Geological Society of America Bulletin

Total Page:16

File Type:pdf, Size:1020Kb

Geological Society of America Bulletin Downloaded from gsabulletin.gsapubs.org on 17 July 2009 Geological Society of America Bulletin Santiaguito Volcanic Dome, Guatemala WILLIAM I ROSE, JR. Geological Society of America Bulletin 1972;83;1413-1434 doi: 10.1130/0016-7606(1972)83[1413:SVDG]2.0.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Copyright © 1972, The Geological Society of America, Inc. Copyright is not claimed on any material prepared by U.S. government employees within the scope of their employment. Downloaded from gsabulletin.gsapubs.org on 17 July 2009 WILLIAM I. ROSE, JR. Department of Geology and Geological Engineering, Michigan Technological University, Houghton, Michigan 49931 Santiaguito Volcanic Dome, Guatemala ABSTRACT INTRODUCTION AND GEOLOGIC SETTING The Santiaguito volcanic dome in southwest- The Santiaguito Dome is located in south- ern Guatemala is a multiple extrusive dome western Guatemala (14°44'30" N. lat, 91°34' that has shown constant volcanic activity since W. long), on the active volcanic chain of Cen- its birth in 1922. Fourteen extrusive units are tral America. Williams (I960) and Bonis (1965) mapped. Five of these are volcanic domes; the have discussed the regional setting; the local remaining nine are lava flows which generally setting is described by Stoiber and Rose (1969). cling to the sides of the domes. The volume of Santiaguito is a multiple extrusive dome which material extruded at Santiaguito since 1922 began forming in 1922 inside the large ex- (0.7 km3) is a small fraction of the volume of plosion crater created in 1902 on the south- pyroclastic debris from the 1902 eruption of western slope of Santa Maria Volcano (Fig. 1). Santa Maria (5.5 km3), Santiaguito's parent A comparison of the historic activities of composite cone. Extrusion of the dome began Central American volcanoes (Table 1) shows in the center of the explosion crater created by that Santa Maria-Santiaguito is one of five Santa Maria's 1902 activity. This crater was most active volcanoes in the last 150 yrs, and if volumetrically much smaller (0.5 km3) than the only the last 50 yrs are considered, it is the amount of material erupted during the 1902 most active. event, and local slumping near the crater has Many active volcanoes in Guatemala lie on occurred and is continuing along a series of linear fractures transverse to the dominant west- east-trending faults. The general westward northwest volcanic trend. Santiaguito, Santa growth of the dome complex and many of the Maria, and Cerro Quemado lie along such a structural features on Santiaguito are controlled northeast-trending structure. This trend is par- by these near-vertical faults. The domes are allel to fault scarps on the southeast side of studded with Pelean spines. Twenty-five new Cerro Quemado and along the bottom and chemical analyses are presented, showing San- sides of the Rio Samala Canyon (Williams, tiaguito's eruptive products to be soda-rich 1960, p. 39). The largest fault in the canyon, dacite of the calc-alkaline suite. The dome lava the Zunil fault, has been traced inland 25 km has differentiated quite significantly from the to Totonicapan. Alignment of Chicaval and overwhelmingly abundant pyroxene andesite Siete Orejas volcanoes, northwest of Santia- magma which makes up Santa Maria and the guito, is also northeast. From Lake Atitlan older volcanic rocks in the area. Trace element eastward, fractures transverse to the volcanic analyses of the lavas, along with major element belt are more nearly north trending. Dollfus data suggest a differentiation by fractional and de Montserrat (1868) first called attention crystallization under constant or increasing to these transverse trends, observing that the PC>2. Sr isotope determinations could not de- most seaward volcanic vent showed the most tect contamination of the lavas by radiogenic prolific recent activity. Table 1 shows that this crustal material; the Sr87/Sr86 ratio in San- generality is still true. Other volcano pairs that tiaguito rock averages .7043. The Santiaguito lie along apparent transverse trends are Atitlan lavas are tridymite-bearing hypersthene dacites, and Tollman, Fuego and Acatenango, and characterized by strongly zoned plagioclase Izalco and Santa Ana. Central American north- phenocrysts