Darwin and the Evolution of The

Total Page:16

File Type:pdf, Size:1020Kb

Darwin and the Evolution of The Darwin and the evolution of the eye To celebrate the sesquicentennial of The Origin of Species, Nick Lane takes a look at what Charles Story Darwin did for the eye, and what he would love to know about eyes if he were still alive today Nick Lane Cover WHAT use is half an eye? No sentence is lens, cornea and all the other accoutrements Others are less more closely linked with Darwin’s doubters of eyes just get in the way of photons, they’re convinced, and point than that; and none is more likely to be simply stripped away. to the difficulties trotted out by the genuinely perplexed, involved in growing a those who accept that the eye evolved but Mechanical contrivances functional lens from can’t imagine how. And Richard Dawkins’s A naked retina is a sexier name for a light- scratch. The trilobites truculent riposte – “half an eye is precisely sensitive spot, which was Darwin’s own are a case in point: one per cent better than 49 per cent of an starting point for evolving the eye. He is often their lenses were eye” – doesn’t help those who can’t picture quoted deliberately out of context, even by formed not from half an eye. scientists seeking to solve Darwin’s ‘mystery’, crystallin proteins Ophthalmologists, of course, know all as saying, “to suppose that the eye evolved but from crystals of about half an eye – either the back half or by natural selection seems, I freely confess, calcite, clear rhombs the front. It has always amazed me how little absurd in the highest possible degree.” with specific optical cataract and refractive surgeons really need With the benefit of hindsight, that was an properties. The to talk to retinal specialists or vice versa, unfortunate rhetorical flourish. In the very fact that trilobites even if EuroTimes now caters for both. And next sentence he went on to say, “Though fell extinct in the anyone reading this who prefers to keep the insuperable to our imagination, the difficulty Permian extinction, old boundaries alive can take some comfort can hardly be considered real.” 250 million years in evolution, which backs the old split. Darwin argued that the eye could evolve, ago, makes it hard to Rimicaris exoculata (copyright P. Briand–Ifremer, France) There’s no better illustration of how so long as the three conditions of natural know how they grew useful half an eye can be than the ‘eyeless’ rift such crystals. selection are met. First, eyesight should vary ‘gene sharing’ and have no inherent optical shrimp Rimicaris exoculata. Swarming in hordes Until the discovery of crystal lenses between individuals. Second, these variations properties. in the black depths of the ocean abyss, on in brittlestars, that is. In 2001, Joanna should be heritable. And third, they should “The diverse lens crystallins comprise a ledges beneath the black smoker vents, the Aizenberg and her colleagues, then at make some difference to survival. Even variety of unrelated multifunctional proteins supposedly blind shrimp have a pair of naked Bell Labs, showed that the spiny calcite in Darwin’s day, it was plain that all three serving refractive functions in the lens and retinas on their backs (See image above). skeleton of brittlestar Ophicoma wendtii conditions are met in full. But that didn’t nonoptical functions, often enzymatic or Discovered by Cindy Van Dover, who now forms an array of calcite knobs on its arms make the actual succession of steps any more stress protective functions, in other tissues,” heads the Duke Marine Laboratory, these resembling trilobite lenses. Each knob has superable to the imagination. he says. naked retinas are packed with invertebrate light-sensitive neurons underlying it; and Then about a decade ago Suzanne Pelger The α-crystallins, for example, are rhodopsins (very similar to melanopsin, this optical system helps the brittlestar and Dan-Eric Nilsson, at Lund University, stress-inducible small heat-shock proteins, responsible for regulating circadian rhythms scuttle away at the first sign of danger. Sweden, modelled a realistic sequence of discovered in Drosophila and since found in in human retinal ganglion cells). It soon Similar calcite lenses can be seeded in steps beginning with a light-sensitive spot and many human tissues. transpired that other vent species, from vitro by crystallisation of a calcium carbonate ending with a simple camera eye, complete The vertebrate crystallins are united not shrimp to crabs, also sport naked retinas. solution onto proteins with acidic side-chains, with a lens. Each step was a conservative by common properties or descent, but Many suspected that the naked retinas are even those found in mollusc shells, which estimate – a recess in the sheet, a slight by equivalent changes in their regulatory some form of degenerate organ, not actually certainly play no role in sight. Each crystal deepening into a