Evolution of the Complex Eye and Pax6 Gene

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Complex Eye and Pax6 Gene 3/13/13 Evolution of the Complex Eye and Pax6 Gene Rachel Thomsen Sarah Kim Jenia Ostrovskaya Key Points • Definition of an Eye o Types of Eyes • Origin of Species: Difficulties on Theory • Pax family • Pax6 gene why it is conserved? • Experiments o Fruit flies, mice and humans missing Pax6 o Misexpression of genes in flies using Pax6 genes from mice • DNA sequencing leads to new phylogenetic tree proposal • Co-option (Crystallins and Shielding Pigment) • Planarian Experiment, exception to the Pax6? 1 3/13/13 What is an “eye”? • Organ of vision or light sensitivity (Medical Dictionary) • Types of Eyes o Simple § Light sensing o Complex § Image forming http://learn.genetics.utah.edu/content/variation/toolkit/ Origin of Species Chapter IV: Difficulties on Theory - The Eye "To suppose that the eye, with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, absurd in the highest possible degree. Yet reason tells me..." http://www.guardian.co.uk/science/2008/feb/09/darwin.eye image: http://2.bp.blogspot.com/-XtKaxmzR3zk/TkOCrFDhteI/AAAAAAAAEDs/ rr_Yo6RygG4/s640/darwin.jpg 2 3/13/13 Eyes evolved up to 65 times? · (Treisman, 2004) Polyphyletic Idea of Complex Eye Evolution Explained by Differences: • morphology • photoreceptor type usage • lens composition http://www.sciencedirect.com/science/ article/pii/S0012160609008835 3 3/13/13 PAX Genes The PAX gene family plays a critical role in the formation of tissues and organs during embryonic development. 9 genes in the PAX gene family - PAX group 1 (Pax 1 and 9) - PAX group 2 (Pax 2, 5, and 8) - PAX group 3 (Pax 3 and 7) - PAX group 4 (Pax 4 and 6) http://kozmik.img.cas.cz/paxgenes.html 4 3/13/13 Pax 6 Gene and Eye Development Pax 6 - "universal master control gene", especially for eye morphogenesis. It represents a master switch initiating a cascade of at least 2,000 genes which are required for eye morphogenesis. http://evolution.berkeley.edu/evolibrary/article/1_0_0/eyes_10 5 3/13/13 Evolution of Eyes - A Just-So Story? Eyes evolved by a mechanism called 'intercalary evolution'. Intercalary evolution is that in the evolution of eyes various already-existing genes were recruited in different lineages at different stages of eye development between induction by PAX 6 at the top, and photoreceptor differentiation at the bottom of the cascade. Studies of Pax6 gene http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000247 6 3/13/13 Pax6 Gene Experiment Figure.Targeted expression of the Pax6 gene in a Drosophila non- eye imaginal disc. (A) A strain of Drosophila was constructed wherein the gene for the yeast GAL4 transcription factor was placed downstream from an enhancer sequence that normally stimulates gene expression in the imaginal discs for mouthparts. If the embryo also contains a transgene that places GAL4-binding sites upstream of the Pax6 gene, the Pax6 gene will be expressed in whichever imaginal disc the GAL4 protein is made. (B) Drosophila ommatidia (compound eyes) emerging from the mouthparts of a fruit fly in which the Pax6 gene was expressed in the labial (jaw) discs. (Photograph courtesy of W. Gehring and G. Halder.) http://9e.devbio.com/image.php?id=566 CO-OPTION: "Old Genes, New Tricks" • Crystallins and Pax Proteins http://learn.genetics.utah.edu/content/variation/toolkit/ 7 3/13/13 New Monophyletic Tree Proposal Network of genes (Pax6) is conserved Supports Darwinian Prototype Eye proposal (Gehring, 2005) Planaria! http://www.shippokudo. com/c.planaria.jpg http://cdn.c.photoshelter.com/img-get/I0000apagS.7JpiQ/s/ 860/860/20120430-planaria-live-IMG-4500.jpg 8 3/13/13 Planarians an exception to new theory of eye evolution? • Planaria injected with a Pax6 inhibitor (RNAi) • Stained to show cephalic brain formation • No difference in regeneration of eye spots and cephalic ganglia pattern. (Pineda, 2002) http://askapsychicfree.com/f/Psychics- Questions-and-Answers.jpg 9 3/13/13 Literature Cited Erclik Ted, Volker Hartenstein, Roderick R. McInnes, and Howard D. Lipshitz. "Eye Evolution at High Resolution: The Neuron as a Unit of Homology." Developmental Biology 332.1 (2009): 70-79. Print. Favor J, Gloeckner C. J, Neuhauser-Klaus A, Pretsch W, Sandulache R, et al. (2008) Relationship of Pax6 activity levels to the extent of eye development in the mouse, Mus musculus. Genetics 179: 1345–1355. Gehring W. J. 2005. New perspectives on eye development and the evolution of eyes and photoreceptors J. Heredity, 96: 171–184 Halder G, Callaerts P, Gehring W. 1995. Induction of Ectopic Eyes by Targeted Expression of the Eyeless Gene in Drosophila. Science. 