and oxyhornblende. Compositional trending transverse structures are discussed in and petrographic comparisons are made with more detail by Dengo and others (1970). other modern volcanic domes and other Cen- Central American volcanoes lie north and tral American lavas. inland of an offshore trench, and the volcanic Geological Society of America Bulletin, v. 83, p. 1413-1434, 18 figs., May 1972 1413 Downloaded from gsabulletin.gsapubs.org on 17 July 2009 1414 WILLIAM I. ROSE, JR. Figure 1. Santa Maria (right) and Santiaguito from the south: January 1970. chain has long been recognized as an island arc. chemical analyses of these units appear in Recent compilation of earthquake data and Table 2. earthquake mechanism studies (Molnar and Sykes, 1969) indicate a Benioff zone dipping Tertiary (?) Andesite Flows from the trench under the volcanic chain. The The oldest rocks of the Santiaguito area are depth from the surface to the seismic zone flat-lying basaltic andesite flows lying to the under Santiaguito is about 100 to 120 km, a north and northwest of the dome. These rocks depth typical for volcanoes producing high form the basement for the Santa Maria cone alumina suites (Kuno, 1966). The Benioff zone but their age is not established. They are under Guatemala and eastern Mexico has a deeply denuded and are interpreted as being of much greater seismicity than the same zone Tertiary age, based on proximity to rocks farther east or west. This fact helped Molnar mapped as Tertiary in the valley of the Rio and Sykes (1969, p. 1666-1667) to conclude Ocosito (Bonis, 1965), and along Zufiil ridge that underthrusting rates were greater in this (Williams, 1960, p. 26), and based upon the area. convention (Bonis, 1965, p. 62) of assigning Tertiary age when erosional and destructional PREVIOUS WORK forms are dominant (in contrast to units show- A summary of previous work at Santiaguito ing original depositional and constructional has already been published (Stoiber and Rose, forms, which are interpreted as Quaternary). 1969, p. 479). Recently works dealing with the The flows are rarely interbedded with laharic chemistry of fumarolic activity at Santiaguito and ash-flow materials and have a thickness of have appeared (Stoiber and Eberl, 1969; more than 500 m. They are undeformed, except Stoiber and Rose, 1970). The 1902 eruption of by faults. Directly north of Santiaguito the Santa Maria is discussed in a separate article volcanic rocks of Santa Maria's cone cover the (Rose, 1972). The present paper formed part of Tertiary rocks; to the south the rocks are the author's doctoral thesis (Rose, 1970). covered by laharic and fluvial deposits of the coastal slope. VOLCANIC UNITS The Tertiary flows near Santiaguito are Descriptions of volcanic units of the San- olivine-bearing pyroxene andesites (no. 1118 in tiaguito area (Fig. 2) are below. In most cases Table 2). Phenocrysts of twinned labradorite Downloaded from gsabulletin.gsapubs.org on 17 July 2009 Downloaded from gsabulletin.gsapubs.org on 17 July 2009 SANTIAGUITO VOLCANIC DOME, GUATEMALA 1415 TABLE 1. RELATIVE "ACTIVITY" OF CENTRAL AMERICAN VOLCANOES, BASED ON DATA FROM CATALOGUE Interbedded Flows, Pyroclastic Deposits OF ACTIVE VOLCANOES (MOOSER AND OTHERS, 1958) and Laharic Materials of Santa Maria AND SUPPLEMENTED BY RECENT OBSERVATIONS Flows, pyroclastic debris, and laharic mate- Volcano No. of decades since No. of semi -decades 1820 in which eruptions since 1920 in which rials directly associated with the Santa Maria were reported (Max = 15) eruptions were re- composite cone occur on three sides of the ported (Max =10) dome. The surface of the cone north and south Tacana" 2 0 of the 1902 crater is thickly mantled with the Tajumulco 1 0 1902 eruption debris, but in places erosion has Santa Marfa- Santiaguito 6 10 exposed andesite flows and laharic units. A AtitlSn 3 0 laharic unit fills most of the valley floor north Acatenango 1 2 of the isla and casita (Fig. 2); it is up to 50 m Fuego 8 9 thick and has a well developed soil layer on Pacaya 2 2 top, in which the fossil 1902 forest was rooted. Santa Ana 2 1 East of the casita, andesite flows underlie the Izalco 15 9 1902 debris. San Salvador 1 0 Islas Quemadas 1 0 The interior of the composite cone of Santa San Miguel 9 7 Maria is irregularly exposed in the steep walls Conchaguita 1 0 of the 1902 explosion crater (Fig.
