Morphological Studies of the Dinoflagellate Karenia Papilionacea in Culture

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Studies of the Dinoflagellate Karenia Papilionacea in Culture MORPHOLOGICAL STUDIES OF THE DINOFLAGELLATE KARENIA PAPILIONACEA IN CULTURE Michelle R. Stuart A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Biology and Marine Biology University of North Carolina Wilmington 2011 Approved by Advisory Committee Alison R. Taylor Richard M. Dillaman Carmelo R. Tomas Chair Accepted by __________________________ Dean, Graduate School This thesis has been prepared in the style and format consistent with the journal Journal of Phycology ii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iv ACKNOWLEDGMENTS .............................................................................................................. v DEDICATION ............................................................................................................................... vi LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii INTRODUCTION .......................................................................................................................... 1 MATERIALS AND METHODS .................................................................................................... 5 RESULTS ....................................................................................................................................... 9 DISCUSSION ............................................................................................................................... 14 LITERATURE CITED ................................................................................................................. 22 TABLES ....................................................................................................................................... 26 FIGURES ...................................................................................................................................... 28 APPENDIX .................................................................................................................................. 36 iii ABSTRACT Various morphologies of the unarmored dinoflagellate Karenia papilionacea were observed in culture and some forms could easily be mistaken for other toxic species. Using DIC, epifluorescent microscopy and DAPI staining for nuclear DNA, three morphologies were defined in detail, those being a wider than tall butterfly-shape, a wide as tall brevis-shape, and a round spherical shape. The first hypothesis examined was that K. papilionacea develops a K. brevis- like form that can be confused with known toxic species found in the Gulf of Mexico. Morphological analysis revealed that while the especially wide, clearly butterfly- like cells do occur, the majority of the population was actually very similar in appearance to K. brevis. The second hypothesis was that brevis-shaped cells, as well as other morphologies such as spherical cyst-like cells, represent sexually induced reproductive stages in the K. papilionacea life cycle and therefore would display different DNA contents. There was no statistical difference between the DNA content of brevis-shaped and butterfly-shaped cells supporting the notion that both morphologies represent a natural variation of size with the same ploidy. The third hypothesis was that the butterfly-shaped form was the dominant haploid stage. The majority of K. papilionacea cells observed in culture were not the extremely broad butterfly form that was proposed as the classic representative of this species. These findings emphasize the need for a combination of morphological and molecular evidence when identifying cells in environmental samples. Also, evidence supporting the existence of a pellicle cyst could lead to insight into the bloom dynamics of K. papilionacea. iv ACKNOWLEDGEMENTS I am deeply grateful to Carmelo Tomas, Alison Taylor, and Richard Dillaman for inspiration, as well as intellectual and moral support. I sincerely thank Brooke Stuerke, Bob York, Erika Schwarz, Harris Muhlstein, Tara Haney and Kendra Coles for being such great lab mates and partners in brainstorming. I am grateful to Tyler Cyronak for his generous assistance with flow cytometry. I dearly appreciate all of my friends and family who supported me through this endeavor and helped me to laugh when it was needed. I would also like to thank the Graduate School and MARBIONC for funding this project. v DEDICATION For Dale Trimble and Jackie Prinz. vi LIST OF TABLES Table Page 1. A summary of descriptive statistical values for the three morphological classifications of Karenia papilionacea. ........................................................................... 26 2. The DNA content in cultured dinoflagellates from non-Symbiodinium genera ............... 27 vii LIST OF FIGURES Figure Page 1. Growth curve of Karenia papilionacea Kp0707-1 including cell morphologies of A) log phase; B) stationary phase; C) decline phase. ....................................................... 28 2. Frequency distribution of width to height ratios of Karenia papilionacea ...................... 29 3. Differential interference contrast images of Karenia papilionacea morphologies in culture; A) log phase butterfly-shaped cell; B) stationary phase butterfly-shaped cell; C) log phase brevis-shaped cell; D) stationary phase brevis-shaped cell; E) stationary phase spherical cell. Scale bar = 20 µm ........................................................... 