Perineural Tumor Spread in Head and Neck Malignancies Mohit Agarwal, MD,* Pattana Wangaryattawanich, MD,† and Tanya J

Total Page:16

File Type:pdf, Size:1020Kb

Perineural Tumor Spread in Head and Neck Malignancies Mohit Agarwal, MD,* Pattana Wangaryattawanich, MD,† and Tanya J Perineural Tumor Spread in Head and Neck Malignancies Mohit Agarwal, MD,* Pattana Wangaryattawanich, MD,† and Tanya J. Rath, MD† Introduction Squamous cell carcinomas are probably the most common and can arise in the skin and spread perineurally conforming to the he network of nerves supplying the facial region is fasci- dermatomal distribution; or can arise in the mucosal space and T nating and innervates a complex variety of functions, spread via the locoregional nerves. Adenoid cystic carcinomas including: movement of the facial and masticatory muscles; are notorious for PNTS and in the parotid glands commonly perception of skin sensation and taste; and secretomotor involve the facial nerve while those in the submandibular and action of the salivary and lacrimal glands. Most of these func- sublingual glands involve the lingual nerve. Adenoid cystic car- tions are achieved by the facial and trigeminal nerves, with cinomas of the minor salivary glands arising in the mucosal additional contributions from the glossopharyngeal and space follow a pattern similar to other tumors in those loca- vagus nerves. The camaraderie of the trigeminal and facial tions and involve the nerve innervating the region. Malignant nerves is spectacular in that at several locations, the trigemi- desmoplastic melanoma, basal cell carcinoma, adenocarci- nal nerve allows its branches to be used as conduit for special noma, and lymphoma are other culpable tumors. fi facial nerve bers to reach their destination. The assimilation Following the general theme of complexity of the human of the chorda tympani (branch of facial nerve) into the lin- body and its disease processes, there are several questions gual nerve (branch of trigeminal nerve) to carry taste sensa- pertaining to PNTS that defy complete explanation. Why cer- tion from the anterior two-thirds of the tongue is one such tain tumors like adenoid cystic carcinoma have a greater example. However, as is true with any association, this inte- prevalence of PNTS than others or why the trigeminal and gration can prove perilous at times. Perineural tumor that facial nerves are more frequently affected than other cranial “ ” hitchhikes onto the branches of the facial nerve at these nerves, are 2 such questions. Research backed theories have locations of intermingling with the trigeminal nerve and vice been proposed about the “neurotrophic” nature of certain versa is a perfect instance of the hazards of this friendship. tumors and molecular factors including brain-derived neuro- Perineural tumor spread (PNTS) is a detrimental sequela of trophic factor, nerve growth factor, neurotrophins 3 and 4, malignant tumors, in which there is malignant spread of tumor etc. have been implicated.4 The mere ubiquitous presence of along the course of a nerve distant to an extracranial primary the branches of the trigeminal and facial nerves in the head tumor or in the setting of lymphoma, and is a gross feature and neck region has been proposed to be enough reason for amenable to imaging. It must be differentiated from perineural their overwhelming involvement. invasion, the latter being a histological diagnosis characterized by the invasion of the perineurium on a microscopic speci- men.1 Both perineural invasion and PNTS are indicators of Clinical Features worse prognosis associated with increased incidence of recur- rence.2,3 Henceforth, in this chapter we will review the relevant The absence of clinical symptoms should not discourage the nerve anatomy and characteristic imaging features of PNTS. interpreting radiologist from diagnosing PNTS, since 40% of 5 Many malignant tumors can cause PNTS, though certain patients are asymptomatic at the time of diagnosis. When tumors are more commonly incriminated than others. present, the symptoms can include muscle weakness, pain, numbness, and paresthesias in the distribution