Recommended publications
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • DIPECHO VI Central America FINAL
    European Commission Instructions and Guidelines for DG ECHO potential partners wishing to submit proposals for a SIXTH DIPECHO ACTION PLAN IN CENTRAL AMERICA COSTA RICA, EL SALVADOR, GUATEMALA, HONDURAS, NICARAGUA, PANAMA Budget article 23 02 02 Deadline for submitting proposals: 30 April 2008 1 Table of contents BACKGROUND................................................................................................................................ 3 1. OBJECTIVES OF THE PROGRAMME AND PRIORITY ISSUES FOR THE 6TH ACTION PLAN FOR CENTRAL AMERICA .............................................................................................................. 6 1.1 Principal objective .......................................................................................................................... 5 1.2 Specific objective ............................................................................................................................ 5 1.3 Strategic programming imperatives (sine qua non)......................................................................... 6 1.4 Type of activities ............................................................................................................................. 8 1.5 Priorities in terms of geographical areas, hazards and sectors ...................................................... 11 1.6 Visibility and Communication requirements................................................................................. 16 2. FINANCIAL ALLOCATION PROVIDED ...................................................................................
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Regional Oral History Off Ice University of California the Bancroft Library Berkeley, California
    Regional Oral History Off ice University of California The Bancroft Library Berkeley, California Richard B. Gump COMPOSER, ARTIST, AND PRESIDENT OF GUMP'S, SAN FRANCISCO An Interview Conducted by Suzanne B. Riess in 1987 Copyright @ 1989 by The Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West,and the Nation. Oral history is a modern research technique involving an interviewee and an informed interviewer in spontaneous conversation. The taped record is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The resulting manuscript is typed in final form, indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. All uses of this manuscript are covered by a legal agreement between the University of California and Richard B. Gump dated 7 March 1988. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley. No part of the manuscript may be quoted for publication without the written permission of the Director of The Bancroft Library of the University of California, Berkeley.
    [Show full text]
  • The Chinese Navy: Expanding Capabilities, Evolving Roles
    The Chinese Navy: Expanding Capabilities, Evolving Roles The Chinese Navy Expanding Capabilities, Evolving Roles Saunders, EDITED BY Yung, Swaine, PhILLIP C. SAUNderS, ChrISToPher YUNG, and Yang MIChAeL Swaine, ANd ANdreW NIeN-dzU YANG CeNTer For The STUdY oF ChINeSe MilitarY AffairS INSTITUTe For NATIoNAL STrATeGIC STUdIeS NatioNAL deFeNSe UNIverSITY COVER 4 SPINE 990-219 NDU CHINESE NAVY COVER.indd 3 COVER 1 11/29/11 12:35 PM The Chinese Navy: Expanding Capabilities, Evolving Roles 990-219 NDU CHINESE NAVY.indb 1 11/29/11 12:37 PM 990-219 NDU CHINESE NAVY.indb 2 11/29/11 12:37 PM The Chinese Navy: Expanding Capabilities, Evolving Roles Edited by Phillip C. Saunders, Christopher D. Yung, Michael Swaine, and Andrew Nien-Dzu Yang Published by National Defense University Press for the Center for the Study of Chinese Military Affairs Institute for National Strategic Studies Washington, D.C. 2011 990-219 NDU CHINESE NAVY.indb 3 11/29/11 12:37 PM Opinions, conclusions, and recommendations expressed or implied within are solely those of the contributors and do not necessarily represent the views of the U.S. Department of Defense or any other agency of the Federal Government. Cleared for public release; distribution unlimited. Chapter 5 was originally published as an article of the same title in Asian Security 5, no. 2 (2009), 144–169. Copyright © Taylor & Francis Group, LLC. Used by permission. Library of Congress Cataloging-in-Publication Data The Chinese Navy : expanding capabilities, evolving roles / edited by Phillip C. Saunders ... [et al.]. p. cm. Includes bibliographical references and index.