pit, the first swelling of a sequences, specifically the cis-control elements used for sight, until a succession of larvae is a perfect rhomb, with its optical ‘c-axis’ lens and so on. of their promoter and enhancer regions. were discovered, all of which turned out pointing directly up. No magic involved: The surprise was that fewer than 400,000 “A change in the molecular function of a to have quite normal eyes. These disappear just the spontaneous reaction of any acidic tiny steps are needed to get from a light- protein by a change in the regulation of its during development, to be replaced by naked protein in a saturated mineral solution, sensitive spot to a fully functional eye, gene means that gene duplication is not a retinas sensitive to green light at around pressed into service by natural selection. albeit one lacking in optional extras like prerequisite for functional innovation as was 500 nm. This theme of opportunism is rife with accommodation. thought for many years,” Piatigorsky notes. That was another mystery, as the hot vents lenses. Numerous other animals have evolved If each step (limited to a one per cent A fine example of how the crystallins glow faintly red, but not detectably green. crystal lenses, typically composed of organic change in an existing structure) were to were first recruited is found in the brain of NASA intervened with a probe called ALISS crystals like isoxanthopterin, cysteine or take place in a single generation, and each the larval sea squirt Ciona intestinalis. Literally (Ambient Light Imaging and Spectral System), guanine (the latter more usually known as a generation lived for a year, then an eye could a pillar of intestines, the adult sea squirt is which did detect a small spectral peak of base in DNA). Indeed guanine crystals are evolve in less than half a million years. famous for anchoring itself to a rock and then green light in the vent wonderland. It might found in fish scales, giving them their silvery And that helps to make sense of the reabsorbing its own brain. But the larvae are be generated by bubbles or crystals crushed lustre and are added to cosmetics for the abrupt appearance of animals in the fossil tadpole-like creatures, betraying the squirt as instantaneously by the huge pressure in the same reason (they also lend their name to record, around 550 million years ago – the an early chordate that branched away from abyss, they say. guano, the dried excrement of birds and so-called Cambrian explosion, whose speed the vertebrates before the origin of the lens. Whatever its cause, the faint green glow bats). Again, a naturally forming crystal was had troubled Darwin himself. After aeons of In the last few years, Sebastian Shimeld is enough to power photosynthesis in some simply pressed into service. emptiness, large animals like trilobites burst and his colleagues at Oxford have shown bacteria; and although we can’t see it with the Even bits of the cell have been enlisted into the fossil record in a couple of million that despite lacking a lens, C. intestinalis larvae naked eye, the distinguished neurobiologist in this way. My own favourite example is years, and the very first trilobites already have bona fide βγ-crystallins tucked away Mike Land, at the University of Sussex, has the tiny parasitic flatworm Entobdella soleae, had eyes, as did other animals in the early in their brains (specifically the palps and calculated that the naked retinas of ‘blind’ which has a lens formed from mitochondria Cambrian period. otolith, pigmented cells in the light-sensing shrimp are some seven million times more fused together. Other flatworms don’t Oxford biologist Andrew Parker has ocellus). What’s more, the crystallin gene sensitive to photons than the shrimp’s own even bother to fuse their mitochondria – a argued that the fossil record did not lie – is under regulatory control of the same larval eyes. cluster of quite ordinary cellular components eyes really did evolve that fast. The sudden genes responsible for lens development in Presumably, detecting the faint glow of apparently bends light well enough to serve appearance of eyes, he says, transformed vertebrates, including Pax-6. the vents falling on their backs makes the some advantage. relationships between predator and prey. As Shimeld put it, “The evolutionary difference between life and death, whether But the best example of opportunism is The ensuing arms race gave rise to the hard origin of the lens was based on co-option of by drifting away from the vents, or baking in surely the crystallins of the vertebrate lens. shells wielded by the strange Cambrian pre-existing regulatory circuits controlling them. Half an eye is better than a whole eye Over several decades Joram Piatigorsky, at creatures, and that in turn made them more the expression of a key structural gene in a when sensitivity matters more than resolution the National Eye Institute, has shown that likely to fossilise.