of the nerve. Trigeminal neuralgia can be a symptom of PNTS and may be *Radiology Department, Medical College of Wisconsin, Wauwatosa, WI. y the initial presentation of malignancy in a patient. The clini- University of Pittsburgh Medical Center, Department of Radiology, cal diagnosis of “idiopathic” trigeminal neuralgia should only Pittsburgh, PA. Address reprint requests to Tanya J. Rath, MD, University of Pittsburgh be made after imaging and clinical evaluation excludes other Medical Center, Department of Radiology, 200 Lothrop Street, Suite 200 causes, including PNTS. Symptoms of trigeminal neuralgia East Wing, Pittsburgh, PA. E-mail: [email protected] in an individual with a prior history of cancer, especially of 258 https://doi.org/10.1053/j.ro.2019.03.003 0037-198X/© 2019 Elsevier Inc. All rights reserved. Perineural tumor spread in head and neck malignancies 259 the head and neck, should prompt a thorough search for fat signal by mass-like hypointensity on precontrast T1- PNTS. PNTS involving CN VII can be clinically misdiag- weighted images at important foraminal and skull base loca- nosed as Bell's palsy. By definition, Bell's palsy should resolve tions including but not limited to the pterygopalatine fossa, within 6-8 weeks. In patients with a clinical diagnosis of premaxillary fat pad, and mental foramen. Linear enhancing Bell's palsy, an atypical clinical course of facial nerve palsy soft tissue at the site of tumor and along the expected such as an unresolving or progressive facial nerve paralysis course of the cranial nerve branches should raise the suspi- should alert the radiologist to scrutinize the facial nerve cion of PNTS. Enlargement of and enhancement within the closely for PNTS. Stroke is another common knee-jerk diag- cranial nerve canals and foramina should alert the interpret- nosis for facial weakness and should not always be presumed ing radiologist of the possibility of PNTS. Thin-section pre- as such, particularly if there is a history of head and neck and postcontrast T1-weighted images are typically the most cancer. Clinical distinction of peripheral facial nerve palsy useful in the detection of PNTS.7 Use of fat suppression on from central facial nerve palsy on the basis of a quality neuro- postcontrast images is usually a matter of interpreter prefer- logical exam can help avoid this pitfall. Patients with PNTS ence. A typical MR imaging protocol, where PNTS is of con- may also present to the dentist with pain and paresthesia cern, includes a 3D FIESTA sequence through the skull along the jaw, if the alveolar nerve is involved, and may be base foramina, smaller FOV (16-18 mm) thin section (3- misdiagnosed with an odontogenic infection. Symptoms in 4 mm) STIR, precontrast T1W and postcontrast T1W the distribution of more than one cranial nerve can be due to images. Images are obtained in at least 2 planes with an tumor extension to the orbital apex, skull base or the cavern- optional third plane for the postcontrast sequence. At our ous sinus, which houses cranial nerves III, IV, V1, V2, and institution, whole brain DWI and FLAIR sequences are also VI.6 Symptoms involving both the 5th and 7th cranial nerves obtained to rule out potential brain pathology. The recent can be an ominous sign of substantial PNTS and require a development of MR neurography holds promise for detec- thorough assessment of the pathways of these nerves, partic- tion of early PNTS.8,9 The CT features of PNTS include loss ularly the course of the greater superficial petrosal nerve and of perineural fat pads, widening and/or erosion of the neu- auriculotemporal nerves which are clinically important inter- ral foramina and enhancing soft tissue masses in the connections between these nerves. PNTS from skin malig- expected locations of the foramina. These features are nancies extending retrograde along distal cutaneous important to recognize as CT may be the initial study trigeminal and facial nerve branches represents an important ordered in patients not yet diagnosed with malignancy, par- cause of PNTS which can extend to the skull base. Treatment ticularly if they present initially to the