Public Trust: Application of the Public Trust Doctrine to Groundwater Resources

Total Page:16

File Type:pdf, Size:1020Kb

Public Trust: Application of the Public Trust Doctrine to Groundwater Resources TRUSTING THE PUBLIC TRUST: APPLICATION OF THE PUBLIC TRUST DOCTRINE TO GROUNDWATER RESOURCES Jack Tuholske∗ TABLE OF CONTENTS Introduction ...................................................................................................190 I. An Overview of Groundwater Problems in the United States...............193 A. Running Low in the High Plains .....................................................193 B. A Garden in the Wilderness.............................................................195 C. Land Subsidence...............................................................................197 D. Natural Resource Extraction............................................................198 E. Bottled Water: Groundwater as a Consumer Commodity .............200 F. Saltwater Intrusion: The Sea Cometh..............................................201 G. Reduced Surface Flows ...................................................................202 H. Groundwater Depletion: A Pervasive Nationwide Problem .........203 II. A Brief Overview of Groundwater Law ................................................204 A. Common Law Applied to Groundwater .........................................205 B. Statutory Overlays............................................................................211 III. The Public Trust and Groundwater.......................................................214 A. Brief Historical Overview of the Public Trust Doctrine................214 B. New Applications of the Public Trust Doctrine .............................216 IV. Groundwater and the Public Trust Doctrine ........................................221 A. Application of the Doctrine Beyond Property-Based Navigability Distinctions Regarding Bed, Banks, and Tidelands.......221 B. Applying the Public Trust to Groundwater.....................................226 C. Likely Criticism of Applying the Public Trust Doctrine to Groundwater ...........................................................................................231 Conclusion.....................................................................................................235 ∗ The author acknowledges the exceptional contribution of Vermont Law School student and Vermont Journal of Environmental Law Senior Articles Editor, Julia Horrocks, for both conceptualizing this article, and assisting with research, writing, and editing. This article draws upon Ms. Horrocks’ excellent prior scholarship on the public trust and Vermont groundwater legislation. I also want to thank the VJEL staffers Joshua Belcher and Samantha Simmons for their insights, editing, and support for this article. 190 VERMONT JOURNAL OF ENVIRONMENTAL LAW [vol. 9 INTRODUCTION A recent New York Times story proclaimed Beneath Booming Cities, China’s Future is Drying Up, detailing a profound example of groundwater depletion that threatens to tear the fabric of Chinese society.1 China’s roiling economic expansion over the past two decades has created water shortages of enormous magnitude. China is trying to alleviate the problem with a sixty-two billion dollar trans-basin water transfer scheme to its booming North Plain—an arid, rapidly developing part of the country that has depleted its groundwater at unprecedented rates to support economic growth.2 Scientists predict that in the North China Plain, 200 million people will simply run out of groundwater in thirty years.3 The situation in China, while extreme, is not unlike groundwater extraction problems in the American Southwest. Like the North China Plain, the Southwest is arid, yet burgeons with recent population growth, and lives beyond its local water availability. The groundwater problem in the Southwest is also attacked with technological fixes. Rather than limit growth, the Southern Nevada Water Authority proposes massive groundwater pumping from hundreds of miles away to fuel its continued boom.4 Our groundwater problems are not limited to desert lands in the United States. Florida, one of the wettest states in the nation, has severe local subsidence problems due to groundwater pumping.5 Groundwater supplies for some metropolitan areas along the East Coast are threatened by saltwater invasion due to both rising seas and sinking water tables. Water bottling companies seek exclusive rights for springs, to the chagrin of local residents.6 The Ogallala Aquifer in the Great Plains, which supplies 30% of all irrigation water for the nation’s agriculture, has in some areas dropped 1. Jim Yardley, Under China’s Booming North, the Future Is Drying Up, N.Y. TIMES, Sept. 28, 2007, at A1, available at 2007 WLNR 18998401. 