30 4. Variation within the morphology classifications of Karenia papilionacea: A) butterfly-shaped cells; B) brevis-shaped cells; C) cells losing morphology to become spherical. Nuclei are stained blue with DAPI and viewed with epifluorescent microscopy. Scale bar = 20 µm ................................................................ 31 5. Epifluorescent images of DAPI stained nuclei of Karenia papilionacea progressing through mitosis: A) pre-mitotic nucleus; B) chromosomes beginning to move toward poles; C) nucleus is beginning to take on a hourglass shape; D) hourglass shape has formed with distinct outlines of the two future nuclei; E) two nuclei are evident joined by a small amount of chromatin; F) two nuclei have moved to poles of daughter cells. Scale bar = 20 µm. ...................................................... 32 6. Differential interference contrast images of Karenia papilionacea undergoing cytokinesis: A) the two daughter nuclei are located in separate lobes of the hypotheca; B) the cleft between lobes of the hypotheca deepens; C) additional lobes form; D) cytokinetic cell appears as two mature cells, attached at a midpoint; E) the final point of attachment at the apical tip. Nuclei are stained blue with DAPI. Scale bar = 20 µm ......................................................................................... 33 7. Frequency distribution of DNA content in picograms per cell (pg · cell-1) for all cells analyzed. ................................................................................................................... 34 8. Frequency distribution of DNA content (pg · cell-1) of Karenia papilionacea in A) butterfly-shaped cells; B) brevis-shaped cells, and C) spherical cells .............................. 35 viii INTRODUCTION Dinoflagellates are a large component of primary producers and are estimated to make up about 40% of the total species of marine phytoplankton (Simon et al. 2009). They are key components in food webs, nutrient cycling and the conversion of carbon dioxide to oxygen in ocean systems. A typical dinoflagellate life cycle consists of a motile, haploid (Pfeister and Anderson, 1987), asexually reproductive cell that undergoes mitosis regularly (Dale 1986). Sometimes these asexual cells form pellicle cysts (formerly referred to as temporary cysts, see Bravo et al. 2010) to survive an environmental change. An environmental or internal cue elicits vegetative cells to initiate sexual reproduction by forming haploid homothallic or heterothallic gametes that fuse to form motile, diploid planozygotes, distinguishable by the presence of two longitudinal flagella. The planozygote will undergo reductive division (meiosis) to form planktonic vegetative cells or it will lose motility by absorbing the flagella and undergoing cellular reorganization to form a resting cyst called a hypnozygote. Resting cysts are defined as cells having double walls and a mandatory dormancy period (Bravo et al. 2010). The hypnozygote has the potential to excyst releasing a diploid planomeiocyte that has two longitudinal flagella. Meiosis of the planomeiocyte produces haploid vegetative cells and the cycle continues. Ecologically these cysts have a function as vegetative propagules and can release motile cells under favorable conditions to reestablish motile populations in the water column. Cysts are thus used as indicators of previous blooms, as a potential for forming motile populations and as a means of disseminating a population to new areas. With both motile and resting (cyst) stages, dinoflagellates express a variety of morphologies, making detailed morphological and molecular studies essential in the accurate identification of the bloom formers. Relatively few (~ 2%) dinoflagellates are known to
Recommended publications
  • Dinos, Toxins and Fears, Oh My!
    Dinos, Toxins and Fears, Oh My! (a new algae adventure… we’re not in Delaware anymore) The Cast of Characters: UD Citizen Monitoring Program- Ed Whereat, Muns Farestad Graham Purchase, Capt. Dick Peoples and the “Spectacle” AG Robbins, and other volunteers. DNREC- Jack Pingree, Glenn King Jr., and DNREC’s HAB Monitoring Program UNCW- Dr, Carmelo Tomas FWRI-Leanne Flewelling and Jennifer Wolny Also, thanks to Bill Winkler Sr., and Dave Munchel (deceased) CIB STAC Nov 16, 2007 “Red Tide” Most “red tides” are caused by dinoflagellates which have a variety of pigments ranging from yellow-red-brown in addition to the green of Chlorophyll, so blooms of some dinoflagellates actually appear as red water. The dinoflagellate, Karenia brevis, is commonly called the “Florida red tide” even though blooms are usually yellow-green. The toxicity of K. brevis is well- documented. Blooms are associated with massive fish kills, shellfish toxicity, marine mammal deaths, and human respiratory irritation if exposed to salt-spray aerosols. There are several newly described species of Karenia, one being K. papilionacea, formerly known as K. brevis “butterfly-type”. Karenia papilionacea, K. brevis, and a few others are commonly found in the Gulf of Mexico, but these and yet other Karenia species are also found throughout the world. This summer, K. papilionacea and K. brevis were detected in Delaware waters. The potential for toxicity in K. papilionacea is low, but less is known about the newly described species. Blooms of K. brevis have migrated to the Atlantic by entrainment in Gulf Stream waters. Occasional blooms have been seen along the Atlantic coast of Florida since 1972.