emergency room. As of the cutaneous malignancy may predate the presentation of would be expected, the sensitivity of CT for the diagnosis of PNTS by years and a skin lesion on exam may not be evident PNTS is much lower than that of MRI. Figure 1 demon- at the time of diagnosis of PNTS. Identification of PNTS by strates many of the characteristic imaging features of peri- the radiologist is a critically important poor prognosticator as neural tumor spread on CT and MRI. skull base or intracranial involvement may preclude curative An interesting imaging finding of PNTS is denervation surgical therapy, and impacts treatment, including accurate injury to the muscles. Muscle denervation can be seen in radiation therapy planning. 2 forms on imaging, an acute/subacute form (Fig. 1) seen during the first year and a chronic form (Fig. 2) seen Imaging PNTS 1-1.5 years after. The acute/subacute form is seen as dif- fusely increased T2 intensity and enhancement on MR Head and neck radiologists adore fat planes, especially imaging, while in the chronic stage the muscles are atro- when scrutinizing images for PNTS. Loss of the normal fat phic and replaced by fat. pad surrounding nerves at the site of transit through the In the majority of cases, PNTS starts in the vicinity of the skull base, calvarium or maxillofacial structures with abnor- primary tumor, usually contiguous to it. The common pat- mal enhancement and thickening along the course of the tern of progression is in a retrograde fashion toward the nerves is a useful sign to detect PNTS5 (Figure 1). Examina- main trunk of the involved nerve. In some instances, the tion of the superior orbital and supraorbital fat pad can progression may be antegrade toward the ramifying portion help detect V1 disease. V2 disease can be uncovered by the of the nerve. The length of the nerve is affected earlier com- survey of foramen rotundum and of the normal fat within pared to the thickness of the nerve.10 “Skip” lesions have the pterygopalatine fossa, retromaxillary fat, fat along the been described where affected enlarged and enhancing por- orbital floor, and the premaxillary regions.
Recommended publications
  • 87.MANISH KUMAR DOI.Cdr
    Volume - 10 | Issue - 12 | December - 2020 | PRINT ISSN No. 2249 - 555X | DOI : 10.36106/ijar Review Article Dentistry THE MANDIBULAR NERVE, ITS COURSE, ANATOMICAL VARIATIONS AND PTERYGOMANDIBULAR SPACE. - A SYSTEMATIC REVIEW. Assistant Professor, Department Of Dentistry, Government Medical College & Dr. Manish Kumar Hospital, Ratlam (M.P). Dr. Kapil Associate Professor, Department Of Dentistry, Ananta Institute Of Medical Sciences Karwasra* And Research Centre, Rajsamand, Rajasthan. *Corresponding Author Dr. Amit Senior Resident, Department Of Dentistry, Sardar Patel Medical College & Associated Chhaparwal Hospital, Bikaner, (Rajasthan). ABSTRACT Knowledge of mandibular nerve and its branches is important when performing dental and surgical procedures of mandible. So, this systematic review article revealed all details of mandibular nerve course and also important anatomical variations. Mandibular nerve during its course go through the pterygomandibular space and this space is important for inferior alveolar nerve block anaesthesia, so all details of pterygomandibular structure are also included in this review. KEYWORDS : Mandibular Nerve, Pterygomandibular Space, Inferior Alveolar Nerve, Trigeminal Nerve, Trigeminal Ganglion. INTRODUCTION and this site is generally used for buccal nerve block 5. The trigeminal nerve (TN) exits the brain on the lateral surface of pons, entering the trigeminal ganglion (TGG) after few millimeters, Deep temporal nerves usually are two nerves, anterior and posterior. followed by an extensive series of divisions1. Mandibular nerve (MN) They pass between the skull and the LPt, and enter the deep surface of is the largest of the three divisions of trigeminal nerve. MN also temporalis2. contains motor or efferent bers to innervate the muscles that are attached to mandible. Most of these bers travel directly to their target The nerve to LPt enters the deep surface of the muscle and may arise tissues.
