Greater Palatine Foramen – Key to Successful Hemimaxillary Anaesthesia: a Morphometric Study and Report of a Rare Aberration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Palatal Injection Does Not Block the Superior Alveolar Nerve Trunks: Correcting an Error Regarding the Innervation of the Maxillary Teeth
Open Access Review Article DOI: 10.7759/cureus.2120 Palatal Injection does not Block the Superior Alveolar Nerve Trunks: Correcting an Error Regarding the Innervation of the Maxillary Teeth Joe Iwanaga 1 , R. Shane Tubbs 2 1. Seattle Science Foundation 2. Neurosurgery, Seattle Science Foundation Corresponding author: Joe Iwanaga, [email protected] Abstract The superior alveolar nerves course lateral to the maxillary sinus and the greater palatine nerve travels through the hard palate. This difficult three-dimensional anatomy has led some dentists and oral surgeons to a critical misunderstanding in developing the anterior and middle superior alveolar (AMSA) nerve block and the palatal approach anterior superior alveolar (P-ASA) nerve block. In this review, the anatomy of the posterior, middle and anterior superior alveolar nerves, greater palatine nerve, and nasopalatine nerve are revisited in order to clarify the anatomy of these blocks so that the perpetuated anatomical misunderstanding is rectified. We conclude that the AMSA and P-ASA nerve blockades, as currently described, are not based on accurate anatomy. Categories: Anesthesiology, Medical Education, Other Keywords: anatomy, innervation, local anesthesia, maxillary nerve, nerve block, tooth Introduction And Background Anesthetic blockade of the posterior superior alveolar (PSA) branch of the maxillary nerve has played an important role in the endodontic treatment of irreversible acute pulpitis of the upper molar teeth except for the mesiobuccal root of the first molar tooth [1, 2]. This procedure requires precise anatomical knowledge of the pterygopalatine fossa and related structures in order to avoid unnecessary complications and to make the blockade most effective. The infraorbital nerve gives rise to middle superior alveolar (MSA) and anterior superior alveolar (ASA) branches. -
Periorbital Sinuses the Periorbital Sinuses Have a Close Anatomical Relationship with the Orbits (Fig 1-8)
12 ● Fundamentals and Principles of Ophthalmology Lacrimal nerve Frontal nerve Trochlear nerve (CN IV) Superior ophthalmic vein Superior division Ophthalmic artery of CN III Nasociliary nerve Abducens nerve (CN VI) Inferior division of CN III Inferior ophthalmic vein A Figure 1-7 A, Anterior view of the right orbital apex showing the distribution of the nerves as they enter through the superior orbital fissure and optic canal. This view also shows the annu- lus of Zinn, the fibrous ring formed by the origin of the 4 rectus muscles. (Continued) The course of the inferior ophthalmic vein is variable, and it can travel within or below the ring as it exits the orbit. The inferior orbital fissure lies just below the superior fissure, between the lateral wall and the floor of the orbit, providing access to the pterygopalatine and inferotemporal fos- sae (see Fig 1-1). Therefore, it is close to the foramen rotundum and the pterygoid canal. The inferior orbital fissure transmits the infraorbital and zygomatic branches of CN V2, an orbital nerve from the pterygopalatine ganglion, and the inferior ophthalmic vein. The inferior ophthalmic vein connects with the pterygoid plexus before draining into the cav- ernous sinus. Periorbital Sinuses The periorbital sinuses have a close anatomical relationship with the orbits (Fig 1-8). The medial walls of the orbits, which border the nasal cavity anteriorly and the ethmoid sinus and sphenoid sinus posteriorly, are almost parallel. In adults, the lateral wall of each orbit forms an angle of approximately 45° with the medial plane. The lateral walls border the middle cranial, temporal, and pterygopalatine fossae. -
Anatomy-Nerve Tracking
INJECTABLES ANATOMY www.aestheticmed.co.uk Nerve tracking Dr Sotirios Foutsizoglou on the anatomy of the facial nerve he anatomy of the human face has received enormous attention during the last few years, as a plethora of anti- ageing procedures, both surgical and non-surgical, are being performed with increasing frequency. The success of each of those procedures is greatly dependent on Tthe sound knowledge of the underlying facial anatomy and the understanding of the age-related changes occurring in the facial skeleton, ligaments, muscles, facial fat compartments, and skin. The facial nerve is the most important motor nerve of the face as it is the sole motor supply to all the muscles of facial expression and other muscles derived from the mesenchyme in the embryonic second pharyngeal arch.1 The danger zone for facial nerve injury has been well described. Confidence when approaching the nerve and its branches comes from an understanding of its three