    [Show full text]
  • Boletín Mensual Sismos Y Volcanes De Nicaragua Enero, 2021
    Boletín Sismos y Volcanes de Nicaragua. Enero, 2021. Dirección General de Geología y Geofísica Instituto Nicaragüense de Estudios Territoriales Dirección General de Geología y Geofísica Boletín mensual Sismos y Volcanes de Nicaragua Enero, 2021 Mapa epicentral de sismos localizados en Nicaragua. Enero, 2021 pág. 1 Boletín Sismos y Volcanes de Nicaragua. Enero, 2021. Dirección General de Geología y Geofísica Instituto Nicaragüense de Estudios Territoriales (INETER) Dirección General de Geología y Geofísica Boletín Sismológico, Vulcanológico y Geológico Enero, 2021 Las observaciones rutinarias de sismicidad, vulcanismo y otros fenómenos geológicos en NIC, resultan del sistema de monitoreo y vigilancia desarrollado y mantenido por INETER. El contenido de este boletín se basa en el trabajo de las siguientes personas: Monitoreo Sismológico – Turno Sismológico Antonio Acosta, Greyving Argüello, Amilcar Cabrera, Milton Espinoza, Petronila Flores, Miguel Flores Ticay, Fernando García, Juan Carlos Guzmán, Ulbert Grillo, Martha Herrera, Domingo Ñamendi, Ana Rodríguez Lazo, Wesly Rodríguez, Jacqueline Sánchez, Emilio Talavera, Virginia Tenorio. Procesamiento Final de los Registros Sísmicos Jacqueline Sánchez, Virginia Tenorio Monitoreo Volcánico Eveling Espinoza, Armando Saballos, Martha Ibarra, David Chavarría, Teresita Olivares, Dodanis Matus, Elvis Mendoza, Rinath José Cruz Talavera Mantenimiento de la Red Sísmica y Sistemas Electrónicos Antonio Acosta, Martha Herrera, Fernando García, Domingo Ñamendis, Allan Morales, Ulbert Grillo Departamento Tecnología Información y Comunicación Miguel Flores, Norwing Acosta, Ernesto Mendoza Geología Carmen Gutiérrez, Gloria Pérez, Francisco Mendoza, Ada Mercado Rodríguez, Bianca Vanegas, Rosario Avilés Preparación Final del Catálogo Virginia Tenorio Febrero, 2021 Algunos artículos particulares llevan los nombres de los autores respectivos, quienes Son responsables por la veracidad de los datos presentados y las conclusiones alcanzadas.
    [Show full text]
  • Revision 2 Understanding Magmatic Processes at Telica Volcano
    Revision 2 Understanding magmatic processes at Telica volcano, Nicaragua: Crystal size distribution and textural analysis Molly Witter1,2*, Tanya Furman1, Peter LaFemina1, Maureen Feineman1 1 Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA 2 Now at: Department of Geological Sciences, Stanford University, 397 Panama Mall, Stanford CA, 94305 USA * Corresponding author: [email protected] 1 Abstract 1 Telica volcano in Nicaragua currently exhibits persistent activity with continuous seismicity and 2 degassing, yet it has not produced lava flows since 1529. To provide insight into magma 3 chamber processes including replenishment and crystallization, crystal size distribution (CSD) 4 profiles of plagioclase feldspar phenocrysts were determined for Quaternary Telica basalts and 5 basaltic andesites. Textural analysis of fourteen highly crystalline lavas (>30 vol.% phenocrysts) 6 indicates that the samples are dominated by sieve-textured plagioclase feldspar phenocrysts 7 whose origin requires thermochemical disequilibrium within the magmatic system. The CSD 8 curves display an inverse relationship between phenocryst length and population density. 9 Concave-up patterns observed for the Telica lava samples can be represented by linear segments 10 that define two crystal populations: a steeply-sloping segment for small crystals (<1.5 mm) and a 11 gently-sloping segment for crystals >1.5 mm in length. The two crystal populations may be 12 explained by magma replenishment and a mixing model in which a mafic magma is introduced 13 to a stable chamber that is petrologically and geochemically evolving. Residence times 14 calculated using the defined linear segments of the CSD curves suggest these magmatic 15 processes occur over time scales on the order of decades to centuries.