    [Show full text]
  • Trigeminal Cave and Ganglion: an Anatomical Review
    Int. J. Morphol., 31(4):1444-1448, 2013. Trigeminal Cave and Ganglion: An Anatomical Review Cavo y Ganglio Trigeminal: Una Revisión Anatómica N. O. Ajayi*; L. Lazarus* & K. S. Satyapal* AJAYI, N. O.; LAZARUS, L. & SATYAPAL, K. S. Trigeminal cave and ganglion: an anatomical review. Int. J. Morphol., 31(4):1444- 1448, 2013. SUMMARY: The trigeminal cave (TC) is a special channel of dura mater, which extends from the posterior cranial fossa into the posteromedial portion of the middle cranial fossa at the skull base. The TC contains the motor and sensory roots of the trigeminal nerve, the trigeminal ganglion (TG) as well as the trigeminal cistern. This study aimed to review the anatomy of the TC and TG and determine some parameters of the TC. The study comprised two subsets: A) Cadaveric dissection on 30 sagitally sectioned formalin fixed heads and B) Volume injection. We found the dura associated with TC arranged in three distinct layers. TC had relations with internal carotid artery, the cavernous sinus, the superior petrosal sinus, the apex of petrous temporal bone and the endosteal dura of middle cranial fossa. The mean volume of TC was 0.14 ml. The mean length and breadth of TG were 18.3 mm and 7.9 mm, respectively, mean width and height of trigeminal porus were 7.9 mm and 4.1 mm, respectively, and mean length of terminal branches from TG to point of exit within skull was variable. An understanding of the precise formation of the TC, TG, TN and their relations is important in order to perform successful surgical procedures and localized neural block in the region of the TC.
    [Show full text]
  • Volume 1: the Upper Extremity
    Volume 1: The Upper Extremity 1.1 The Shoulder 01.00 - 38.20 (37.20) 1.1.1 Introduction to shoulder section 0.01.00 0.01.28 0.28 1.1.2 Bones, joints, and ligaments 1 Clavicle, scapula 0.01.29 0.05.40 4.11 1.1.3 Bones, joints, and ligaments 2 Movements of scapula 0.05.41 0.06.37 0.56 1.1.4 Bones, joints, and ligaments 3 Proximal humerus 0.06.38 0.08.19 1.41 Shoulder joint (glenohumeral joint) Movements of shoulder joint 1.1.5 Review of bones, joints, and ligaments 0.08.20 0.09.41 1.21 1.1.6 Introduction to muscles 0.09.42 0.10.03 0.21 1.1.7 Muscles 1 Long tendons of biceps, triceps 0.10.04 0.13.52 3.48 Rotator cuff muscles Subscapularis Supraspinatus Infraspinatus Teres minor Teres major Coracobrachialis 1.1.8 Muscles 2 Serratus anterior 0.13.53 0.17.49 3.56 Levator scapulae Rhomboid minor and major Trapezius Pectoralis minor Subclavius, omohyoid 1.1.9 Muscles 3 Pectoralis major 0.17.50 0.20.35 2.45 Latissimus dorsi Deltoid 1.1.10 Review of muscles 0.20.36 0.21.51 1.15 1.1.11 Vessels and nerves: key structures First rib 0.22.09 0.24.38 2.29 Cervical vertebrae Scalene muscles 1.1.12 Blood vessels 1 Veins of the shoulder region 0.24.39 0.27.47 3.08 1.1.13 Blood vessels 2 Arteries of the shoulder region 0.27.48 0.30.22 2.34 1.1.14 Nerves The brachial plexus and its branches 0.30.23 0.35.55 5.32 1.1.15 Review of vessels and nerves 0.35.56 0.38.20 2.24 1.2.