2. Id. The rate of growth is difficult to comprehend. The city of Shijiazhuang grew from a few farming villages in 1900, to a city of 335,000 people in 1950, to a metropolitan area today with over nine million residents. Id. 3. Id. 4. Yardley, supra note 1. The Central Arizona Project is another example of fixing groundwater by massive interbasin transfer instead of limiting growth or enacting sustainability legislation. This taxpayer-subsidized project brings Colorado River water some 300 miles to central Arizona. See Central Arizona Project, http://www.cap-az.com (addressing frequently asked questions about the Central Arizona Project). 5. U.S. GEOLOGICAL SURVEY, FS-165-00, GROUNDWATER RESOURCES FOR THE FUTURE: LAND SUBSIDENCE IN THE UNITED STATES, 1 fig.1, 3 (2000), available at http://water.usgs.gov/ogw/ pubs/fs00165/SubsidenceFS.v7.pdf. 6. See infra notes 81–93 and accompanying text. 2008] Trusting the Public Trust 191 more than 150 feet due to groundwater pumping for irrigation.7 In Montana, coal seam aquifers that have supplied domestic and stock water for generations may be pumped dry for coal bed methane development. Chicago area aquifers have dropped 900 feet. Serious looming groundwater shortages are predicted in some parts of the Great Lakes.8 California overdraws its water by one to two million acre-feet per year.9 Las Vegas refuses to cap population growth and looks to pump groundwater from rural areas; local ranchers vow to fight the water grab.10 While not as immediately severe as China’s groundwater problems, the United States faces groundwater challenges on many fronts. We are a nation dependent upon groundwater for both agriculture and domestic water supplies. Groundwater use increased from thirty-eight million acre-feet to ninety-three million acre-feet in just thirty years, from 1950 to 1980.11 Groundwater accounts for 40% of all water for irrigated agriculture, and provides about 40% of our domestic water needs.12 While the United States has locally abundant groundwater resources,13 the most rapidly growing areas, where extraction is greatest, are often the most arid parts of the country, where recharge is slow. For example, the Ogallala Aquifer, our nation’s richest groundwater source, is being depleted at a rate conservatively estimated to exceed ten times the rate of natural recharge.14 Groundwater mining is a problem that must be confronted sooner rather than later. Changes in snowfall, snow melt, temperature, and precipitation related to global climate change exacerbate groundwater recharge problems. In just two decades, dramatic changes in hydrological patterns have been documented in the Northeast and Rocky Mountain West. Mountain snow packs are diminished, spring runoff is earlier and quicker, and reservoirs 7. WILLIAM M. ALLEY ET AL., U.S. GEOLOGICAL SURVEY, CIRCULAR 1186, SUSTAINABILITY OF GROUND-WATER REOURCES 27 fig.10 (1999), available at http://pubs.usgs.gov/circ/circ1186/ pdf/circ1186.pdf. 8. See infra p. 15. 9. CAL. DEP’T OF WATER RES., DEP’T OF NATURAL RES., BULLETIN 118, CALIFORNIA’S GROUNDWATER 2 (2003), available at http://www.dpla2.water.ca.gov/publications/ groundwater/bulletin118/Bulletin118_Entire.pdf. 10. See infra note 45–51 and accompanying text. 11. JOSEPH SAX ET AL., LEGAL CONTROL OF GROUNDWATER RESOURCES 395 (4th ed. 2006). 12. Id. 13. U.S. Geological Survey (USGS) estimates that the total amount of freshwater-groundwater withdrawals in the United States in 2000 was approximately eighty-three billion gallons per day, not including independent routing. U.S. Geological Survey, Estimated Use of Water in the United States in 2000, tbl. 1, http://pubs.usgs.gov/circ/2004/circ1268/htdocs/text-total.htm (last visited Dec. 11, 2007). 