    [Show full text]
  • Halogen Activation in the Plume of Masaya Volcano: field Observations and Box Model Investigations
    Atmos. Chem. Phys., 21, 3371–3393, 2021 https://doi.org/10.5194/acp-21-3371-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Halogen activation in the plume of Masaya volcano: field observations and box model investigations Julian Rüdiger1,2, Alexandra Gutmann1, Nicole Bobrowski3,4, Marcello Liotta5, J. Maarten de Moor6, Rolf Sander4, Florian Dinger3,4, Jan-Lukas Tirpitz3, Martha Ibarra7, Armando Saballos7, María Martínez6, Elvis Mendoza7, Arnoldo Ferrufino7, John Stix8, Juan Valdés9, Jonathan M. Castro10, and Thorsten Hoffmann1 1Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz, Germany 2Environmental Chemistry and Air Research, Technical University Berlin, Berlin, Germany 3Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany 4Max Planck Institute for Chemistry, Mainz, Germany 5Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Italy 6Observatorio Vulcanológico y Sismológico de Costa Rica Universidad Nacional, Heredia, Costa Rica 7Instituto Nicaragüense de Estudios Territoriales, Managua, Nicaragua 8Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 9Laboratorio de Química de la Atmósfera, Universidad Nacional, Heredia, Costa Rica 10Institute of Geosciences, Johannes Gutenberg University Mainz, Mainz, Germany Correspondence: Thorsten Hoffmann ([email protected]) Received: 25 March 2020 – Discussion started: 22 June 2020 Revised: 9 January 2021 – Accepted: 26 January 2021 – Published: 4 March 2021 Abstract. Volcanic emissions are a source of halogens in the sensing observations (differential optical absorption spec- atmosphere. Rapid reactions convert the initially emitted hy- troscopy; DOAS). The reactive fraction of bromine increased drogen halides (HCl, HBr, and HI) into reactive species such from 0.20 ± 0.13 at the crater rim to 0.76 ± 0.26 at 2.8 km as BrO, Br2, BrCl, ClO, OClO, and IO.
    [Show full text]
  • Geohazard Supersites and Natural Laboratories Initiative
    Versión 1.0, 14 de octubre de 2015 www.earthobservations.org/gsnl.php Geohazard Supersites and Natural Laboratories Initiative A.1 Proposal Title: Volcano-tectonic Geohazard Interaction within the Nicaraguan Depression Volcanoes: Cosiguina, San Cristóbal, Telica, Cerro Negro, Momotombo, Península de Chiltepe, Masaya and Concepción A.2 Supersite Coordinator Email (Organization only) [email protected] Name: Iris Valeria Surname: Cruz Martínez Position: Director General of Geology and Geophysics Personal website: <In case a personal web page does not exist, please provide a CV below this table> Institución: Instituto Nicaragüense de Estudios Territoriales-INETER- Nicaragua Type of institution Government (Government, Education, other): The institution's web address: https://www.ineter.gob.ni/ Address: Front of Solidarity Hospital City: Managua Postal Code/Postal Code: 2110 Managua, Nicaragua Country: Nicaragua Province, Territory, State or Managua County: Phone number: Tel. +505-22492761 Fax +505-22491082 1 Versión 1.0, 14 de octubre de 2015 A.3 Core Supersite Team Email (Organization only) [email protected] Name: Federico Vladimir Surname: Gutiérrez Corea Position: Director of the Nicaraguan Institute of Territorial Studies-INETER- Nicaragua Personal website: http://www.vlado.es/ http://uni.academia.edu/FedericoVLADIMIRGutierrez/Curriculu mVitae Institution: Nicaraguan Institute of Territorial Studies-INETER-Nicaragua Type of institution Government (Government, Education, others): Institution's web address: https://www.ineter.gob.ni/
    [Show full text]
  • Mel Rodgers1, Mitch Hastings1, Glenn Thompson1, Diana Roman2 1
