Speed Matters

Total Page:16

File Type:pdf, Size:1020Kb

Speed Matters feature Speed Matters – In Racing and in Hobbing RCD Engineering’s switch from manual to CNC hobbing operations breaks gear manufacturing lead time records with Bourn & Koch 100H in their gear production pit crew Joe Goral Sr. RCD Engineering (Race Car treating, sent out for finish grinding (4 have cut our lead time on these gears by Dynamics) is a 50-year-old days shipping there and back), and final- 50%.” Northern California manufac- ly applied finish coating.” turer of starters, blower drives, This long, nine-step process took 50% Faster Overall Production crankshafts, camshaft drives about eight weeks, but it could go even AND 30% Faster Gear Cutting and other components used by longer if their finish grinding source was Cycle Times National Hot Rod Association backed up. After bringing the Bourn & “In addition to eliminating finish grind- drag race teams and other rac- Koch 100H gear hobbing machine on to ing operations,” explains Leach, “we have ing circuits to move at speeds their team in 2016, though, RCD has cut noticed about a 33% faster run time on of 300+ mph. the process down to just four steps and the hobbing operation alone versus our For many years, RCD relied on an old has eliminated the need for finish grind- old mechanical hob.” And because RCD manual Barber-Colman 6-series gear ing services altogether. tricked out their 100H with the option- hobbing machine (built in the 1960s) The key to changing the process was al deburring attachment, they found to create idler gears used in their cam- being able to cut heat-treated blanks they could eliminate manual deburring shaft drives; but they were experi- (Rockwell 46-48) and clock the gear operations as well. They were able to encing long lead times with their fin- teeth to the timing marks or mount- bring the deburring process inline on the ish grinding operations and wanted to ing holes on the new equipment while 100H and complete it in one setup. make a change. Jason Leach, Production achieving the same AGMA 10+ quality The 100H is part of Bourn & Koch’s Manager at RCD, explains the old pro- as RCD’s customers had come to expect. line of H-Series horizontal gear hob- cess: “We cut blanks, machined the gear “Since purchasing the 100H, we have bers. H-Series machines are designed to blank front and back, roughed the teeth changed our process,” says Leach. “We produce AGMA Class 10+ quality exter- in, milled the holes (they need to be now cut blanks, heat treat the blanks, nal spur and helical gears in a compact clocked to the teeth), deburred manually, machine gear blanks front and back on footprint. The machines are manufac- sent the gears out to heat treat (4 days our turn mill complete with holes and tured and assembled in Bourn & Koch’s shipping there and back), recut bore and timing dots, then rough and finish the Rockford, Illinois facility by precision faces of the gears to true up after heat teeth on our Bourn & Koch 100H. We machine tool builders with decades of experience. Each machine is CNC-controlled with servo-motion on precision linear roller ways, hand-scraped bearing sur- faces and accurate ball screws for eas- ily achieving high tolerances. Bourn & Koch’s conversational HMI with full touch-screen control panel guides the operator through the gear cutting pro- cess, reducing the need for specialized training to operate the machine. In fact, the HMI on the 100H allowed a new user with just one AGMA basic gear manufacturing training class and less than 40 hours of training and gear hob- bing experience to cut a sample gear at least 25% faster than an operator with 40+ years of experience could cut the same gear on an old, manual Barber- Colman (see details of the time study in Standard Bourn & Koch sample hobbed on Barber-Colman 6-10. the sidebar). Leach confirms that the transition [www.geartechnology.com] 34 GEAR TECHNOLOGY | August 2017 to the CNC machine was smooth. “We their OEM archives. 125+ years of paral- RCD is a Fan of Bourn & Koch’s bought the 100H to replace our old lel OEM records (from 1889 to present Adjustable Speeds and Feeds Barber-Colman 6-10 mechanical hob, day) are being carefully preserved in the “Our Barber-Colman was doing eight and the learning curve was not nearly climate-controlled Bourn & Koch facility. gears per hour… rough cut only,” as steep as I expected. The CNC control The valuable archives consist of all explains Leach. “On the Bourn & Koch is very user friendly and easy to learn. original assembly drawings, bills of 100H, we initially set up the machine The process for creating the programs is material, electrical diagrams, hydrau- to rough and finish cut one gear in four s i mp l e .” lic schematics, detail prints, and minutes (which is 15 gears per hour).” RCD