGURE 6: Growth curve and flow cytometry data of K. brevis in 125mL flasks ..... 162 FIGURE 7: Western blot analysis ofPCNA over the K. brevis growth curve .......... 163 FIGURE 8: Western blot analysis ofPCNA in log and stationary phase cultures ..... .164 FIGURE 9: Pattern of ubi quit in at ion in K. brevis stationary phase cultures ............ 166 FIGURE 10: Full length nucleotide sequence of a cyclin-dependent kinase in K. brevis .............................................................................................. 167 FIGURE 11: Amino acid sequence of full length K. brevis cyclin-dependent kinase .. 168 FIGURE 12: Partial alignment of K. brevis CDKs: cyclin binding motif. .............. 169 111 FIGURE 13: Cyclin-dependent kinase inhibitors (CDKIs), olomoucine and fascaplysin ...................................................................................... 170 FIGURE 14: SYTOX staining of K. brevis ................................................ .171 FIGURE 15: PCNA protein abundance throughout S-phase ............................ 172 FIGURE 16: PCNA protein abundance at LDT12 after inhibition with CDKIs ..... .173 FIGURE 17: Linear correlation of % S-phase and PCNA protein abundance ........ 174 IV LIST OF TABLES CHAPTER 2 Table 1: Proteins found to significantly change over the diel cycle using DIGE .......... 63 Table 2: Nuclear protein identifications using tandem MS (LTQ) ............................ 64 CHAPTER 3 Table 1: Primers used for qPCR and SL - gene specific PCR .............................. 114 Table 2: Peptides used
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Gaits in Paramecium Escape
    Transitions between three swimming gaits in Paramecium escape Amandine Hamela, Cathy Fischb, Laurent Combettesc,d, Pascale Dupuis-Williamsb,e, and Charles N. Barouda,1 aLadHyX and Department of Mechanics, Ecole Polytechnique, Centre National de la Recherche Scientifique, 91128 Palaiseau cedex, France; bActions Thématiques Incitatives de Genopole® Centriole and Associated Pathologies, Institut National de la Santé et de la Recherche Médicale Unité-Université d’Evry-Val-d’Essonne Unité U829, Université Evry-Val d'Essonne, Bâtiment Maupertuis, Rue du Père André Jarlan, 91025 Evry, France; cInstitut National de la Santé et de la Recherche Médicale Unité UMRS-757, Bâtiment 443, 91405 Orsay, France; dSignalisation Calcique et Interactions Cellulaires dans le Foie, Université de Paris-Sud, Bâtiment 443, 91405 Orsay, France; and eEcole Supérieure de Physique et de Chimie Industrielles ParisTech, 10 rue Vauquelin, 75005 Paris, France Edited* by Harry L. Swinney, University of Texas at Austin, Austin, TX, and approved March 8, 2011 (received for review November 10, 2010) Paramecium and other protists are able to swim at velocities reach- or in the switching between the different swimming behaviors ing several times their body size per second by beating their cilia (11, 13–17). in an organized fashion. The cilia beat in an asymmetric stroke, Below we show that Paramecium may also use an alternative to which breaks the time reversal symmetry of small scale flows. Here cilia to propel itself away from danger, which is based on tricho- we show that Paramecium uses three different swimming gaits to cyst extrusion. Trichocysts are exocytotic organelles, which are escape from an aggression, applied in the form of a focused laser regularly distributed along the plasma membrane in Paramecium heating.
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • The Florida Red Tide Dinoflagellate Karenia Brevis
    G Model HARALG-488; No of Pages 11 Harmful Algae xxx (2009) xxx–xxx Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics Frances M. Van Dolah a,*, Kristy B. Lidie a, Emily A. Monroe a, Debashish Bhattacharya b, Lisa Campbell c, Gregory J. Doucette a, Daniel Kamykowski d a Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Resarch, Charleston, SC, United States b Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA, United States c Department of Oceanography, Texas A&M University, College Station, TX, United States d Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States ARTICLE INFO ABSTRACT Article history: The dinoflagellate Karenia brevis is responsible for nearly annual red tides in the Gulf of Mexico that Available online xxx cause extensive marine mortalities and human illness due to the production of brevetoxins. Although the mechanisms regulating its bloom dynamics and toxicity have received considerable attention, Keywords: investigation into these processes at the cellular and molecular level has only begun in earnest during Bacterial–algal interactions the past decade. This review provides an overview of the recent advances in our understanding of the Cell cycle cellular and molecular biology on K. brevis. Several molecular resources developed for K. brevis, including Dinoflagellate cDNA and genomic DNA libraries, DNA microarrays, metagenomic libraries, and probes for population Florida red tide genetics, have revolutionized our ability to investigate fundamental questions about K.