dimensional course relative to the layered facial soft tissue and being aware of surface anatomy landmarks and measurements as will be discussed in this article. Aesthetic medicine is not static, it is ever evolving and new exciting knowledge emerges every day unmasking the relationship of the ageing process and the macroscopic and microscopic (intrinsic) age-related changes. Sound anatomical knowledge, taking into consideration the natural balance between the different facial structures and facial layers, is fundamental to understanding these changes which will subsequently help us develop more effective, natural, long-standing and most importantly, safer rejuvenating treatments and procedures. The soft tissue of the face is arranged in five layers: 1) Skin; 2) Subcutaneous fat layer; 3) Superficial musculoaponeurotic system (SMAS); 4) Areolar tissue or loose connective tissue (most clearly seen in the scalp and forehead); 5) Deep fascia formed by the periosteum of facial bones and the fascial covering of the muscles of mastication (lateral face). -
Anatomical Study of the Zygomaticotemporal Branch Inside the Orbit
Open Access Original Article DOI: 10.7759/cureus.1727 Anatomical Study of the Zygomaticotemporal Branch Inside the Orbit Joe Iwanaga 1 , Charlotte Wilson 1 , Koichi Watanabe 2 , Rod J. Oskouian 3 , R. Shane Tubbs 4 1. Seattle Science Foundation 2. Department of Anatomy, Kurume University School of Medicine 3. Neurosurgery, Complex Spine, Swedish Neuroscience Institute 4. Neurosurgery, Seattle Science Foundation Corresponding author: Charlotte Wilson, [email protected] Abstract The location of the opening of the zygomaticotemporal branch (ZTb) of the zygomatic nerve inside the orbit (ZTFIN) has significant surgical implications. This study was conducted to locate the ZTFIN and investigate the variations of the ZTb inside the orbit. A total of 20 sides from 10 fresh frozen cadaveric Caucasian heads were used in this study. The vertical distance between the inferior margin of the orbit and ZTFIN (V-ZTFIN), the horizontal distance between the lateral margin of the orbit and ZTFIN (H-ZTFIN), and the diameter of the ZTFIN (D-ZTFIN) were measured. The patterns of the ZTb inside the orbit were classified into five different groups: both ZTb and LN innervating the lacrimal gland independently (Group A), both ZTb and LN innervating the lacrimal gland with a communicating branch (Group B), ZTb joining the LN without a branch to the lacrimal gland (Group C), the ZTb going outside the orbit through ZTFIN without a branch to the lacrimal gland nor LN (Group D), and absence of the ZTb (Group E). The D-ZTFIN V-ZTFIN H-ZTFIN ranged from 0.2 to 1.1 mm, 6.6 to 21.5 mm, 2.0 to 11.3 mm, respectively. -
Morphology and Fracture Effects of the Hamulus Pterygoid: a Literature Review of the Last 49 Years
Latin American Journal of Development, Curitiba, v. 3, n. 1, p. 475-487, jan./feb. 2021. ISSN 2674-9297 Morphology and fracture effects of the hamulus pterygoid: a literature review of the last 49 years Morfología y efectos de fractura del hamulus pterygoid: una revisión de la literatura de los últimos 49 años DOI: 10.46814/lajdv3n1-041 Recebimento dos originais: 30/10/2020 Aceitação para publicação: 23/12/2020 Polyanne Junqueira Silva Andresen Strini PhD, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil Address: Rio Preto Street, 178, Lídice, Uberlândia - MG Paulinne Junqueira Silva Andresen Strini PhD, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil Address: Rio Preto Street, 178, Lídice, Uberlândia - MG ABSTRACT The hamulus pterygoid consists in a relevant anatomical structure, important for fixation of several tendons and muscles, keeping the integrity of soft palate and pharynx. A literature review was conducted in order to investigate the morphology and effect of hamulus pterygoid fracture in clinical manifestation and its relationships with other orofacial components. A literature search was conducted, using Pubmed and Bireme data bases, and covering the time period 1970 to 2019. The Key words for the research were hamulus pterygoid, pterygoid fracture and hamulus pterygoid fracture, resulting in 440 articles, being 41 initials selected. Among them, just 31 were included in the analysis and 08 of the articles were not available through our library system or were in volumes before our holdings began. The remaining were excluded when they weren’t in English idiom, or when didn’t talk about morphological, functional or damages in the hamulus pterygoid. -
Orbital Malignant Peripheral Nerve Sheath Tumours