enlisted Bourn & Koch’s help to spare parts inventories from over 30 RCD was impressed with that speed, create the program that ensured the gear American-made classic machine tool but also with the fact that they could use teeth were clocked to their mill work in brands — including Fellows, Barber- the “Speed and Feed Change” feature to the same place for each gear. This ser- Colman, Devlieg, Bullard, Motch, Jones tweak the speed-to-quality ratio. “We vice got RCD’s CNC program on the & Lamson, Acme-Gridley, Blanchard, slowed the finish feed down a little to right track. But one of the biggest advan- Brown & Sharpe and many more. Add reduce the distance between scallops and tages for RCD of moving from Barber- up the number of years each machine improve the AGMA rating.” They now Colman to Bourn & Koch was the com- tool company existed and you arrive at run 10-11 gears per hour with rough patibility of the tooling. 2,500 years of combined engineering and finish passes resulting in an AGMA know-how. 12-14. This was the perfect balance of 100% tooling compatibility In keeping with Bourn & Koch’s phi- speed and accuracy for the idler gears. between the old and new losophy of retaining the best features on “The great thing about this machine,” Workholding can be very expensive to legacy machine tools, the company had Leach concludes, “is the range you have replace. So, the fact that Barber-Colman the foresight to retain compatibility with to adjust feed and speeds easily to fit 6-10 model tooling is compatible with spindle bolt patterns so that customers your needs.” The 100H gear hobber with the new Bourn & Koch 100H means would have an easier time making the Bourn & Koch HMI is available with companies can benefit from a lower transition to Bourn & Koch’s 21st century a standard Fanuc 0i-F CNC — other investment moving from manual to machine tool offerings. options for CNC controls are avail- CNC operations. The same bolt pattern used on the able as well. The control includes the One reason for the compatibility? spindle of the Barber-Colman 6-10 Automatic Single- or Double-Cut Cycles In 1985, Bourn & Koch, Inc. acquired model gear hobbing machines is used (with speed and feed change between the machine tool division of Barber- on the new Bourn & Koch 100H hob- cuts) as well as Crown Hobbing or Taper Colman. And since then, Bourn & Koch bing machines. And the larger Barber- Hobbing Cycles, Automatic Hob Shifter have continued the tradition of manu- Colman 16-16 and 14-15 models are (with parts per shift counter), and facturing world-class gear manufactur- compatible with new Bourn & Koch Power-Programmable CNC Hob Swivel ing machines in Rockford, Illinois, just 400H gear hobbing machines’ bolt pat- for accurate setting of hob slide. a few short miles from where Barber- terns as well. This compatibility allows Colman once did the same. RCD and other Bourn & Koch custom- Beyond the Machine — Custom Another reason for the compatibility ers to use their existing collet chucks, Workholding, Cutters, and High is that when approaching a new machine face drivers, and other workholding Quality Service design, customization or re-engineering devices on brand new equipment. “Having good fixtures is paramount challenge, the Bourn & Koch team can in manufacturing quality gears,” states draw from the years of time-tested engi- Leach. “We purchased one workholding neering know-how available to them in fixture from Bourn and Koch to elimi- August 2017 | GEAR TECHNOLOGY 35 feature SPEED MATTERS – IN RACING AND IN HOBBING 100H gear hobbing machine in the near future, including some gear sets for starter motor gear heads and helical bronze gears for their magneto drives. The Bourn & Koch crew say they will be ready to help RCD light ‘em up! For more information: Bourn & Koch 2500 Kishwaukee St. Rockford, IL 61104 Phone: (815) 713-2316 [email protected] www.bourn-koch.com RCD Engineering 17100 Salmon Mine Road Nevada City, CA 95959 Phone: (530) 292-3133 www.rcdengineering.com Star SU 5200 Prairie Stone Parkway, Suite 100 Hoffman Estates, IL 60192 Photo of hobbed RCD Engineering 48T 10 D.P. 11 hole Vernier Phone: (847) 649-1450 cam gear in Bourn & Koch engineered face clamping fixture. [email protected] www.star-su.com nate any issues during the part run-off rate, modern 100H gear hobbing prior to machine delivery. We were pro- machine that had the ability to rough Joe Goral Sr. started vided a print with our fixture so that and finish cut heat-treated blanks for working for Bourn & we were able to design and make our their crankshaft and camshaft gears; Koch in September of own work holding fixtures for our other match the gear teeth to timing dots; 2013, providing support service for Bullard & other g e ar s .” and eliminate the need for finish grind- vertical turning machines.