267: 1788-1792. Literature Cited (cont.) Pineda David, Rossi Leonardo, and Batistoni Renata, et al. "The Genetic Network of Prototypic Planarian Eye Regeneration Is Pax6 Independent." Company of Biologists Limited129 (2002): 1423-434. Print. Singh A. 2009. Drosophila ey−/−. Dayton, OH: Department of Biology, University of Dayton. Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C, et al. (2001) PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat Genet 28: 214–216 Treisman J.E. 2004. How to make an eye. Development. 131: 3823–3827 Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE. Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol. 2009;7(11):e1000247. 10 .
Recommended publications
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • Emanuele Serrelli Nathalie Gontier Editors Explanation, Interpretation
    Interdisciplinary Evolution Research 2 Emanuele Serrelli Nathalie Gontier Editors Macroevolution Explanation, Interpretation and Evidence Interdisciplinary Evolution Research Volume 2 Series editors Nathalie Gontier, Lisbon, Portugal Olga Pombo, Lisbon, Portugal [email protected] About the Series The time when only biologists studied evolution has long since passed. Accepting evolution requires us to come to terms with the fact that everything that exists must be the outcome of evolutionary processes. Today, a wide variety of academic disciplines are therefore confronted with evolutionary problems, ranging from physics and medicine, to linguistics, anthropology and sociology. Solving evolutionary problems also necessitates an inter- and transdisciplinary approach, which is why the Modern Synthesis is currently extended to include drift theory, symbiogenesis, lateral gene transfer, hybridization, epigenetics and punctuated equilibria theory. The series Interdisciplinary Evolution Research aims to provide a scholarly platform for the growing demand to examine specific evolutionary problems from the perspectives of multiple disciplines. It does not adhere to one specific academic field, one specific school of thought, or one specific evolutionary theory. Rather, books in the series thematically analyze how a variety of evolutionary fields and evolutionary theories provide insights into specific, well-defined evolutionary problems of life and the socio-cultural domain. Editors-in-chief of the series are Nathalie Gontier and Olga Pombo. The
    [Show full text]
  • New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors
    Journal of Heredity 2005:96(3):171–184 ª 2005 The American Genetic Association doi:10.1093/jhered/esi027 Advance Access publication January 13, 2005 THE WILHEMINE E. KEY 2004 INVITATIONAL LECTURE New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors W. J. GEHRING From the Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland Address correspondence to Walter Gehring at the address above, or e-mail: [email protected] Walter J. Gehring is Professor at the Biozentrum of the University of Basel, Switzerland. He obtained his Ph.D. at the University of Zurich in 1965 and after two years as a research assistant of Professor Ernst Hadorn he joined Professor Alan Garen’s group at Yale University in New Haven as a postdoctoral fellow. In 1969 he was appointed as an associate professor at the Yale Medical School and 1972 he returned to Switzerland to become a professor of developmental biology and genetics at the Biozentrum of the University of Basel. He has served as Secretary General of the European Molecular Biology Organization and President of the International Society for Developmental Biologists. He was elected as a Foreign Associate of the US National Academy of Sciences, the Royal Swedish Academy of Science, the Leopoldina, a Foreign Member of the Royal Society of London for Improving Natural Knowledge and the French Acade´mie des Sciences. Walter Gehring has been involved in studies of Drosophila genetics and development, particularly in the analysis of cell determination in the embryo and transdetermination of imaginal discs.