    [Show full text]
  • Dinophyceae), Including the Calcareous
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Protist, Vol. 163, 15–24, January 2012 provided by Electronic Publication Information Center http://www.elsevier.de/protis Published online date 8 July 2011 ORIGINAL PAPER Delimitation of the Thoracosphaeraceae (Dinophyceae), Including the Calcareous Dinoflagellates, Based on Large Amounts of Ribosomal RNA Sequence Data a,1 a a b Marc Gottschling , Sylvia Soehner , Carmen Zinssmeister , Uwe John , c d e f Jörg Plötner , Michael Schweikert , Katerina Aligizaki , and Malte Elbrächter a Department Biologie I, Bereich Biodiversitätsforschung, Organismische Biologie, Systematische Botanik und Mykologie, Ludwig-Maximilians-Universität München, GeoBio-Center, Menzinger Str. 67, 80638 Munich, Germany b Department Chemical Ecology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany c Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität Berlin, Berlin, Germany d Biologisches Institut – Abteilung Zoologie, Universität Stuttgart, Stuttgart, Germany e Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece f Wattenmeerstation Sylt, Alfred Wegener Institute for Polar and Marine Research, List/Sylt, Germany Submitted November 4, 2010; Accepted May 21, 2011 Monitoring Editor: Hervé Philippe The phylogenetic relationships of the Dinophyceae (Alveolata) are not sufficiently resolved at present. The Thoracosphaeraceae (Peridiniales) are the only group of the Alveolata that include members with calcareous coccoid stages; this trait is considered apomorphic. Although the coccoid stage appar- ently is not calcareous, Bysmatrum has been assigned to the Thoracosphaeraceae based on thecal morphology. We tested the monophyly of the Thoracosphaeraceae using large sets of ribosomal RNA sequence data of the Alveolata including the Dinophyceae.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • COMPARISON of HEMOLYTIC ACTIVITY of Amphidinium Carterae and Amphidinium Klebsii
    ENVIRONMENTAL REGULATION OF TOXIN PRODUCTION: COMPARISON OF HEMOLYTIC ACTIVITY OF Amphidinium carterae AND Amphidinium klebsii Leigh A. Zimmermann A Thesis Submitted to University of North Carolina Wilmington in Partial Fulfillment Of the Requirements for the Degree of Master of Science Center for Marine Science University of North Carolina Wilmington 2006 Approved by Advisory Committee ______________________________ ______________________________ ______________________________ Chair Accepted by _____________________________ Dean, Graduate School This thesis was prepared according to the formatting guidelines of the Journal of Phycology. TABLE OF CONTENTS ABSTRACT................................................................................................................................... iv ACKNOWLEDGEMENTS.............................................................................................................v LIST OF TABLES......................................................................................................................... vi LIST OF FIGURES ..................................................................................................................... viii INTRODUCTION ...........................................................................................................................1 METHODS AND MATERIALS.....................................................................................................6 Algal Culture........................................................................................................................6
    [Show full text]
  • Suitability of Great South Bay, New York to Blooms of Pfiesteria Piscicida and P
    City University of New York (CUNY) CUNY Academic Works School of Arts & Sciences Theses Hunter College Summer 8-10-2015 Suitability of Great South Bay, New York to Blooms of Pfiesteria piscicida and P. shumwayae Prior to Superstorm Sandy, October 29, 2012 Pawel Tomasz Zablocki CUNY Hunter College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/hc_sas_etds/6 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Suitability of Great South Bay, New York, to Blooms of Pfiesteria piscicida and P. shumwayae Prior to Superstorm Sandy, October 29, 2012. By Pawel Zablocki Submitted in partial fulfillment of the requirements for the degree of Master of Arts Hunter College of the City of New York 2015 Thesis sponsor: __25 July 2015 Peter X. Marcotullio Date First Reader _2 August 2015 Karl H. Szekielda Date Second Reader i Acknowledgements I would like to thank my advisor, Professor H. Gong and two of my excellent readers—Professor Peter Marcotullio and Professor Karl Szekielda who provided their invaluable advice, alleviated my concerns, and weathered the avalanche of my questions. ii Abstract of the Thesis Pfiesteria piscicida and P. shumwayae are toxic dinoflagellates implicated in massive fish kills in North Carolina and Maryland during 1990s. A set of physical, chemical, and biological factors influence population dynamics of these organisms. This study employs information gathered from relevant literature on temperature, salinity, dissolved oxygen, pH, turbulent mixing, and dissolved nutrients, bacteria, algae, microzooplankton, mesozooplankton, bivalve mollusks, finfish, and other toxic dinoflagellates, which influence Pfiesteria population dynamics.