Recommended publications
  • Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions
    Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions MASAKAZU NABEKURA*1 MICHIAKI HASHITANI*1 YUKIHISA NISHIMURA*1 MASAKATSU FUJITA*1 YOSHIKOTO YANASE*1 MASANOBU MISAKI*1 It is a never-ending theme for motorcycle and automobile manufacturers, for whom the Machine Tool Division of Mitsubishi Heavy Industries, Ltd. (MHI) manufactures and delivers gear cutting machines, gear grinding machines and precision cutting tools, to strive for high precision, low cost transmission gears. This paper reports the recent trends in the automobile industry while describing how MHI has been dealing with their needs as a manufacturer of the machines and cutting tools for gear production. process before heat treatment. A gear shaping machine, 1. Gear production process however, processes workpieces such as stepped gears and Figure 1 shows a cut-away example of an automobile internal gears that a gear hobbing machine is unable to transmission. Figure 2 is a schematic of the conven- process. Since they employ a generating process by a tional, general production processes for transmission specific number of cutting edges, several tens of microns gears. The diagram does not show processes such as of tool marks remain on the gear flanks, which in turn machining keyways and oil holes and press-fitting bushes causes vibration and noise. To cope with this issue, a that are not directly relevant to gear processing. Nor- gear shaving process improves the gear flank roughness mally, a gear hobbing machine is responsible for the and finishes the gear tooth profile to a precision of mi- crons while anticipating how the heat treatment will strain the tooth profile and tooth trace.
    [Show full text]
  • Intelligent Process Optimization „Innovation Is Our Future.“ Sascha Tschiggfrei, CEO the Future Has Begun
    Intelligent Process Optimization „Innovation is our future.“ Sascha Tschiggfrei, CEO The Future has begun As a global market leader, we manufacture technologically advanced high precision tool holders for turning centers and swiss type lathes that are known for high performance and long life-time. Using our new “smart” technology, our customers will be able to intelligently optimize and monitor their processes in the future. Intelligent Process State-of-the-art technology for maximum productivity. With this claim, WTO develops Optimization and produces superior precision tool holders in terms of technology and quality. Used intelligently, processes are optimized and production becomes more productive. WTO Driven Precision Tool Holders equipped with innovative „smart“ technology enable intelligent online process monitoring. “Consistent development - always one step ahead.” Karlheinz Jansen, CTO High Tech – Made in Germany From the technical design to the finished product we make no compromises when it comes to manufacturing our high precision tool holders. Permanent investment in state-of-the-art production technologies, high quality standards and a large manufacturing depth. Our products are in use worldwide, wherever precision parts are manufactured on turning centers with high productivity. „Our employees don‘t work for WTO. They work for the success of our customers.“ Daniel Sierra, Sales Director WTO Your Success is our Business Motivated employees are the basis for 100 % consistent customer focus. WTO offers its employees a state-of-the-art working environ- ment to work independently and ensures highly motivated employees in a family-owned technology company. To a large extent, WTO relies on its own highly qualified employees in order to achieve high quality standards.