Br J Ophthalmol: first published as 10.1136/bjo.73.9.731 on 1 September 1989. Downloaded from British Journal of Ophthalmology, 1989, 73, 731-738 Orbital malignant peripheral nerve sheath tumours CHRISTOPHER J LYONS,' ALAN A McNAB,l ALEC GARNER,2 AND JOHN E WRIGHT' From the I Orbital clinic, Moorfields Eye Hospital, City Road, London EC] V 2PD, and the 2Department of Pathology, Institute ofOphthalmology, London EC] V 9A T SUMMARY We describe three patients with malignant peripheral nerve tumours in the orbit and review the existing literature on these rare lesions. Malignant peripheral nerve sheath tumours are Sensation was diminished over the distribution of the unusual in any part of the body and very rare in the second division of the right trigeminal nerve. The left orbit, where only 13 cases have previously been globe was normal. Plain anteroposterior skull x-rays described. These tumours can spread rapidly along showed a normal appearance, but undertilted the involved nerve to the middle cranial fossa. They occipitomental tomographic views revealed enlarge- are radioresistant, and total surgical excision offers ment of the right infraorbital canal (Fig. 1). copyright. the only hope of cure. Our experience with three An inferior orbital margin incision revealed patients may help clinicians to recognise these lesions tumour protruding from the infraorbital foramen and and excise them at an early stage. extending beneath the soft tissues of the cheek. The tumour had a firm consistency and a pale grey cut Case reports surface. The orbital periosteum on the floor of the orbit was elevated and a mass over 18 mm in diameter PATIENT 1 was found within an expanded infraorbital canal Four years prior to presentation a man which extended posteriorly into the superior orbital 55-year-old http://bjo.bmj.com/ noted a small lump at the medial end of his right fissure. -
Morfofunctional Structure of the Skull
N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V. -
Assessment of Bone Channels Other Than the Nasopalatine Canal in the Anterior Maxilla Using Limited Cone Beam Computed Tomography
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Surg Radiol Anat (2013) 35:783–790 DOI 10.1007/s00276-013-1110-8 ORIGINAL ARTICLE Assessment of bone channels other than the nasopalatine canal in the anterior maxilla using limited cone beam computed tomography Thomas von Arx • Scott Lozanoff • Pedram Sendi • Michael M. Bornstein Received: 16 January 2013 / Accepted: 12 March 2013 / Published online: 29 March 2013 Ó Springer-Verlag France 2013 Abstract 1.31 ± 0.26 mm (range 1.01–2.13 mm). Gender and age Purpose The anterior maxilla, sometimes also called did not significantly influence the diameter. Accessory premaxilla, is an area frequently requiring surgical inter- canals were found palatal to all anterior teeth, but most ventions. The objective of this observational study was to frequently palatal to the central incisors. In 56.7 %, the identify and assess accessory bone channels other than the accessory canals curved superolaterally and communicated nasopalatine canal in the anterior maxilla using limited with the ipsilateral alveolar extension of the canalis cone beam computed tomography (CBCT). sinuosus. Methods A total of 176 cases fulfilled the inclusion cri- Conclusions The study confirms the presence of bone teria comprising region of interest, quality of CBCT image, channels within the anterior maxilla other than the naso- and absence of pathologic lesions or retained teeth. Any palatine canal. More than half of these accessory bone bone canal with a minimum diameter of 1.00 mm other canals communicated with the canalis sinuosus. -
Craniodental Anatomy of a New Late Cretaceous Multituberculate Mammal from Udan Sayr, Mongolia
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2014 Craniodental anatomy of a new late cretaceous multituberculate mammal from Udan Sayr, Mongolia. Amir Subhash Sheth University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Anatomy Commons, and the Medical Neurobiology Commons Recommended Citation Sheth, Amir Subhash, "Craniodental anatomy of a new late cretaceous multituberculate mammal from Udan Sayr, Mongolia." (2014). Electronic Theses and Dissertations. Paper 1317. https://doi.org/10.18297/etd/1317 This Master's Thesis is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA By Amir Subhash Sheth B.A., Centre College, 2010 A Thesis Submitted to the Faculty of the School of Medicine of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Anatomical Sciences and Neurobiology University of Louisville Louisville, Kentucky August 2014 CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA By Amir Subhash Sheth B.A., Centre College, 2010 A Thesis Approved on July 18th, 2014 By the Following Thesis Committee: ________________________________ (Guillermo W. -
Maxillary Incisive Canal Characteristics: a Radiographic Study Using Cone Beam Computerized Tomography