Recommended publications
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • Emanuele Serrelli Nathalie Gontier Editors Explanation, Interpretation
    Interdisciplinary Evolution Research 2 Emanuele Serrelli Nathalie Gontier Editors Macroevolution Explanation, Interpretation and Evidence Interdisciplinary Evolution Research Volume 2 Series editors Nathalie Gontier, Lisbon, Portugal Olga Pombo, Lisbon, Portugal [email protected] About the Series The time when only biologists studied evolution has long since passed. Accepting evolution requires us to come to terms with the fact that everything that exists must be the outcome of evolutionary processes. Today, a wide variety of academic disciplines are therefore confronted with evolutionary problems, ranging from physics and medicine, to linguistics, anthropology and sociology. Solving evolutionary problems also necessitates an inter- and transdisciplinary approach, which is why the Modern Synthesis is currently extended to include drift theory, symbiogenesis, lateral gene transfer, hybridization, epigenetics and punctuated equilibria theory. The series Interdisciplinary Evolution Research aims to provide a scholarly platform for the growing demand to examine specific evolutionary problems from the perspectives of multiple disciplines. It does not adhere to one specific academic field, one specific school of thought, or one specific evolutionary theory. Rather, books in the series thematically analyze how a variety of evolutionary fields and evolutionary theories provide insights into specific, well-defined evolutionary problems of life and the socio-cultural domain. Editors-in-chief of the series are Nathalie Gontier and Olga Pombo. The
    [Show full text]
  • New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors
    Journal of Heredity 2005:96(3):171–184 ª 2005 The American Genetic Association doi:10.1093/jhered/esi027 Advance Access publication January 13, 2005 THE WILHEMINE E. KEY 2004 INVITATIONAL LECTURE New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors W. J. GEHRING From the Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland Address correspondence to Walter Gehring at the address above, or e-mail: [email protected] Walter J. Gehring is Professor at the Biozentrum of the University of Basel, Switzerland. He obtained his Ph.D. at the University of Zurich in 1965 and after two years as a research assistant of Professor Ernst Hadorn he joined Professor Alan Garen’s group at Yale University in New Haven as a postdoctoral fellow. In 1969 he was appointed as an associate professor at the Yale Medical School and 1972 he returned to Switzerland to become a professor of developmental biology and genetics at the Biozentrum of the University of Basel. He has served as Secretary General of the European Molecular Biology Organization and President of the International Society for Developmental Biologists. He was elected as a Foreign Associate of the US National Academy of Sciences, the Royal Swedish Academy of Science, the Leopoldina, a Foreign Member of the Royal Society of London for Improving Natural Knowledge and the French Acade´mie des Sciences. Walter Gehring has been involved in studies of Drosophila genetics and development, particularly in the analysis of cell determination in the embryo and transdetermination of imaginal discs.