    [Show full text]
  • Industrial Productivity Training Manual
    INDUSTRIAL PRODUCTIVITY TRAINING MANUAL Version 2.0 Written by: Dr. Michael R. Muller - Director, Don Kasten ©2006 Rutgers, the State University of New Jersey Table of Contents INTRODUCTION..............................................................................2 PRODUCTIVITY TOOLBOX ..............................................................5 Toolbox Introduction.....................................................................6 Productivity Metrics......................................................................9 Cost of Labor..............................................................................10 Space Optimization .......................................................................11 Productivity Questions...................................................................14 CONCEPTS FOR PRODUCTIVITY ENHANCEMENT, PART I INCREASING PIECES/PERSON/HOUR .............................................19 QUICK CHANGES......................................................................20 AR No. 1 Decrease Die Change-Out & Start-Up Times...................26 AR No. 2 Use Fixtures to Reduce Lathe Set-up Times....................32 AR No. 3 Install a Rotating Nozzle Carousel to Reduce Set-Up Times.34 AR No. 4 Employ Modular Jigs to Reduce Process Set-up Times.......36 BOTTLENECK MITIGATION.........................................................39 AR No. 5 Add Machine Operators to Reduce Production Bottleneck....41 AR No. 6 Install Refrigeration System to Cool Product...................45 AR No. 7 Replace Old Lathe
    [Show full text]
  • Gear Rolling for Production of High Gears Alireza Khodaee
    Gear Rolling for Production of High Gears Alireza Khodaee Gear Rolling for Production of High Gears Alireza Khodaee Licentiate Thesis, 2015 KTH Royal Institute of Technology Industrial Engineering and Management Department of Production Engineering SE-100 44 Stockholm, Sweden TRITA-IIP-15-06 ISSN: 1650-1888 ISBN: 978-91-7595-678-7 Abstract Gears are used to transmit mechanical work from one point to another. They are widely used in different mechanisms and they are the most important components of a transmission system. Thus, it is important that they are manufactured with high precision to deliver the work with highest possible efficiency. The dominant gear production method is metal cutting, like hobbing. The gear manufacturing industry aims to replace their traditional production lines with greener processes and thereby urge engineers to think about using metal forming methods instead of the traditional metal cutting solutions when possible. Gear rolling is an interesting metal forming method that can be an alternative method to fabricate gear wheels. Research on gear rolling firstly came into interest around 2000. Very few papers are published that covers the development of the method and its limitations and advantages. Almost all of these publications considered rolling of gear wheels with small modules. The focus of this study will be on application of gear rolling for gear wheels with large module (over 3 mm) where the amount of deformation is much larger than found in previous studies. In this thesis the Finite Element Method has been used to simulate and predict the results of rolling of high gears. In addition to that experiments were performed to validate the numerical results and develop the modelling technique for further investigations.