    Locations of families of repeating events at Telica Volcano, Nicaragua Mel Rodgers1, Mitch Hastings1, Glenn Thompson1, Diana Roman2 1. University of South Florida. 2. Carnegie Institution of Washington −88.00˚ −86.00˚ −84.00˚ −82.00˚ 12.00˚ 1. Introduction Honduras 3. Results 14.00˚ −87.00˚ −86.00˚ Cosiguina 13.00˚ Nicaragua Telica is a Persistently Restless Volcano with ☀ San Cristobal Telica 12.00˚ 3.1 Multiplet “1” stack high rates of seismicity (>100s Cerro Negro Momotombo 12.65˚ events/day), high levels of degassing and Costa Rica10.00˚ 12.00˚ frequent small explosions. Locating events is dicult due to the ☀ TBHS low-amplitude, low-frequency and Telica TBTN 12.60˚ TBCF emergent nature of the waveforms. TBHY TBMR ☀ Telica has a high rate of multiplet km occurrence. Between 2010-2013 ~25% of TBCA 0 2 4 events belonged to a multiplet. 12.55˚ In this study we locate multiplets using TESAND seismic (broad band) ☀ Active vent STACK STACK waveform cross-correlation stacking to −86.90˚ −86.85˚ −86.80˚ TBHS TBHY obtain rst arrivals. Figure 1. Location of Telica & TESAND network stations. 2. Methods Prior work: • TESAND network deployed between 2010-2013. • STA/LTA event detection and catalogue creation in Antelope ->200,000 events. • Full cross-correlation using Peakmatch (Rodgers et al., 2015a) at single station TBTN of all events -> ~9000 multiplets (51,000 events) correlated above xcorr threshold 0.8. STACK STACK This study: TBMR TBTN 1. Using the multiplets previously identied on TBTN we select the 51 multiplets that contained more than 50 events per family (Ranging from ~5,000 to 50 events).
    [Show full text]
  • Historical Painting Techniques, Materials, and Studio Practice
    Historical Painting Techniques, Materials, and Studio Practice PUBLICATIONS COORDINATION: Dinah Berland EDITING & PRODUCTION COORDINATION: Corinne Lightweaver EDITORIAL CONSULTATION: Jo Hill COVER DESIGN: Jackie Gallagher-Lange PRODUCTION & PRINTING: Allen Press, Inc., Lawrence, Kansas SYMPOSIUM ORGANIZERS: Erma Hermens, Art History Institute of the University of Leiden Marja Peek, Central Research Laboratory for Objects of Art and Science, Amsterdam © 1995 by The J. Paul Getty Trust All rights reserved Printed in the United States of America ISBN 0-89236-322-3 The Getty Conservation Institute is committed to the preservation of cultural heritage worldwide. The Institute seeks to advance scientiRc knowledge and professional practice and to raise public awareness of conservation. Through research, training, documentation, exchange of information, and ReId projects, the Institute addresses issues related to the conservation of museum objects and archival collections, archaeological monuments and sites, and historic bUildings and cities. The Institute is an operating program of the J. Paul Getty Trust. COVER ILLUSTRATION Gherardo Cibo, "Colchico," folio 17r of Herbarium, ca. 1570. Courtesy of the British Library. FRONTISPIECE Detail from Jan Baptiste Collaert, Color Olivi, 1566-1628. After Johannes Stradanus. Courtesy of the Rijksmuseum-Stichting, Amsterdam. Library of Congress Cataloguing-in-Publication Data Historical painting techniques, materials, and studio practice : preprints of a symposium [held at] University of Leiden, the Netherlands, 26-29 June 1995/ edited by Arie Wallert, Erma Hermens, and Marja Peek. p. cm. Includes bibliographical references. ISBN 0-89236-322-3 (pbk.) 1. Painting-Techniques-Congresses. 2. Artists' materials- -Congresses. 3. Polychromy-Congresses. I. Wallert, Arie, 1950- II. Hermens, Erma, 1958- . III. Peek, Marja, 1961- ND1500.H57 1995 751' .09-dc20 95-9805 CIP Second printing 1996 iv Contents vii Foreword viii Preface 1 Leslie A.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]