    [Show full text]
  • Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins
    toxins Article Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins 1 2 3 1, Olga N. Kuleshina , Elena V. Kruykova , Elena G. Cheremnykh , Leonid V. Kozlov y, Tatyana V. Andreeva 2, Vladislav G. Starkov 2, Alexey V. Osipov 2, Rustam H. Ziganshin 2, Victor I. Tsetlin 2 and Yuri N. Utkin 2,* 1 Gabrichevsky Research Institute of Epidemiology and Microbiology, ul. Admirala Makarova 10, Moscow 125212, Russia; fi[email protected] 2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia; [email protected] (E.V.K.); damla-sofi[email protected] (T.V.A.); [email protected] (V.G.S.); [email protected] (A.V.O.); [email protected] (R.H.Z.); [email protected] (V.I.T.) 3 Mental Health Research Centre, Kashirskoye shosse, 34, Moscow 115522, Russia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +7-495-3366522 Deceased. y Received: 10 April 2020; Accepted: 13 May 2020; Published: 15 May 2020 Abstract: Snake venoms possess lethal activities against different organisms, ranging from bacteria to higher vertebrates. Several venoms were shown to be active against protozoa, however, data about the anti-protozoan activity of cobra and viper venoms are very scarce. We tested the effects of venoms from several snake species on the ciliate Tetrahymena pyriformis. The venoms tested induced T. pyriformis immobilization, followed by death, the most pronounced effect being observed for cobra Naja sumatrana venom. The active polypeptides were isolated from this venom by a combination of gel-filtration, ion exchange and reversed-phase HPLC and analyzed by mass spectrometry.
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • Of a Eukaryote, Tetrahymena Pyriformis (Evolution of Repeated Genes/Amplification/DNA RNA Hybridization/Maero- and Micronuclei) MENG-CHAO YAO, ALAN R
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 8, pp. 3082-3086, August 1974 A Small Number of Cistrons for Ribosomal RNA in the Germinal Nucleus of a Eukaryote, Tetrahymena pyriformis (evolution of repeated genes/amplification/DNA RNA hybridization/maero- and micronuclei) MENG-CHAO YAO, ALAN R. KIMMEL, AND MARTIN A. GOROVSKY Department of Biology, University of Rochester, Rochester, New York 14627 Communicated by Joseph G. Gall, May 31, 1974 ABSTRACT The percentage of DNA complementary repeated sequences (5, 8). To our knowledge, little evidence to 25S and 17S rRNA has been determined for both the exists to support any of these hypotheses. macro- and micronucleus of the ciliated protozoan, Tetra- hymena pyriformis. Saturation levels obtained by DNA - The micro- and macronuclei of the ciliated protozoan, RNA hybridization indicate that approximately 200 Tetrdhymena pyriformis are analogous to the germinal and copies of the gene for rRNA per haploid genome were somatic nuclei of higher eukaryotes. While both nuclei are present in macronuclei. The saturation level obtained derived from the same zygotic nucleus during conjugation, with DNA extracted from isolated micronuclei was only the genetic continuity of 5-10% of the level obtained with DNA from macronuclei. only the micronucleus maintains After correction for contamination of micronuclear DNA this organism. The macronucleus is responsible for virtually by DNA from macronuclei, only a few copies (possibly all of the transcriptional activity during growth and division only 1) of the gene for rRNA are estimated to be present in and is capable of dividing an indefinite number of times during micronuclei. Micronuclei are germinal nuclei.