    [Show full text]
  • Lynn Margulis and Dorion Sagan, Acquiring Genomes
    CONTENTS Forewordby Ernst Mayr XI xv CaJ1•1thtO JOOJ by lfnn M.,1i1ll1111J l>nrlun S1tc11n Preface Pulttl1h,Jby 1111k Rook,, PART ONE. THE EVOLUTIONARY IMPERATIVE AM,mber of rh, l'wucu1Book, Group. 1 Darwinism Not Neodarwinism 3 Allrlahu re1crved. Printed in the United States of America. No part of this book may be 2 Darwin's Dilemma 25 rc~r<>ducedin any manner whatsoever without written permission except in the case of 3 Relative Individuality 51 briefquotations embodied in critical articles and reviews.For information, address Basic 67 Books, 387 Park Avenue South, New York NY 10016-8810. 4 The Natural Selector 5 Principles of Evolutionary Novelty 71 Library of Congress Cataloging-in-Publication Data PART TWO. THE MICROBE IN EVOLUTION Margulis, Lynn, 1938- Acquiring genomes : a theory of the origins of species / Lynn Margulis and Dorion 6 Species and Cells 81 Sagan.-lst ed. 7 History of the Heritable 89 p. cm. Includes bibiliographical references PART THREE. PLANETARY LEGACY ISBN 0-465-04391-7 (hardcover) 1. Species. 2. Symbiogenesis. 3. Evolution (Biology). 4. Sagan Dorion 1959- II 123 Title. ' ' . 8 Gaian Planet 139 QH380 .M37 2002 9 Eukaryosis in an Anoxic World 576.8'6-dc21 2002001521 PART FOUR. CONSORTIA 165 Text design by TrishWilkimon 10 Seaworthy Alliances Set in 12.5-point AGaramond by The Perseus Books Group 11 Plant Proclivities 185 12 Chromosome Dance: The Fission Theory 191 FIRST EDITION 13 Darwin Revisited: 02 03 04 05 / IO 9 8 7 6 5 4 3 2 1 Spedes in the Evolutionary Dialogue 201 ..•,, •HI /,,/tit,,,,,,/ 1//11,11,111,,,,,
    [Show full text]
  • Molecular Evolution of Color Vision in Vertebrates
    Gene 300 (2002) 69–78 www.elsevier.com/locate/gene Molecular evolution of color vision in vertebrates Shozo Yokoyama* Department of Biology, Biological Research Laboratories, Syracuse University, 130 College Place, Syracuse, NY 13244, USA Received 10 December 2001; received in revised form 4 March 2002; accepted 17 July 2002 Abstract Visual systems of vertebrates exhibit a striking level of diversity, reflecting their adaptive responses to various color environments. The photosensitive molecules, visual pigments, can be synthesized in vitro and their absorption spectra can be determined. Comparing the amino acid sequences and absorption spectra of various visual pigments, we can identify amino acid changes that have modified the absorption spectra of visual pigments. These hypotheses can then be tested using the in vitro assay. This approach has been a powerful tool in elucidating not only the molecular bases of color vision, but the processes of adaptive evolution at the molecular level. q 2002 Elsevier Science B.V. All rights reserved. Keywords: Visual pigment; Wavelength absorption; Color vision; Vertebrate 1. Introduction visual pigments, it was necessary to clone opsin genes. This was initiated in 1986 when the opsin genes were cloned Vision has profound effects on the evolution of from cow and human (Nathans and Hogness, 1983, 1984; organisms by affecting survivorship through such behaviors Nathans et al., 1986). The availability of these opsin clones as mating, foraging, and predator avoidance. The data led to the isolation of other orthologous and paralogous collected by vision scientists over the last century genes from various species. Second, in the late 1980s, it demonstrate beyond any doubt that ecology has been a became possible to express opsins in cultured cells, major factor in directing the evolution of visual systems reconstitute with 11-cis-retinal, and measure the absorption (Walls, 1942; Lythgoe, 1979; Jacobs, 1981; Bowmaker, spectra of the resulting visual pigments in vitro (Oprian 1991; Yokoyama and Yokoyama, 1996).