    [Show full text]
  • Gear Cutting Tools Rua André De Leão 155 Bloco a Mexiko/Mexico [email protected] CEP: 04672-030 LMT Boehlerit S.A
    Belgien/Belgium Indien/India Türkei/Turkey SA LMT Fette NV LMT Fette India Pvt. Ltd. Böhler Sert Maden Takim Sanayi Belin Yvon S.A. Industrieweg 15 B2 29, II Main Road ve Ticaret A.S. F-01590 Lavancia, Frankreich 1850 Grimbergen Gandhinagar, Adyar Ankara Asfalti ü zeri No.22 Tel. +33 (0) 4 74 75 89 89 Fon +32-2/2 51 12 36 Chennai 600 020 Kartal 81412 Fax +33 (0) 4 74 75 89 90 Fax +32-2/2 51 74 89 Fon +91-44/24 405 136 / 137 Istanbul E-mail: [email protected] Fax +91-44/24 405 1205 P.K. 167 Internet: www.belin-y.com Brasilien/Brazil [email protected] Fon +90-216/3 06 65 70 LMT Böhlerit LTDA. Fax +90-216/3 06 65 74 Gear Cutting Tools Rua André de Leão 155 Bloco A Mexiko/Mexico [email protected] CEP: 04672-030 LMT Boehlerit S.A. de C.V. • Hobbing Socorro-Santo Amaro Ungarn/Hungary Bilz Werkzeugfabrik GmbH & Co. KG Matias Romero No. 1359 • Gear Milling Vogelsangstraße 8 São Paulo Col. Letran Valle LMT Boehlerit KFT. D-73760 Ostfildern, Deutschland Fon +55/11 55 46 07 55 03650 Mexico D.F. Kis-Duma U.6 Tel. +49 (0) 711 3 48 01-0 Fax +55/11 55 46 04 76 Fon +52 (55) 56 05 82 77 PoBox 2036 Erdliget Pf. 32 Fax +49 (0) 711 3 48 12 56 [email protected] Fax +52 (55) 56 05 85 01 2030 Erd E-mail: [email protected] [email protected] Fon +36/23 52 19 10 Internet: www.bilz.de China Fax +36/23 52 19 14 Leitz Tooling Systems Österreich/Austria [email protected] (Nanjing) Co.
    [Show full text]
  • General Applications of Gears
    UNIT - III GEAR MANUFACTURING PROCESS SPRX1008 – PRODUCTION TECHNOLOGY - II Gears are widely used in various mechanisms and devices to transmit power and motion positively (without slip) between parallel, intersecting (axis) and non-intersecting non parallel shafts, •without change in the direction of rotation •with change in the direction of rotation •without change of speed (of rotation) •with change in speed at any desired ratio Often some gearing system (rack – and – pinion) is also used to transform Rotary motion into linear motion and vice-versa. Fig.1 Features of Spur Gear Gears are basically wheels having, on its periphery, equispaced teeth which are so designed that those wheels transmit, without slip, rotary motion smoothly and uniformly with minimum friction and wear at the mating tooth – profiles. To achieve those favorable conditions, most of the gears have their tooth form based on in volute curve, which can simply be defined as Locus of a point on a straight line which is rolled on the periphery of a circle or Locus of the end point of a stretched string while its unwinding over a cylinder as indicated in Fig. General Applications of Gears Gears of various type, size and material are widely used in several machines and systems requiring positive and stepped drive. The major applications are: • Speed gear box, feed gear box and some other kinematic units of machine tools • Speed drives in textile, jute and similar machineries • Gear boxes of automobiles • Speed and / or feed drives of several metal forming machines • Machineries for mining, tea processing etc. • Large and heavy duty gear boxes used in cement industries, sugar industries, cranes, conveyors etc.
    [Show full text]
  • Precision Tools
    Precision Tools Precision Tools Gear Cutting Tools & Broaches Pursuing advanced high-speed technology that is both user and environmentally friendly Since developing Japan's first broaching machine in the late 1920s, Fujikoshi has developed a variety of tools and machine tools to handle advancements in production systems. Fujikoshi continues to lead the way by developing machining systems that integrate tools and machines. Pursuing advanced high-speed technology that is both user and environmentally friendly Since developing Japan's first broaching machine in the late 1920s, Fujikoshi has developed a variety of tools and machine tools to handle advancements in production systems. Fujikoshi continues to lead the way by developing machining systems that integrate tools and machines. ndex Gear Cutting Tools Gear Cutting Comparison and Types 25 Broaches Design of Broach ools Guidance NACHI Accuracy of Gear Shaper Cutters 26 Technical Introduction Basic Design and Cutting Method 61 Materials and Coating of Gear Cutting Tools 5 Cutting Condition and Regrinding 27 Hard Broaches 45 Calculation of Pulling Load 62 Gear Cutting T Disk Type Shaper Cutters Type1Standard Dimensions 28 Broach for MQL 46 Face Angle and Relief Angle 63 Technical Introduction Disk Type Shaper Cutters Type2Standard Dimensions 30 Off-normal Gullet Helical Broach 47 Finished Size of Broaches 64 Hard Hobbing 6 Disk Type Shaper Cutters Type2Standard Dimensions 31 Micro Module Broaching 48 Helical Gear Shaper Cutters High Speed Dry Hobbing 7 Essential Points and Notice 65 Disk