14. MANJULA V. GURU & JAMES E. HORNE, KERR CENTER FOR SUSTAINABLE AGRICULTURE, THE OGALLALA AQUIFER 7–8 (2000), available at http://www.kerrcenter.com/publications/ ogallala_aquifer.pdf. 192 VERMONT JOURNAL OF ENVIRONMENTAL LAW [vol. 9 designed to capture snow melt do not fill. All of these factors increase pressure for more groundwater extraction.15 In addition, the rise in sea levels attributed to climate change has already caused saltwater to invade some East Coast aquifers.16 Confounding groundwater management are myriad disparate, often outdated laws, relics of nineteenth-century common law doctrines ill-suited for today’s problems. Yet, despite our dependence on groundwater for agriculture and municipal water, we sanction over-drafting of aquifers in many places even while climate change may substantially alter the long- term water balance. Common law groundwater doctrines and state statutory schemes for groundwater often do little to prevent groundwater mining. If we are to maintain our nation’s preeminence in agriculture and ensure quality domestic water supplies where people need them, then a fresh look at how to best approach groundwater conservation is needed.17 Part I of this Article begins
Recommended publications
  • Nevada Gold Mines - Cortez Mine
    CASE STUDY Vigilante Air Quality Station™ Return safely and quicker to the face. Vigilante AQS™ Case Study at Nevada Gold Mines - Cortez Mine stations, to measure environmental conditions in real-time for worker health and safety and to reduce the total installed infrastructure costs. Nevada Gold Mines is a joint venture between Barrick (61.5%) and Newmont CorPoration (38.5%), creating the single largest gold-Producing comPlex in the world. The mining oPeration comPrises eight mines along with their associated infrastructure and Processing facilities. Nevada Gold Mines is oPerated by Barrick. Cortez Gold Mine is a located aPProximately 75 miles (120 km) southwest of Elko, Nevada, USA. The Cortez Hills Underground Mine (CHUG) is fully The Challenge mechanized, with large scale equiPment using a combination of cut and fill mining with cemented Underground mines have challenging backfill and Primary and secondary longhole environmental conditions, including toxic gases stoPing with cemented and uncemented backfill. from blasting, oPerating vehicles and/or gases given off by the surrounding strata rock. At greater Identifying the mining industry’s demand for real- dePths, the air is denser and continues to Pick uP time data to monitor and control air quality, Maestro heat from the exposed rock causing worker heat Digital Mine worked with CorteZ Mine to address stress concerns. the challenges associated with working in the harsh underground mining environment by protecting Nevada Gold Mines goal is to make its oPerations miners from acute or chronic gas related health as safe and efficient as Possible, at the lowest conditions. Nevada Gold Mines integrated Maestro Possible cost.
    [Show full text]
  • Newmont Mining Corporation Reduction of Conflict in The
    Draft Final Report to Newmont Mining Corporation Reduction of Conflict in the Extractive Industries Using Good Neighbor Agreements by Alexandra Masaitis Glenn C. Miller Department of Natural Resources and Environmental Science University of Nevada, Reno August, 2015 i Glenn C. Miller Alexandra Masaitis Reduction of conflicts in the extractive industries using Good Neighbor Agreements Abstract Conflicts between mining companies and communities are now prevalent in many countries of the world, both developed and developing. These conflicts have often resulted in delays of mine project development as well as adverse effects to the communities. Reduction of those conflicts has been shown to be best accomplished by good communication, transparency, and a willingness of each of the parties to both understand the positions of other participants, but also a willingness to compromise. One of the types of agreements that have shown success is termed a “Good Neighbor Agreement” (GNA). The needs for this project are to create an open dialog between the mining company and all interested parties who may have concerns regarding the social or environmental impacts from the mine, to minimize the possible conflicts and disagreements, and create the negotiation tools, which can be implemented any time, depending on the needs. In this case, an agreement is negotiated where good communication and frequent meetings are utilized, and the resulting agreement has sufficient penalties that if any of the signatories to the agreement fail to abide by that agreement, those penalties will be imposed. This process is often complicated, but ultimately has the potential to reduce threats of appeals or legal action, but at the same time may require elimination of certain practices.