    [Show full text]
  • Evolutionary Theory: the Basics
    Evolutionary Theory: The Basics Cogs 184 * Modeling Cognitive Evolution When constructing an evolutionary scenario… …need to understand, apply Biological Principles! Some Basic Concepts • Geneotype • The organism's genetic makeup • Mostly recipes for building proteins • Alleles (versions) of a gene can be dom/recessive • Phenotype • The organism's physical & behavioral characteristics Some Basic Concepts • Most phenotypic traits are polygenetic • e.g. Even eye color requires 6 genes to code for • So how silly is it to discuss/seek "the language gene" FoxP2 Gene Some Basic Concepts • Most phenotypic traits are polygenetic • e.g. Even eye color requires 6 genes to code for • So how silly is it to discuss/seek "the language gene" • Altho sometimes one small genetic change >> huge phenotypic effects • A change in a CONTROL gene (Operator, Supressor) • Can alter timing, order of processes • e.g. During brain development, cells first duplicate, then differentiate • By suppressing onset of differentiation, duplication continues longer >> can triple brain size! Some Basic Concepts • Because genetic material not generally available in fossils... • Although note recent Neanderthal discovery! • We will mainly use phenotypic traits as the basis for our evolutionary scenarios • Note: This will mean ASSUMING those traits are HERETABLE!! • "Heretiability" mainly genetic • We will later also discuss MEMES passed to next generation • Meme = cultural unit of selection • Religious practice • Writing • Democracy, etc. etc. Evolution by Natural Selection Charles Darwin Evolution by Natural Selection 1) Variability, across a population, in a heritable trait • Some sources of variance: • Recombination, Mutation (e.g. Insertion, Translocation), etc. Evolution by Natural Selection 1) Variability, across a population, in a heritable trait • Some sources of variance: • Recombination, Mutation (e.g.
    [Show full text]
  • The Unsuspected Intrinsic Property of Melanin to Dissociate the Water Molecule
    MOJ Cell Science & Report Research Article Open Access Towards a new ophthalmic biology and physiology: the unsuspected intrinsic property of melanin to dissociate the water molecule Abstract Volume 4 Issue 2 - 2017 The development and evolution of eyes is ancient and difficult problem in biology. Arturo Solis Herrera Darwin postulated a prototype eye which can evolve under natural selection. Neo- Director, Human Photosynthesis® Research Center, México Darwinists, based in morphological criteria, have postulated a polyphyletic origin that has evolved independently in the various animal phyla. Molecular phylogenetic Correspondence: Arturo Solis Herrera, Director, Human analyses and developmental genetic experiments, cast serious doubts on both Photosynthesis® Research Center, México, theories. The study of the development of the eye in the amphibian embryo has been Email [email protected] a formidable tool research to experimental embryology and evolutionary biology as early as 1901. The embryonic induction, the interactions between different embryonic Received: March 07, 2017 | Published: April 27, 2017 tissues (organizers); and the role of genes, were conceived as result of reciprocal transplantation experiments. The classical description is that the eye in vertebrates develops from the neural plate, as an evagination from the brain, forming the optic vesicle; which subsequently invaginates to form the optic cup. The inner layer of the optic cup forms the retina with its photoreceptor layers, whereas the outer layer gives rise to the pigment epithelium which absorbs the light in the back of the retina. However, failed to recognize the importance of melanin pigment. The mammalian eye consists of several layers that contain melanin, 40 % more than skin in average.