    [Show full text]
  • Chapter 6.2-Assessment of Harmful Algae Bloom
    Maryland’s Coastal Bays: Ecosystem Health Assessment Chapter 6.2 Chapter 6.2 Assessment of harmful algae bloom species in the Maryland Coastal Bays Catherine Wazniak Maryland Department of Natural Resources, Tidewater Ecosystem Assessment, Annapolis, MD 21401 Abstract Thirteen potentially harmful algae taxa have been identified in the Maryland Coastal Bays: Aureococcus anophagefferens (brown tide), Pfiesteria piscicida and P. shumwayae, Chloromorum/ Chattonella spp., Heterosigma akashiwo, Fibrocapsa japonica, Prorocentrum minimum, Dinophysis spp., Amphidinium spp., Pseudo-nitzchia spp., Karlodinium micrum and two macroalgae genera (Gracilaria, Chaetomorpha). Presence of potentially toxic species is richest in the polluted tributaries of St. Martin River and Newport Bay. Approximately 5% of the phytoplankton species identified for Maryland’s Coastal Bays represent potentially harmful algal bloom (HAB) species. The HABs are recognized for their potentially toxic properties and, in some cases, their ability to produce large blooms negatively affecting light and dissolved oxygen resources. Brown tide (Aureococcus anophagefferens) has been the most widespread and prolific HAB species in the area in recent years, producing growth impacts to juvenile clams in test studies and potential impacts to sea grass distribution and growth (see Chapter 7.1). Macroalgal fluctuations may be evidence of a system balancing on the edge of a eutrophic (nutrient- enriched) state (see chapter 4). No evidence of toxic activity has been detected among the Coastal Bays phytoplankton. However, species such as Pseudo-nitzschia seriata, Prorocentrum minimum, Pfiesteria piscicida, Dinophysis acuminata and Karlodinium micrum have produced positive toxic bioassays or generated detectable toxins in Chesapeake Bay. Pfiesteria piscicida was retrospectively considered as the likely causative organism in a large historical fish kill on the Indian River, Delaware.
    [Show full text]
  • The Inhibitory Effects of Garlic (Allium Sativum) and Diallyl Trisulfide on Alexandrium Tamarense and Other Harmful Algal Species
    J Appl Phycol (2008) 20:349–358 DOI 10.1007/s10811-007-9262-8 The Inhibitory Effects of Garlic (Allium sativum) and Diallyl Trisulfide on Alexandrium tamarense and other Harmful Algal Species L. H. Zhou & T. L. Zheng & X. H. Chen & X. Wang & S. B. Chen & Y. Tian & H. S. Hong Received: 30 March 2007 /Revised and Accepted: 21 September 2007 /Published online: 10 January 2008 # Springer Science + Business Media B.V. 2007 Abstract Using cell suspension ability as an indicator, we effective was a concentration of 0.04% on A. tamarense and studied the inhibitory effect of garlic (Allium sativum) and S. trochoidea. Moreover, the higher the concentration, the diallyl trisulfide on six species of red tide causing algae. stronger was the inhibition, and a high inhibitory rate (IR) This included: the inhibition by 0.08% garlic solution of could be maintained for at least three days when the garlic five algal species — Alexandrium tamarense, Scrippsiella concentration was above 0.04%. For A. tamarense, it was trochoidea, Alexandrium catenella, Alexandrium minutum also found that the longer the inhibitory time and the higher and Alexandrium satoanum; the effects of garlic concen- the concentration, the lower was the rate of resumed cell tration on the inhibition of A. tamarense, S. trochoidea and activity. On the contrary, garlic solution could not inhibit A. Chaetoceros sp.; the effects of inhibitory time on the minutum or Chaetoceros sp.; 2) The IR to A. tamarense was rejuvenation of algal cells; and the effects of heating and reduced slightly as the heating time of the garlic solution preservation time on algal inhibition by garlic solution.
    [Show full text]
  • Morphological Studies of the Dinoflagellate Karenia Papilionacea in Culture
    MORPHOLOGICAL STUDIES OF THE DINOFLAGELLATE KARENIA PAPILIONACEA IN CULTURE Michelle R. Stuart A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Biology and Marine Biology University of North Carolina Wilmington 2011 Approved by Advisory Committee Alison R. Taylor Richard M. Dillaman Carmelo R. Tomas Chair Accepted by __________________________ Dean, Graduate School This thesis has been prepared in the style and format consistent with the journal Journal of Phycology ii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iv ACKNOWLEDGMENTS .............................................................................................................. v DEDICATION ............................................................................................................................... vi LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii INTRODUCTION .......................................................................................................................... 1 MATERIALS AND METHODS .................................................................................................... 5 RESULTS
    [Show full text]