    [Show full text]
  • Clinical Anatomy of the Trigeminal Nerve
    Clinical Anatomy of Trigeminal through the superior orbital fissure Nerve and courses within the lateral wall of the cavernous sinus on its way The trigeminal nerve is the fifth of to the trigeminal ganglion. the twelve cranial nerves. Often Ophthalmic Nerve is formed by the referred to as "the great sensory union of the frontal nerve, nerve of the head and neck", it is nasociliary nerve, and lacrimal named for its three major sensory nerve. Branches of the ophthalmic branches. The ophthalmic nerve nerve convey sensory information (V1), maxillary nerve (V2), and from the skin of the forehead, mandibular nerve (V3) are literally upper eyelids, and lateral aspects "three twins" carrying information of the nose. about light touch, temperature, • The maxillary nerve (V2) pain, and proprioception from the enters the middle cranial fossa face and scalp to the brainstem. through foramen rotundum and may or may not pass through the • The three branches converge on cavernous sinus en route to the the trigeminal ganglion (also called trigeminal ganglion. Branches of the semilunar ganglion or the maxillary nerve convey sensory gasserian ganglion), which contains information from the lower eyelids, the cell bodies of incoming sensory zygomae, and upper lip. It is nerve fibers. The trigeminal formed by the union of the ganglion is analogous to the dorsal zygomatic nerve and infraorbital root ganglia of the spinal cord, nerve. which contain the cell bodies of • The mandibular nerve (V3) incoming sensory fibers from the enters the middle cranial fossa rest of the body. through foramen ovale, coursing • From the trigeminal ganglion, a directly into the trigeminal single large sensory root enters the ganglion.
    [Show full text]
  • CT of Perineural Tumor Extension: Pterygopalatine Fossa
    731 CT of Perineural Tumor Extension: Pterygopalatine Fossa Hugh D. Curtin1.2 Tumors of the oral cavity and paranasal sinuses can spread along nerves to areas Richard Williams 1 apparently removed from the primary tumor. In tumors of the palate, sinuses, and face, Jonas Johnson3 this "perineural" spread usually involves the maxillary division of the trigeminal nerve. The pterygopalatine fossa is a pathway of the maxillary nerve and becomes a key landmark in the detection of neural metastasis by computed tomogaphy (CT). Oblitera­ tion of the fat in the fossa suggests pathology. Case material illustrating neural extension is presented and the CT findings are described. Perineural extension is possibly the most insidious form of tumor spread of head and neck malignancy. After invading a nerve, tumor follows the sheath to reach the deeper connections of the nerve, escaping the area of a planned resection. Thus, detection of this form of extension is important in treatment planning and estimation of prognosis. The pterygopalatine fossa (PPF) is a key crossroad in extension along cranial nerve V. The second branch of the trigeminal nerve passes from the gasserian ganglion through the foramen rotundum into the PPF. Here the nerve branches send communications to the palate, sinus, nasal cavity, and face. Tumor can follow any of these routes proximally into the PPF and eventually to the gasserian ganglion in the middle cranial fossa. The PPF contains enough fat to be an ideal subject for computed tomographic (CT) evaluation. Obliteration of this fat is an important indicator of pathology, including perineural tumor spread. Other signs of perineural extension include enlargement of foramina, increased enhancement in the region of Meckel cave (gasserian ganglion), and atrophy of the muscles innervated by the trigeminal nerve.