    [Show full text]
  • Darwin and the Evolution of The
    Darwin and the evolution of the eye To celebrate the sesquicentennial of The Origin of Species, Nick Lane takes a look at what Charles Story Darwin did for the eye, and what he would love to know about eyes if he were still alive today Nick Lane Cover WHAT use is half an eye? No sentence is lens, cornea and all the other accoutrements Others are less more closely linked with Darwin’s doubters of eyes just get in the way of photons, they’re convinced, and point than that; and none is more likely to be simply stripped away. to the difficulties trotted out by the genuinely perplexed, involved in growing a those who accept that the eye evolved but Mechanical contrivances functional lens from can’t imagine how. And Richard Dawkins’s A naked retina is a sexier name for a light- scratch. The trilobites truculent riposte – “half an eye is precisely sensitive spot, which was Darwin’s own are a case in point: one per cent better than 49 per cent of an starting point for evolving the eye. He is often their lenses were eye” – doesn’t help those who can’t picture quoted deliberately out of context, even by formed not from half an eye. scientists seeking to solve Darwin’s ‘mystery’, crystallin proteins Ophthalmologists, of course, know all as saying, “to suppose that the eye evolved but from crystals of about half an eye – either the back half or by natural selection seems, I freely confess, calcite, clear rhombs the front. It has always amazed me how little absurd in the highest possible degree.” with specific optical cataract and refractive surgeons really need With the benefit of hindsight, that was an properties.
    [Show full text]
  • Inferring the Retinal Anatomy and Visual Capacities of Extinct Vertebrates
    Rowe, M.P. 2000. Inferring the Retinal Anatomy and Visual Capacities of Extinct Vertebrates. Palaeontologia Electronica, vol. 3, issue 1, art. 3: 43 pp., 4.9MB. http://palaeo-electronica.org/2000_1/retinal/issue1_00.htm Copyright: Society of Vertebrate Paleontologists, 15 April 2000 Submission: 18 November 1999, Acceptance: 2 February 2000 INFERRING THE RETINAL ANATOMY AND VISUAL CAPACITIES OF EXTINCT VERTEBRATES M.P. Rowe ABSTRACT One goal of contemporary paleontology is the resto- other terrestrial vertebrates because of the loss of ana- ration of extinct creatures with all the complexity of tomical specializations still retained by members of form, function, and interaction that characterize extant most all tetrapod lineages except eutherian mammals. animals of our direct experience. Toward that end, much Consequently, the largest barrier to understanding vision can be inferred about the visual capabilities of various in extinct animals is not necessarily the nonpreservation extinct animals based on the anatomy and molecular of relevant structures, but rather our deep and largely biology of their closest living relatives. In particular, unrecognized ignorance of visual function in modern confident deductions about color vision in extinct ani- animals. mals can be made by analyzing a small number of genes M.P.Rowe. Department of Psychology, University of in a variety of species. The evidence indicates that basal California, Santa Barbara, CA, 93106, USA. tetrapods had a color vision system that was in some ways more sophisticated than our own. Humans are in a KEY WORDS: eyes, photopigments, dinosaurs, per- poor position to understand the perceptual worlds of ception, color Palaeontologia Electronica—http://www-odp.tamu.edu/paleo 1 PLAIN LANGUAGE SUMMARY: We can deduce that extinct animals had particular (in animals that have them) probably sharpen the spec- soft tissues or behaviors via extant phylogenetic brack- tral tuning of photoreceptors and thus enhance per- eting (EPB, Witmer 1995).
    [Show full text]
  • Darwin's Greatest Discovery: Design Without Designer
    Darwin’s greatest discovery: Design without designer Francisco J. Ayala* Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697 Darwin’s greatest contribution to science is that he completed the account for the motion of physical objects on our planet, laws Copernican Revolution by drawing out for biology the notion of such as f ϭ m ϫ a (force ϭ mass ϫ acceleration) or the 2 nature as a system of matter in motion governed by natural laws. inverse-square law of attraction, f ϭ g(m1m2)/r (the force of With Darwin’s discovery of natural selection, the origin and adap- attraction between two bodies is directly proportional to their tations of organisms were brought into the realm of science. The masses, but inversely related to the square of the distance adaptive features of organisms could now be explained, like the between them). phenomena of the inanimate world, as the result of natural These and other discoveries greatly expanded human knowl- processes, without recourse to an Intelligent Designer. The Coper- edge. The conceptual revolution they brought about was more nican and the Darwinian Revolutions may be seen as the two fundamental yet: a commitment to the postulate that the uni- stages of the one Scientific Revolution. They jointly ushered in the verse obeys immanent laws that account for natural phenomena. beginning of science in the modern sense of the word: explanation The workings of the universe were brought into the realm of through natural laws. Darwin’s theory of natural selection ac- science: explanation through natural laws.