    [Show full text]
  • Lynn Margulis and Dorion Sagan, Acquiring Genomes
    CONTENTS Forewordby Ernst Mayr XI xv CaJ1•1thtO JOOJ by lfnn M.,1i1ll1111J l>nrlun S1tc11n Preface Pulttl1h,Jby 1111k Rook,, PART ONE. THE EVOLUTIONARY IMPERATIVE AM,mber of rh, l'wucu1Book, Group. 1 Darwinism Not Neodarwinism 3 Allrlahu re1crved. Printed in the United States of America. No part of this book may be 2 Darwin's Dilemma 25 rc~r<>ducedin any manner whatsoever without written permission except in the case of 3 Relative Individuality 51 briefquotations embodied in critical articles and reviews.For information, address Basic 67 Books, 387 Park Avenue South, New York NY 10016-8810. 4 The Natural Selector 5 Principles of Evolutionary Novelty 71 Library of Congress Cataloging-in-Publication Data PART TWO. THE MICROBE IN EVOLUTION Margulis, Lynn, 1938- Acquiring genomes : a theory of the origins of species / Lynn Margulis and Dorion 6 Species and Cells 81 Sagan.-lst ed. 7 History of the Heritable 89 p. cm. Includes bibiliographical references PART THREE. PLANETARY LEGACY ISBN 0-465-04391-7 (hardcover) 1. Species. 2. Symbiogenesis. 3. Evolution (Biology). 4. Sagan Dorion 1959- II 123 Title. ' ' . 8 Gaian Planet 139 QH380 .M37 2002 9 Eukaryosis in an Anoxic World 576.8'6-dc21 2002001521 PART FOUR. CONSORTIA 165 Text design by TrishWilkimon 10 Seaworthy Alliances Set in 12.5-point AGaramond by The Perseus Books Group 11 Plant Proclivities 185 12 Chromosome Dance: The Fission Theory 191 FIRST EDITION 13 Darwin Revisited: 02 03 04 05 / IO 9 8 7 6 5 4 3 2 1 Spedes in the Evolutionary Dialogue 201 ..•,, •HI /,,/tit,,,,,,/ 1//11,11,111,,,,,
    [Show full text]
  • Molecular Evolution of Color Vision in Vertebrates
    Gene 300 (2002) 69–78 www.elsevier.com/locate/gene Molecular evolution of color vision in vertebrates Shozo Yokoyama* Department of Biology, Biological Research Laboratories, Syracuse University, 130 College Place, Syracuse, NY 13244, USA Received 10 December 2001; received in revised form 4 March 2002; accepted 17 July 2002 Abstract Visual systems of vertebrates exhibit a striking level of diversity, reflecting their adaptive responses to various color environments. The photosensitive molecules, visual pigments, can be synthesized in vitro and their absorption spectra can be determined. Comparing the amino acid sequences and absorption spectra of various visual pigments, we can identify amino acid changes that have modified the absorption spectra of visual pigments. These hypotheses can then be tested using the in vitro assay. This approach has been a powerful tool in elucidating not only the molecular bases of color vision, but the processes of adaptive evolution at the molecular level. q 2002 Elsevier Science B.V. All rights reserved. Keywords: Visual pigment; Wavelength absorption; Color vision; Vertebrate 1. Introduction visual pigments, it was necessary to clone opsin genes. This was initiated in 1986 when the opsin genes were cloned Vision has profound effects on the evolution of from cow and human (Nathans and Hogness, 1983, 1984; organisms by affecting survivorship through such behaviors Nathans et al., 1986). The availability of these opsin clones as mating, foraging, and predator avoidance. The data led to the isolation of other orthologous and paralogous collected by vision scientists over the last century genes from various species. Second, in the late 1980s, it demonstrate beyond any doubt that ecology has been a became possible to express opsins in cultured cells, major factor in directing the evolution of visual systems reconstitute with 11-cis-retinal, and measure the absorption (Walls, 1942; Lythgoe, 1979; Jacobs, 1981; Bowmaker, spectra of the resulting visual pigments in vitro (Oprian 1991; Yokoyama and Yokoyama, 1996).