    [Show full text]
  • Influence of Environmental Parameters on Karenia Selliformis Toxin Content in Culture
    Cah. Biol. Mar. (2009) 50 : 333-342 Influence of environmental parameters on Karenia selliformis toxin content in culture Amel MEDHIOUB1, Walid MEDHIOUB3,2, Zouher AMZIL2, Manoella SIBAT2, Michèle BARDOUIL2, Idriss BEN NEILA3, Salah MEZGHANI3, Asma HAMZA1 and Patrick LASSUS2 (1) INSTM, Institut National des Sciences et Technologies de la Mer. Laboratoire d'Aquaculture, 28, rue 2 Mars 1934, 2025 Salammbo, Tunisie. E-mail: [email protected] (2) IFREMER, Département Environnement, Microbiologie et Phycotoxines, BP 21105, 44311 Nantes, France. (3) IRVT, Institut de la Recherche Vétérinaire de Tunisie, centre régional de Sfax. Route de l'aéroport, km 1, 3003 Sfax, Tunisie Abstract: Karenia selliformis strain GM94GAB was isolated in 1994 from the north of Sfax, Gabès gulf, Tunisia. This species, which produces gymnodimine (GYM) a cyclic imine, has since been responsible for chronic contamination of Tunisian clams. A study was made by culturing the microalgae on enriched Guillard f/2 medium. The influence of growing conditions on toxin content was studied, examining the effects of (i) different culture volumes (0.25 to 40 litre flasks), (ii) two temperature ranges (17-15°C et 20-21°C) and (iii) two salinities (36 and 44). Chemical analyses were made by mass spectrometry coupled with liquid chromatography (LC-MS/MS). Results showed that (i) the highest growth rate (0.34 ± 0.14 div d-1) was obtained at 20°C and a salinity of 36, (ii) GYM content expressed as pg eq GYM cell-1 increased with culture time. The neurotoxicity of K. selliformis extracts was confirmed by mouse bioassay. This study allowed us to cal- culate the minimal lethal dose (MLD) of gymnodimine (GYM) that kills a mouse, as a function of the number of K.
    [Show full text]
  • Unfolding the Secrets of Coral–Algal Symbiosis
    The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin.
    [Show full text]
  • Growth and Grazing Rates of the Herbivorous Dinoflagellate Gymnodinium Sp
    MARINE ECOLOGY PROGRESS SERIES Published December 16 Mar. Ecol. Prog. Ser. Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean Suzanne L. Strom' School of Oceanography WB-10, University of Washington. Seattle. Washington 98195, USA ABSTRACT: Growth, grazing and cell volume of the small heterotroph~cdinoflagellate Gyrnnodin~um sp. Isolated from the open subarctic Pacific Ocean were measured as a funct~onof food concentration using 2 phytoplankton food species. Growth and lngestlon rates increased asymptotically with Increas- ing phytoplankon food levels, as did grazer cell volume; rates at representative oceanic food levels were high but below maxima. Clearance rates decreased with lncreaslng food levels when Isochrysis galbana was the food source; they increased ~vithlncreaslng food levels when Synechococcus sp. was the food source. There was apparently a grazlng threshold for Ingestion of Synechococcus: below an initial Synechococcus concentration of 20 pgC 1.' ingestion rates on this alga were very low, while above this initial concentratlon Synechococcus was grazed preferent~ally Gross growth efficiency varied between 0.03 and 0.53 (mean 0.21) and was highest at low food concentrations. Results support the hypothesis that heterotrophic d~noflagellatesmay contribute to controlling population increases of small, rap~dly-grow~ngphytoplankton specles even at low oceanic phytoplankton concentrations. INTRODUCTION as Gymnodinium and Gyrodinium is difficult or impos- sible using older preservation and microscopy tech- Heterotrophic dinoflagellates can be a significant niques; experimental emphasis has been on more component of the microzooplankton in marine waters. easily recognizable and collectable microzooplankton In the oceanic realm, Lessard (1984) and Shapiro et al.
    [Show full text]
  • Ultrastructure and Molecular Phylogenetic Position of a New Marine Sand-Dwelling Dinoflagellate from British Columbia, Canada: Pseudadenoides Polypyrenoides Sp
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae) Mona Hoppenrath, Naoji Yubuki, Rowena Stern & Brian S. Leander To cite this article: Mona Hoppenrath, Naoji Yubuki, Rowena Stern & Brian S. Leander (2017) Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae), European Journal of Phycology, 52:2, 208-224, DOI: 10.1080/09670262.2016.1274788 To link to this article: http://dx.doi.org/10.1080/09670262.2016.1274788 View supplementary material Published online: 03 Mar 2017. Submit your article to this journal Article views: 25 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [The University of British Columbia] Date: 13 April 2017, At: 11:37 EUROPEAN JOURNAL OF PHYCOLOGY, 2017 VOL. 52, NO. 2, 208–224 http://dx.doi.org/10.1080/09670262.2016.1274788 Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae) Mona Hoppenratha,b, Naoji Yubukia,c, Rowena Sterna,d and Brian S. Leandera aDepartments of Botany and Zoology,
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Development of a Quantitative PCR Assay for the Detection And
    bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp.
    [Show full text]