    [Show full text]
  • Vision of the Future Vision Is One of the Most Important Senses Humans and Other Organisms Possess
    bbsrc.ac.uk Vision of the Future Vision is one of the most important senses humans and other organisms possess. Understanding the visual system of organisms spans both physics and biology, requiring knowledge of the properties of light as well as the nervous system. Through investigations of the eye and vision, students can learn about a wide range of topics, including homeostasis, the electromagnetic spectrum, behaviour, physiology and cell biology. The eye and our ability to see has fascinated scientists for centuries, from the demonstration of colour with prisms by the physicist Sir Isaac Newton to Charles Darwin’s explanation of the evolution of the eye. Suitable for Key Stage: 1 2 3 4 5 Safety checked but not trialled by CLEAPSS Key Information Teacher Contents 02 Key information 04 Recent research 12 How the eye works – Student sheet 4 16 Rods and cones – Student sheet 5 18 Disorders, diseases and enhancement – Student sheet 5 22 Practical activity One – Eye dissection and UV absorption 40 Practical activity Two – Binocular vision and the illusory pendulum 49 Practical activity Three – Investigating colour vision 62 Practical activity Four – Acuity and the visual field 71 Literacy activity – The mammalian eye 74 A-level extension activity – Bleaching sequencing 76 Word search 77 Crossword 79 Glossary 82 Curriculum links View online Scan the QR Code. Cover Image © Thinkstock 22 ofof 9311 www.bbsrc.ac.uk Key Information Teacher Science topics Vision, sensory system, physiology, anatomy, adaptation, behaviour, nutrition, light, electromagnetic
    [Show full text]
  • Discovery of Some 400 Million Year-Old Sensory Structures in the Compound Eyes SUBJECT AREAS: ZOOLOGY of Trilobites CELLULAR IMAGING Brigitte Schoenemann1 & Euan N
    Discovery of some 400 million year-old sensory structures in the compound eyes SUBJECT AREAS: ZOOLOGY of trilobites CELLULAR IMAGING Brigitte Schoenemann1 & Euan N. K. Clarkson2 NEUROPHYSIOLOGY PALAEONTOLOGY 1Steinmann Insitute (Palaeontology) University of Bonn, Nussallee 8, D-53115 Bonn, Germany, 2Grant Institute, University of Edinburgh, The Kings Buildings, West Mains Road, EH3 9JW Edinburgh, UK. Received 11 December 2012 Fossilised arthropod compound eyes have frequently been described. Among the oldest known are those Accepted from the lower Cambrian of the Chengjiang Lagersta¨tte (China, c 525 Ma). All these compound eyes, 26 February 2013 though often excellently preserved, however, represent just the outer shells, because soft tissues, or even individual cells, usually do not fossilise. Using modern techniques, including mct-scanning and synchrotron Published radiation analysis we present the discovery of the sensory cell system of compound eyes, belonging to 14 March 2013 trilobites around 400 million years old, which allows their description and analysis. They are interpreted as forming part of an apposition-like ommatidium, which is a basic functional type of compound eye present in arthropods of today. Considered in greater detail, it is similar to the compound eye of the horseshoe crab Limulus, generally regarded as a ‘living fossil’, which probably retained this ancient basal system successfully Correspondence and until today. requests for materials should be addressed to B.S. xcellently preserved fossilised compound eyes have been reported recently, such as those of the Emu Bay, 1,2 3,4 (B.Schoenemann@uni- Australia or the Chengjiang Lagersta¨tte, China . All these systems, however, are fossilised only as their outer shells.
    [Show full text]