    [Show full text]
  • Evolutionary Theory: the Basics
    Evolutionary Theory: The Basics Cogs 184 * Modeling Cognitive Evolution When constructing an evolutionary scenario… …need to understand, apply Biological Principles! Some Basic Concepts • Geneotype • The organism's genetic makeup • Mostly recipes for building proteins • Alleles (versions) of a gene can be dom/recessive • Phenotype • The organism's physical & behavioral characteristics Some Basic Concepts • Most phenotypic traits are polygenetic • e.g. Even eye color requires 6 genes to code for • So how silly is it to discuss/seek "the language gene" FoxP2 Gene Some Basic Concepts • Most phenotypic traits are polygenetic • e.g. Even eye color requires 6 genes to code for • So how silly is it to discuss/seek "the language gene" • Altho sometimes one small genetic change >> huge phenotypic effects • A change in a CONTROL gene (Operator, Supressor) • Can alter timing, order of processes • e.g. During brain development, cells first duplicate, then differentiate • By suppressing onset of differentiation, duplication continues longer >> can triple brain size! Some Basic Concepts • Because genetic material not generally available in fossils... • Although note recent Neanderthal discovery! • We will mainly use phenotypic traits as the basis for our evolutionary scenarios • Note: This will mean ASSUMING those traits are HERETABLE!! • "Heretiability" mainly genetic • We will later also discuss MEMES passed to next generation • Meme = cultural unit of selection • Religious practice • Writing • Democracy, etc. etc. Evolution by Natural Selection Charles Darwin Evolution by Natural Selection 1) Variability, across a population, in a heritable trait • Some sources of variance: • Recombination, Mutation (e.g. Insertion, Translocation), etc. Evolution by Natural Selection 1) Variability, across a population, in a heritable trait • Some sources of variance: • Recombination, Mutation (e.g.
    [Show full text]
  • The Unsuspected Intrinsic Property of Melanin to Dissociate the Water Molecule
    MOJ Cell Science & Report Research Article Open Access Towards a new ophthalmic biology and physiology: the unsuspected intrinsic property of melanin to dissociate the water molecule Abstract Volume 4 Issue 2 - 2017 The development and evolution of eyes is ancient and difficult problem in biology. Arturo Solis Herrera Darwin postulated a prototype eye which can evolve under natural selection. Neo- Director, Human Photosynthesis® Research Center, México Darwinists, based in morphological criteria, have postulated a polyphyletic origin that has evolved independently in the various animal phyla. Molecular phylogenetic Correspondence: Arturo Solis Herrera, Director, Human analyses and developmental genetic experiments, cast serious doubts on both Photosynthesis® Research Center, México, theories. The study of the development of the eye in the amphibian embryo has been Email [email protected] a formidable tool research to experimental embryology and evolutionary biology as early as 1901. The embryonic induction, the interactions between different embryonic Received: March 07, 2017 | Published: April 27, 2017 tissues (organizers); and the role of genes, were conceived as result of reciprocal transplantation experiments. The classical description is that the eye in vertebrates develops from the neural plate, as an evagination from the brain, forming the optic vesicle; which subsequently invaginates to form the optic cup. The inner layer of the optic cup forms the retina with its photoreceptor layers, whereas the outer layer gives rise to the pigment epithelium which absorbs the light in the back of the retina. However, failed to recognize the importance of melanin pigment. The mammalian eye consists of several layers that contain melanin, 40 % more than skin in average.