    [Show full text]
  • Number 72 Spring 2016
    Number 72 Spring 2016 An organization of retirees of the Geologic Division, U.S. Geological Survey, who seek to keep in touch with each other and with their former Agency. Officers National Officers President John Keith 703-435-1147 Vice President John Aaron 703-437-4001 Secretary/Treasurer Odette B. James 703-476-9738 Regional Officers East Jim McNeal 703-476-0025 Central John S. Stuckless 303-236-7847 Katherine L. Varnes 303-237-2639 West Pat Muffler 650-493-6439 Newsletter Editor Bill Outerbridge 703-860-8537 Deputy Assistant Editor Kathleen Gohn 703-620-3368 Production Dave Newman 540-212-3281 Directory Coordinator Odette James 703-476-9738 References Bob Tilling [email protected] Address Geologic Division Retirees U.S. Geological Survey 953 National Center Reston, VA 20192 Email Address [email protected] About the Cover: Sampling trip into the Sierra Agua Verde, Sonora, Mexico, February 20, 1983. Left to right: Juan Manuel Morales-Ramirez, Anita Harris, Bruce Wardlaw, Jack Stewart, and Barney Poole. Before his recent death, Bruce told John Keith that each person collected about 20 kilos of rock, and the hike out was a very long one. Anita was lagging behind, and Bruce dropped back to check on her. She said, “I just can’t make it with my samples—can you put them in your pack and not tell the others?” So Bruce hauled 40 kilos for the rest of the trip. (Photo by Barney P. with camera on timer) From the President Treasurer’s Report and Membership Statistics Many of you are familiar with the American Geosciences (formerly Geologic) Institute.
    [Show full text]
  • Golden Rules Making the Case for Responsible Mining
    GOLDEN RULES Making the case for responsible mining A REPORT BY EARTHWORKS AND OXFAM AMERICA Contents Introduction: The Golden Rules 2 Grasberg Mine, Indonesia 5 Yanacocha Mine, Peru, and Cortez Mine, Nevada 7 BHP Billiton Iron Ore Mines, Australia 9 Hemlo Camp Mines, Canada 10 Mongbwalu Mine, the Democratic Republic of Congo 13 Rosia Montana Mine, Romania 15 Marcopper Mine, the Philippines, and Minahasa Raya and Batu Hijau Mines, Indonesia 17 Porgera Gold Mine, Papua New Guinea 18 Junín Mine, Ecuador 21 Akyem Mine, Ghana 22 Pebble Mine, Alaska 23 Zortman-Landusky Mine, Montana 25 Bogoso/Prestea Mine, Ghana 26 Jerritt Canyon Mine, Nevada 27 Summitville Mine, Colorado 29 Following the rules: An agenda for action 30 Notes 31 Cover: Sadiola Gold Mine, Mali | Brett Eloff/Oxfam America Copyright © EARTHWORKS, Oxfam America, 2007. Reproduction is permitted for educational or noncommercial purposes, provided credit is given to EARTHWORKS and Oxfam America. Around the world, large-scale metals mining takes an enormous toll on the health of the environment and communities. Gold mining, in particular, is one of the dirtiest industries in the world. Massive open-pit mines, some measuring as much as two miles (3.2 kilometers) across, generate staggering quantities of waste—an average of 76 tons for every ounce of gold.1 In the US, metals mining is the leading contributor of toxic emissions to the environment.2 And in countries such as Ghana, Romania, and the Philippines, mining has also been associated with human rights violations, the displacement of people from their homes, and the disruption of traditional livelihoods.