Hindawi Radiology Research and Practice Volume 2019, Article ID 6151253, 5 pages https://doi.org/10.1155/2019/6151253 Research Article Maxillary Incisive Canal Characteristics: A Radiographic Study Using Cone Beam Computerized Tomography Penala Soumya ,1 Pradeep Koppolu ,2 Krishnajaneya Reddy Pathakota,3 and Vani Chappidi4 1 Department of Dentistry, Mahavir Institute of Medical Sciences, Vikarabad, Telangana, India 2Department of Preventive Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia 3Department of Peroiodontics, Sri Sai College of Dental Surgery, Vikarabad, India 4Department of Oral Medicine and Radiology, Sri Sai College of Dental Surgery, Vikarabad, Telangana, India Correspondence should be addressed to Penala Soumya; [email protected] Received 1 November 2018; Accepted 5 March 2019; Published 27 March 2019 Academic Editor: Paul Sijens Copyright © 2019 Penala Soumya et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Te incisive canal located at the midline, posterior to the central incisor, is an important anatomic structure of this area to be considered while planning for immediate implant placement in maxillary central incisor region. Te purpose of the present study is to assess incisive canal characteristics using CBCT sections. Materials and Methods. CBCT scans of 79 systemically healthy patients, with intact maxillary incisors, were evaluated by two calibrated and independent examiners. Assessments included (1) mesiodistal diameter, (2) labiopalatal diameter, (3) length of the incisive canal, (4) shape of incisive canal, and (5) width of the bone anterior to the incisive foramen. -
Morphometry of Bony Orbit Related to Gender in Dry Adult Skulls of South Indian Population
International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Morphometry of Bony Orbit Related to Gender in Dry Adult Skulls of South Indian Population S. Senthil Kumar1, E. Gnanagurudasan2 1Professor, 2Ph.D Scholar, Department of Anatomy, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu. Corresponding Author: E. Gnanagurudasan Received: 16/07/2015 Revised: 11/08/2015 Accepted: 12/08/2015 ABSTRACT Introduction: Orbit lodges important structures for vision and allows passage of fine neurovascular structures in it. The knowledge of orbital morphometry helps to protect those structures during various surgical procedures. Aim: To determine the morphometry of bony orbit in dry South Indian skulls related to gender and to compare the results with previous authors. Material and Methods: The material of the present study consists of 100 orbits from 50 skulls (right & left) which are identifiable of their sex. Foetal skulls and skulls with damages in the area of measurement were excluded. All the parameters were examined by a single observer using a vernier calliper, divider and millimetre scale. In each wall of the orbit, a bony landmark is chosen from where the distance of other bony structures is measured. Result: The result of the present study showed significance with respect to gender and side. Conclusion: The data of the present study will be helpful for various surgical approaches around the orbit. Keywords: orbit, South Indian skulls, morphometry. INTRODUCTION pyramidal cavity formed by seven bones The bony orbits are skeletal cavities namely maxilla, palatine, frontal, zygomatic, located on either side of the root of the nose. -
CT of Perineural Tumor Extension: Pterygopalatine Fossa
731 CT of Perineural Tumor Extension: Pterygopalatine Fossa Hugh D. Curtin1.2 Tumors of the oral cavity and paranasal sinuses can spread along nerves to areas Richard Williams 1 apparently removed from the primary tumor. In tumors of the palate, sinuses, and face, Jonas Johnson3 this "perineural" spread usually involves the maxillary division of the trigeminal nerve. The pterygopalatine fossa is a pathway of the maxillary nerve and becomes a key landmark in the detection of neural metastasis by computed tomogaphy (CT). Oblitera tion of the fat in the fossa suggests pathology. Case material illustrating neural extension is presented and the CT findings are described. Perineural extension is possibly the most insidious form of tumor spread of head and neck malignancy. After invading a nerve, tumor follows the sheath to reach the deeper connections of the nerve, escaping the area of a planned resection. Thus, detection of this form of extension is important in treatment planning and estimation of prognosis. The pterygopalatine fossa (PPF) is a key crossroad in extension along cranial nerve V. The second branch of the trigeminal nerve passes from the gasserian ganglion through the foramen rotundum into the PPF. Here the nerve branches send communications to the palate, sinus, nasal cavity, and face. Tumor can follow any of these routes proximally into the PPF and eventually to the gasserian ganglion in the middle cranial fossa. The PPF contains enough fat to be an ideal subject for computed tomographic (CT) evaluation. Obliteration of this fat is an important indicator of pathology, including perineural tumor spread. Other signs of perineural extension include enlargement of foramina, increased enhancement in the region of Meckel cave (gasserian ganglion), and atrophy of the muscles innervated by the trigeminal nerve.