    [Show full text]
  • Accepted Version
    Article Arterial supply of the trigeminal ganglion, a micromorphological study ĆETKOVIĆ, Mila, et al. Abstract Background: In this study, we explored the specific microanatomical properties of the trigeminal ganglion (TG) blood supply and its close neurovascular relationships with the surrounding vessels. Possible clinical implications have been discussed. Materials and methods: The internal carotid and maxillary arteries of 25 adult and 4 fetal heads were injected with a 10% mixture of India ink and gelatin, and their TGs subsequently underwent microdissection, observation and morphometry under a stereoscopic microscope. Results: The number of trigeminal arteries varied between 3 and 5 (mean 3.34), originating from two or three of the following sources: the inferolateral trunk (ILT) (100%), the meningohypophyseal trunk (MHT) (100%), and from the middle meningeal artery (MMA) (92%). In total, the mean diameter of the trigeminal branches was 0.222 mm. The trigeminal branch of the ILT supplied medial and middle parts of the TG, branch of the MHT supplied the medial part of the TG, and the branch of the MMA supplied the lateral part of the TG. Additional arteries for the TG emerged from the dural vascular plexus and the vascular [...] Reference ĆETKOVIĆ, Mila, et al. Arterial supply of the trigeminal ganglion, a micromorphological study. Folia Morphologica, 2019 DOI : 10.5603/FM.a2019.0062 PMID : 31282551 Available at: http://archive-ouverte.unige.ch/unige:123601 Disclaimer: layout of this document may differ from the published version. 1 / 1 ONLINE FIRST This is a provisional PDF only. Copyedited and fully formatted version will be made available soon. ISSN: 0015-5659 e-ISSN: 1644-3284 Arterial supply of the trigeminal ganglion, a micromorphological study Authors: Mila Ćetković, Bojan V.
    [Show full text]
  • Prezentace Aplikace Powerpoint
    MENINGES AND CEREBROSPINAL FLUID Konstantinos Choulakis Konstantinos Choulakis Meninges • Dura Mater • Aracnoid Mater • Pia Mater Dura Mater Spinal Dura mater Cranial Dura mater It forms a tube (saccus durrae matris spinalis) which start It is firmly attached to the periostium of the skull from which it receives from foramen magnus and extends to second segment of small blood vessels, branches of meningeal vessels (inappropriate name) the sacrum. It is pierced by spinal nerve roots. The spinal which occur in periostium. canal wall is coverd by periostium, then there is dura mater. The cranial dura mater has several features of importance especially, Between dura mater and periostium there is a , so called especially the dural reflections (derivatives) and the dural venous epidural space, which is filled with adipose tissue and a sinuses(see blood supply) venous plexus , the plexus venosi vertebrales interni Dura mater is attached to avascular arachnoid mater. Between them there is a potential space, so called subdural space which contains a small amount of interstitial fluid. Enables arachnoid mater to slide against dura mater. Dural Reflections The dura separates into two layers at dural reflections (also known as dural folds), places where the inner dural layer is reflected as sheet-like protrusions into the cranial cavity. There are two main dural reflections: • The tentorium cerebelli exists between and separates the cerebellum and • The falx cerebri, which separates the two hemispheres of the brain, is located in the brainstem from the occipital lobes of the cerebrum. The peripheral border of longitudinal cerebral fissure between the hemispheres. Its free edge is close to corpus tentorium is attached to the upper edges of the petrous bones and to the calosum.
    [Show full text]
  • Atlas of the Facial Nerve and Related Structures
    Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries.
    [Show full text]
  • Arterial Supply of the Trigeminal Ganglion, a Micromorphological Study M
    Folia Morphol. Vol. 79, No. 1, pp. 58–64 DOI: 10.5603/FM.a2019.0062 O R I G I N A L A R T I C L E Copyright © 2020 Via Medica ISSN 0015–5659 journals.viamedica.pl Arterial supply of the trigeminal ganglion, a micromorphological study M. Ćetković1, B.V. Štimec2, D. Mucić3, A. Dožić3, D. Ćetković3, V. Reçi4, S. Çerkezi4, D. Ćalasan5, M. Milisavljević6, S. Bexheti4 1Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Serbia 2Faculty of Medicine, Teaching Unit, Anatomy Sector, University of Geneva, Switzerland 3Institute of Anatomy, Faculty of Dental Medicine, University of Belgrade, Serbia 4Institute of Anatomy, Faculty of Medicine, State University of Tetovo, Republic of North Macedonia 5Department of Oral Surgery, Faculty of Dental Medicine, University of Belgrade, Serbia 6Laboratory for Vascular Anatomy, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Serbia [Received: 13 March 2019; Accepted: 14 May 2019] Background: In this study, we explored the specific microanatomical properties of the trigeminal ganglion (TG) blood supply and its close neurovascular relationships with the surrounding vessels. Possible clinical implications have been discussed. Materials and methods: The internal carotid and maxillary arteries of 25 adult and 4 foetal heads were injected with a 10% mixture of India ink and gelatin, and their TGs subsequently underwent microdissection, observation and morphometry under a stereoscopic microscope. Results: The number of trigeminal arteries varied between 3 and 5 (mean 3.34), originating from 2 or 3 of the following sources: the inferolateral trunk (ILT) (100%), the meningohypophyseal trunk (MHT) (100%), and from the middle meningeal artery (MMA) (92%).