    [Show full text]
  • Characterization of Mine Leachates and the Development of a Ground-Water Monitoring Strategy for Mine Sites
    United States Office of Research and EPA/600/SR-99/007 Environmental Protection Development February 1999 Agency Washington, D.C. 20460 Project Summary Characterization of Mine Leachates and the Development of a Ground-Water Monitoring Strategy for Mine Sites Russell H. Plumb Jr. The total number of active and effective ground-water monitoring inactive mining sites in the United strategy: States has been estimated to be as high as 82,000. The 20,000 active mining 1. The composition and environ- sites currently process an estimated 1.5 mental behavior of mine waste billion tons of ore per year and the leachates is poorly understood. cumulative quantity of mine waste that has been produced has been estimated 2. The problem of how to effectively to be 50 billion tons. These wastes are sample the large areas covered by usually discarded in waste piles, tailings tailings ponds, that range in size basins, and depleted heap leaching from several acres to several pads. Although the adverse thousand acres, has never been environmental impacts of mine waste addressed. leachates and acid mine drainage on surface waters have been widely 3. The parameters that should be documented, the impact of mine monitored in ground water leachates on ground water is poorly adjacent to mine waste disposal understood. One of the factors that sites to detect fugitive mine waste contributes to this situation is the fact leachate have not been selected that the United States does not have a and evaluated. national strategy for monitoring of mining sites. The objective of this research project was to develop a better understanding When the Resource, Conservation, of the composition of mine waste and Recovery Act (RCRA) program was leachates and to identify cost effective initially developed, seventeen industries ground-water monitoring parameters were classified as generators of non- that could be incorporated into a hazardous wastes and exempted from monitoring strategy to reliably detect the the ground-water monitoring migration of contaminants from hard requirements.
    [Show full text]
  • Snake Plain Aquifer Technical Report
    SNAKE PLAIN AQUIFER TECHNICAL REPORT September 1985 IDAHO DEPARTMENT OF HEALTH AND WELFARE IDAHO DEPARTMENT OF WATER RESOURCES SNAKE PLAIN AQUIFER TECHNICAL REPORT September 1985 IDAHO DEPARTMENT OF HEALTH AND WELFARE IDAHO DEPARTMENT OF WATER RESOURCES TABLE OF CONTENTS Page INTRODUCTION 1 SNAKE PLAIN AND AQUIFER CHARACTERISTICS 5 Hydrology 5 Soils and Climate 16 Land Use and Groundwater Use 32 Water Quality 36 POTENTIAL CONTAMINANT SOURCES 48 Land Spreading: Septage and Sludge 50 Land Applied Wastewaters 54 Injection Wells 57 Well Drilling 61 Radioactive Materials Sources 62 Surface Run-off 64 Feedlots and Dairies 66 Petroleum Handling and Storage 68 Oil and Gas Pipelines 72 Mining and Oil and Gas Drilling 73 Landfills and Hazardous Waste Sites 74 Pits, Ponds and Lagoons 77 Pesticides 79 Septic Tank Systems 86 Hazardous Substances 89 Geothermal Wells 93 Fertilizer Application 94 Rating and Ranking the Potential Contaminant 95 Sources SUMMARY 99 LIST OF TABLES Table Page 1 Snake Plain Governing Jurisdictions 34 2 Primary Drinking Water Standards 42 3 Drinking Water Standards for Selected Radionuclides 45 4 Characteristics of Septage 50 5 Septage Quantities Disposed on the Snake Plain and Statewide 51 6 Estimated Contaminant Quantities from Septage on the Snake Plain 51 7 Sludge Quantities Disposed on the Snake Plain 52 8 Estimated Pollutant Quantities from Sludge Disposal on the Snake Plain 52 9 Sources of Land-Applied Wastewaters on the Snake Plain 54 10 Characteristics of Selected Wastewaters 55 11 Inventoried Injection Wells within
    [Show full text]
  • Testing and Demonstration Sites for Innovative Groundwater
    EPA 542-R-97-002 January 1997 Testing and Demonstration Sites For Innovative Ground-Water Remediation Technologies U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 Notice This material has been funded by the United States Environmental Protection Agency under contract number 68-W6-0014. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Foreword The mission of U.S. EPA's Technology Innovation Office (TIO) is to promote the use of new, less costly, and more effective technologies to clean up contaminated soil and ground water at the nation's hazardous waste sites. The availability of public demonstration and testing sites is a key factor in the development of adequate remediation technologies. TIO recognizes the need for extensive field demonstrations and verification testing of these technologies prior to general acceptance and full commercialization. Demonstration sites are relatively scarce and demonstrations involve some degree of financial and environmental risk. Ground-water contamination has been found at 85% of hazardous waste sites, and few efficient, cost-effective ground-water cleanup technologies are available. The difficulty in defining both contaminated areas and the subsurface environment compounds the need for diverse technologies and adequate demonstration sites to test these technologies. In addition, regulators that select or approve the use of cleanup technologies are usually reluctant to turn to innovative technologies if they lack demonstrated cost and performance information. This report describes fifteen publicly-sponsored facilities available for testing and demonstration of ground-water technologies. It is intended to help technology developers choose appropriate demonstration sites.