    [Show full text]
  • Inferring the Retinal Anatomy and Visual Capacities of Extinct Vertebrates
    Rowe, M.P. 2000. Inferring the Retinal Anatomy and Visual Capacities of Extinct Vertebrates. Palaeontologia Electronica, vol. 3, issue 1, art. 3: 43 pp., 4.9MB. http://palaeo-electronica.org/2000_1/retinal/issue1_00.htm Copyright: Society of Vertebrate Paleontologists, 15 April 2000 Submission: 18 November 1999, Acceptance: 2 February 2000 INFERRING THE RETINAL ANATOMY AND VISUAL CAPACITIES OF EXTINCT VERTEBRATES M.P. Rowe ABSTRACT One goal of contemporary paleontology is the resto- other terrestrial vertebrates because of the loss of ana- ration of extinct creatures with all the complexity of tomical specializations still retained by members of form, function, and interaction that characterize extant most all tetrapod lineages except eutherian mammals. animals of our direct experience. Toward that end, much Consequently, the largest barrier to understanding vision can be inferred about the visual capabilities of various in extinct animals is not necessarily the nonpreservation extinct animals based on the anatomy and molecular of relevant structures, but rather our deep and largely biology of their closest living relatives. In particular, unrecognized ignorance of visual function in modern confident deductions about color vision in extinct ani- animals. mals can be made by analyzing a small number of genes M.P.Rowe. Department of Psychology, University of in a variety of species. The evidence indicates that basal California, Santa Barbara, CA, 93106, USA. tetrapods had a color vision system that was in some ways more sophisticated than our own. Humans are in a KEY WORDS: eyes, photopigments, dinosaurs, per- poor position to understand the perceptual worlds of ception, color Palaeontologia Electronica—http://www-odp.tamu.edu/paleo 1 PLAIN LANGUAGE SUMMARY: We can deduce that extinct animals had particular (in animals that have them) probably sharpen the spec- soft tissues or behaviors via extant phylogenetic brack- tral tuning of photoreceptors and thus enhance per- eting (EPB, Witmer 1995).
    [Show full text]
  • Darwin's Greatest Discovery: Design Without Designer
    Darwin’s greatest discovery: Design without designer Francisco J. Ayala* Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697 Darwin’s greatest contribution to science is that he completed the account for the motion of physical objects on our planet, laws Copernican Revolution by drawing out for biology the notion of such as f ϭ m ϫ a (force ϭ mass ϫ acceleration) or the 2 nature as a system of matter in motion governed by natural laws. inverse-square law of attraction, f ϭ g(m1m2)/r (the force of With Darwin’s discovery of natural selection, the origin and adap- attraction between two bodies is directly proportional to their tations of organisms were brought into the realm of science. The masses, but inversely related to the square of the distance adaptive features of organisms could now be explained, like the between them). phenomena of the inanimate world, as the result of natural These and other discoveries greatly expanded human knowl- processes, without recourse to an Intelligent Designer. The Coper- edge. The conceptual revolution they brought about was more nican and the Darwinian Revolutions may be seen as the two fundamental yet: a commitment to the postulate that the uni- stages of the one Scientific Revolution. They jointly ushered in the verse obeys immanent laws that account for natural phenomena. beginning of science in the modern sense of the word: explanation The workings of the universe were brought into the realm of through natural laws. Darwin’s theory of natural selection ac- science: explanation through natural laws.
    [Show full text]
  • Vision of the Future Vision Is One of the Most Important Senses Humans and Other Organisms Possess