    [Show full text]
  • A Review of the Mandibular and Maxillary Nerve Supplies and Their Clinical Relevance
    AOB-2674; No. of Pages 12 a r c h i v e s o f o r a l b i o l o g y x x x ( 2 0 1 1 ) x x x – x x x Available online at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/aob Review A review of the mandibular and maxillary nerve supplies and their clinical relevance L.F. Rodella *, B. Buffoli, M. Labanca, R. Rezzani Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, V.le Europa 11, 25123 Brescia, Italy a r t i c l e i n f o a b s t r a c t Article history: Mandibular and maxillary nerve supplies are described in most anatomy textbooks. Accepted 20 September 2011 Nevertheless, several anatomical variations can be found and some of them are clinically relevant. Keywords: Several studies have described the anatomical variations of the branching pattern of the trigeminal nerve in great detail. The aim of this review is to collect data from the literature Mandibular nerve and gives a detailed description of the innervation of the mandible and maxilla. Maxillary nerve We carried out a search of studies published in PubMed up to 2011, including clinical, Anatomical variations anatomical and radiological studies. This paper gives an overview of the main anatomical variations of the maxillary and mandibular nerve supplies, describing the anatomical variations that should be considered by the clinicians to understand pathological situations better and to avoid complications associated with anaesthesia and surgical procedures. # 2011 Elsevier Ltd.
    [Show full text]
  • Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves
    Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves Paul Rea AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First published 2014 Copyright r 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • Maxillary Nerve Variations and Its Clinical Significance
    Sai Pavithra .R et al /J. Pharm. Sci. & Res. Vol. 6(4), 2014, 203-205 Maxillary Nerve Variations and Its Clinical Significance Sai Pavithra .R,Thenmozhi M.S Department of Anatomy, Saveetha Dental College Tamil nadu. Abstract: The aim of this review is to collect data from the literature and gives a detailed description of the innervation of the maxilla. We carried out a search of studies published in PubMed up to 2011, including clinical and anatomical studies .several articles has has been published regarding the anatomical variations of the maxillary nerve supplies. The purpose of this paper is to demonstrate the variation in the paths and communications of the maxillary nerve which should be considered by the clinicians as nerve supply,assumed prime importance to oral surgeons to understand better and to avoid complications associated with anaesthesia and surgical procedures. Key words: maxillary nerve, clinical variations THE MAXILLARY NERVE: foramen is usually a single foramen but several studies 1. Anatomical variations of the maxillary nerve supply. have proven to have two or three foramen[2-8]. A low 2. Anatomical variations of the infraorbital nerve. percentage (4.7%) was observed during a study on 3. Anatomical variations of the superior alveolar nerve 1064 skulls, with a higher frequency on the left side, 4.Anatomical variations of the greaterpalatine nerve. both in male and in female skulls[9]. The distance from 5. Anatomical variations of the nasopalatine nerve. the infraorbital foramen to the inferior border of the [10-13] orbital rim is from 4.6 to 10.4 mm . AXILLARY NERVE: Since the infraorbital nerve block is often used to The maxillary nerve is a sensory nerve.
    [Show full text]