    [Show full text]
  • Geochemical Reconnaissance of the Cortez-Buckhorn Area, X Southern Cortez Mountains, -V Nevada
    - Geochemical Reconnaissance of the Cortez-Buckhorn Area, x Southern Cortez Mountains, -v Nevada By JOHN D. WELLS and JAMES E. ELLIOTT , CONTRIBUTIONS TO ECONOMIC GEOLOGY \ _____________________________ GEOLOGICAL SURVEY BULLETIN 1312-P * Geochemical data show the distribution of gold, silver, mercury, arsenic, antimony, copper, zinc, molybdenum, and tellurium in carbonate and siliceous sedimentary rocks - and granitic and basaltic igneous rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1971 -A, UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 79-609840 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 2040 CONTENTS Pago Abstract._________-_-_---____-_-_-----__-- PI Introduction. ______._.__.._._._.__-.__-.__- 2 Previous geochemical and geologic work... 2 Acknowledgments. _____.____-___-.___-. 2 General geology.___._._._-..-_-_._.-_.. 4 Ore deposits.________________---_-_-_-_ 5 Current geochemical work.__________________ 6 Geochemical anomalies.______-----_-_-_-_._ 7 Geochemical maps-__--_--_-_---------_-_-- 8 Summary of geochemical anomalies.__-_-__-_- 14 Summary of geologic associations.._.__.-_-_._ 15 Geochemical anomalies and exploration targets. 16 References cited._______--____-____-_-_--_- 17 ILLUSTRATIONS [Plates are in pocket] PLATE 1. Generalized geologic map and geochemical map showing dis­ tribution of silver, Cortez-Buckhorn area, Lander and Eure­ ka Counties, Nevada. 2. Geochemical maps showing distribution of gold, mercury, ar­ senic, and antimony, Cortez-Buckhorn area, Lander and Eureka Counties, Nevada.
    [Show full text]
  • Lutter B(Iacks Sui G a F P R Oogram
    Aviationn educaticon f eas i t ie!e^ B lL Minors'' return] unnJikely — z m a s m I................... ... , --------T“ t -Cla&sifigl e d Y o u r _ 5 1061 Kawasaki 13 Drilling C y c l e ■ ^ a r g a s- i ' - d/oss. low rrtlos; o 7 / 2 * ) / S « iTTdrr/^ eondlilon, Call 73 i/AR COPP-- j darv Of 733-1164 ov S h o p ? S 3BD £ source SALT C4 j H 9 — B1 r La<E CITY ut ■- - i' Marketp,place D3 I = 1 5 ’ CopyrtQhlolM g * — > i W U.0lcV«Jl«yttaW.(W| 3 5 ^ • _____ _________84th_year,8 4 m Np: l.Zg. ' TwinFalls,Its, Id ah o T hlursday. u n June 22. 1989 S h o ul i d b wriedr^W) i a s t e bye d u gf u p ? b u r nl ; i n g ByN. S. NOKKENTVEY ED I------^------- Tlmea-News writer ■ 's.^- IDAHO FALLS-LikLike archaeolo- '• p r o t <e c t e d1 a c t , — rT-gists-uncoverinp-a-pn-prcdous-roJie,- ------------ — r — men With ehovels pngiingerly-remove ,the la s t lay ers of d irtrt ffrom barrels and boxes o f radioactiv<tive waste. ~T he yearTn975romand otticials at V --------------------- the Idaho Nationalll Engineering e o u nt d e el a i f e s ^ Laboratory are tryinying to Icam whether the buried wiw aste c a n bc. The Associated Press . retrieved for perman storage ^ C S5S S 1decision-~A7 elsew here. WASHINGTON — BBurning the - ‘-.J - r r A I le r - m b r e than ot 3(deca'dc in ■m-of-politicftl-nDvrspaperr ground, the barrels atare corroded, _ protest is protecteded by .