    bbsrc.ac.uk Vision of the Future Vision is one of the most important senses humans and other organisms possess. Understanding the visual system of organisms spans both physics and biology, requiring knowledge of the properties of light as well as the nervous system. Through investigations of the eye and vision, students can learn about a wide range of topics, including homeostasis, the electromagnetic spectrum, behaviour, physiology and cell biology. The eye and our ability to see has fascinated scientists for centuries, from the demonstration of colour with prisms by the physicist Sir Isaac Newton to Charles Darwin’s explanation of the evolution of the eye. Suitable for Key Stage: 1 2 3 4 5 Safety checked but not trialled by CLEAPSS Key Information Teacher Contents 02 Key information 04 Recent research 12 How the eye works – Student sheet 4 16 Rods and cones – Student sheet 5 18 Disorders, diseases and enhancement – Student sheet 5 22 Practical activity One – Eye dissection and UV absorption 40 Practical activity Two – Binocular vision and the illusory pendulum 49 Practical activity Three – Investigating colour vision 62 Practical activity Four – Acuity and the visual field 71 Literacy activity – The mammalian eye 74 A-level extension activity – Bleaching sequencing 76 Word search 77 Crossword 79 Glossary 82 Curriculum links View online Scan the QR Code. Cover Image © Thinkstock 22 ofof 9311 www.bbsrc.ac.uk Key Information Teacher Science topics Vision, sensory system, physiology, anatomy, adaptation, behaviour, nutrition, light, electromagnetic
    [Show full text]
  • Discovery of Some 400 Million Year-Old Sensory Structures in the Compound Eyes SUBJECT AREAS: ZOOLOGY of Trilobites CELLULAR IMAGING Brigitte Schoenemann1 & Euan N
    Discovery of some 400 million year-old sensory structures in the compound eyes SUBJECT AREAS: ZOOLOGY of trilobites CELLULAR IMAGING Brigitte Schoenemann1 & Euan N. K. Clarkson2 NEUROPHYSIOLOGY PALAEONTOLOGY 1Steinmann Insitute (Palaeontology) University of Bonn, Nussallee 8, D-53115 Bonn, Germany, 2Grant Institute, University of Edinburgh, The Kings Buildings, West Mains Road, EH3 9JW Edinburgh, UK. Received 11 December 2012 Fossilised arthropod compound eyes have frequently been described. Among the oldest known are those Accepted from the lower Cambrian of the Chengjiang Lagersta¨tte (China, c 525 Ma). All these compound eyes, 26 February 2013 though often excellently preserved, however, represent just the outer shells, because soft tissues, or even individual cells, usually do not fossilise. Using modern techniques, including mct-scanning and synchrotron Published radiation analysis we present the discovery of the sensory cell system of compound eyes, belonging to 14 March 2013 trilobites around 400 million years old, which allows their description and analysis. They are interpreted as forming part of an apposition-like ommatidium, which is a basic functional type of compound eye present in arthropods of today. Considered in greater detail, it is similar to the compound eye of the horseshoe crab Limulus, generally regarded as a ‘living fossil’, which probably retained this ancient basal system successfully Correspondence and until today. requests for materials should be addressed to B.S. xcellently preserved fossilised compound eyes have been reported recently, such as those of the Emu Bay, 1,2 3,4 (B.Schoenemann@uni- Australia or the Chengjiang Lagersta¨tte, China . All these systems, however, are fossilised only as their outer shells.
    [Show full text]
  • Drastic Neofunctionalization Associated with Evolution of the Timezyme AANAT 500 Mya
    Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya Jack Falcóna,b, Steven L. Coonc, Laurence Besseaua,b, Damien Cazaméa-Catalana,b, Michaël Fuentèsa,b, Elodie Magnanoua,b, Charles-Hubert Paulina,b, Gilles Boeufa,b,d, Sandrine Sauzeta,b,1, Even H. Jørgensene, Sylvie Mazanf, Yuri I. Wolfg, Eugene V. Kooning, Peter J. Steinbachh, Susumu Hyodoi, and David C. Kleinc,2 aCentre National de la Recherche Scientifique, Unité Mixte de Recherche 7232 and bUniversité Pierre et Marie Curie-Paris 6, Laboratoire Aragó, F-66650 Banyuls-sur-Mer, France; cSection on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, gNational Center for Biotechnology Information, National Library of Medicine, and hCenter for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892; dOffice of the President, Museum National d’Histoire Naturelle, F-75005 Paris, France; eDepartment of Arctic and Marine Biology, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; fCentre National de la Recherche Scientifique, Unité Mixte de Recherche 7150, Station Biologique de Roscoff, F-29680 Roscoff, France; and iAtmosphere and Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan Edited* by Walter J. Gehring, University of Basel, Basel, Switzerland, and approved November 4, 2013 (received for review July 3, 2013) Melatonin (N-acetyl-5-methoxytrypamine) is the vertebrate
    [Show full text]