    [Show full text]
  • Geologic Map of the Butte City 7.5' Quadrangle, Butte County, Idaho
    IDAHO GEOLOGICAL SURVEY TECHNICAL REPORT 20-04 BOISE-MOSCOW IDAHOGEOLOGY.ORG HELMUTH AND OTHERS CORRELATION OF MAP UNITS EXPLANATION of MAP UNITS Paleozoic strata of the southern Arco Hills Scot Peak Formation (upper Mississippian)–Medium gray, silty, sandy, with gray to orange Geologic Map of the Butte City 7.5' Quadrangle, Butte County, Idaho Names, unit abbreviations, and unit colors have been adopted from the previously published maps, “Geologic Msp map of the Craters of the Moon 30'x60' quadrangle, Idaho”: USGS Scientific Investigations Map I-2969, scale chert, thin- to thick-bedded, ledge- to cliff-forming limestone; weathers light gray with scalloped by Alluvial and Colluvial Deposits 1:100,000, by Kuntz, M.A., Betty Skipp, D.E. Champion, P.B. Gans, and D.P. Van Sistine, 2007, and “Geologic texture. Abundant fossils include crinoids and rugose corals among fossil hash. Gradationally 1 1 2 3 Map of the Arco 30'×60' quadrangle, south-central Idaho”, by Skipp, Betty, L.G . Snider, S.U. Janecke, and M.A. underlain by the Middle Canyon Formation; estimated thickness of 150 m in the southern Arco Samuel L. Helmuth , Evan J. Martin , Mary K.V. Hodges , and Duane E. Champion Lava Field, Cones, Kuntz, 2009, Idaho Geological Survey Geologic Map G M-47, map scale 1:100,000. Names for lava fields are Hills (Skipp and others, 2009). and Eruptive-Fissure derived from titled vents and buttes on the 1:24,000-scale topographic base map or from named vents on 1 National Association of Geoscience Teachers/U.S. Geological Deposits adjacent quadrangles.
    [Show full text]
  • For Personal Use Only Use Personal For
    Dear Shareholder, Level 2, 35 Outram Street West Perth WA 6005 As announced on 26 April 2016, Great Western Exploration Limited (“the Company” or “GTE”) made an all script offer for unlisted public company Vanguard Exploration Limited (“Vanguard”). The offer to acquire 100% of the shares in Vanguard is on the basis of four GTE fully paid ordinary shares for every one Vanguard share, or approximately 150,833,124 consideration shares. In conjunction, the Company will seek to raise $1 million at an issue price of at least $0.01 for exploration on both Vanguard and the Company’s tenements. The Company is now seeking shareholder approval for both the acquisition of Vanguard and $1 million share placement. Vanguard is a WA based unlisted public company incorporated on the 24 July 2009 that has two exploration projects, Ives Find and Fairbairn. Both of these projects are located in the Northern Yilgarn of WA near the Company’s current projects. Vanguard has invested approximately $1.5 million into these projects over the last six years. Earlier this year Vanguard made a promising new gold discovery at Ives Find where RC drilling intersected high grade gold mineralisation in two areas along strike of the historical Ives Find gold workings. Also previous work completed by Vanguard confirmed very high grade gold and silver mineralisation continuing at depth under the old workings. In addition to the gold prospectivity, the project has a favourable geological setting for lithium mineralisation with abundant pegmatites and granite intrusions that match the criteria in the US Geological Survey (“USGS”) guidelines for lithium exploration.
    [Show full text]
  • Sell-1731A , Gold – Bulk/Heap
    CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 416 W. Congress St., Suite 100 Tucson, Arizona 85701 520-770-3500 http://www.azgs.az.gov [email protected] The following file is part of the James Doyle Sell Mining Collection ACCESS STATEMENT These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue. CONSTRAINTS STATEMENT The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of “fair use.” The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works. QUALITY STATEMENT The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.
    [Show full text]