    [Show full text]
  • Experimental Simulation of Gear Hobbing Through a Face Milling Concept in CNC-Machine
    Experimental simulation of gear hobbing through a face milling concept in CNC-machine SABA HOSEINI Degree project in Second cycle Stockholm, Sweden 2013 www.kth.se Powered by TCPDF (www.tcpdf.org) Experimental simulation of gear hobbing through a face milling concept in CNC-machine Author: Saba Hoseini Report No.: Kimab-2013-119 Swerea KIMAB Project No.: 265010 Date: 07.08.2013 Member program: MRC Materials in Machining i Abstract High-speed steels are the main material for cutting tools especially for producing gear boxes in the automotive industry. Cutting performance of high speed steel depends on their resistance to wear, their toughness and resistance to tempering at operating temperature. In this project, tool-life and wear type of cutting tools made of powder metallurgy high speed steel (PM-HSS) were investigated up to a flank wear width of 0.30 mm in different steels and cutting speeds. Hardness and cutting speed had a significant effect on tool-wear, tool-life and chip formation. More rake face wear was occurred by harder materials because of higher thermo- mechanical loading .Three indicators were used for representing tool life and to show the relation of cutting speed and hardness with cutting performance. Difference of tool life between the softest and the hardest steels was about two times. By increasing cutting speed in every work-material more number of passes was obtained. The required data were obtained experimentally by a 3-axis milling machine. This test method facilitates simulation of gear hobbing wear type in a less time-consuming way, compared to the other methods which have the same kinematics of real hobbing.
    [Show full text]
  • VIRTUAL HOBBING E. BERGSETH Department of Machine Design, KTH, Stockholm, Sweden SUMMARY Hobbing Is a Widely Used Machining Proc
    VIRTUAL HOBBING E. BERGSETH Department of Machine Design, KTH, Stockholm, Sweden SUMMARY Hobbing is a widely used machining process to generate high precision external spur and helical gears. The life of the hob is determined by wear and other surface damage. In this report, a CAD approach is used to simulate the machining process of a gear tooth slot. Incremental removal of material is achieved by identifying contact lines. The paper presents an example of spur gear generation by means of an unworn and a worn hob. The two CAD-generated gear surfaces are compared and showed form deviations. Keywords: gear machining, CAD, simulation 1 INTRODUCTION analysis of the tolerances applied to gears, each step in the manufacturing process must be optimized. Better The quality and cost of high precision gears are aspects understanding of the geometrical variations would which are constantly of interest. Demands stemming facilitate tolerance decisions, and make it easier to from increasing environmental awareness, such as meet new demands. lower noise and improved gear efficiency, are added to traditional demands to create (MackAldener [1]) a Gear manufacturing consists of several operations; challenging task for both manufacturers and designers. table 1 shows an example of a gear manufacturing To be able to adjust to these demands, a design must be sequence for high precision external spur or helical robust; that is, it must deliver the target performance gears. regardless of any uncontrollable variations, for example manufacturing variations. Manufacturing variations can include geometrical variations caused by imperfections in the manufacturing process, for example, wear of tools. The geometrical deviations of each part must be limited by tolerances in order to ensure that the functional requirements are met.
    [Show full text]
  • Ffg Europe & Americas Product Guide
    FFG EUROPE & AMERICAS PRODUCT GUIDE THE PERFECT MACHINE FOR YOUR APPLICATION FFG1000(04DE)en/1000/09.19 WWW.FFG-EA.COM BRANDS PORTFOLIO Universal Turning Machines Horizontal Turning and Turn/mill Pick-up Vertical Turning Machines Dual Spindle Pick-up Vertical Hobbing Machines Hobbing Machines VDF DUS SERIES Centers DVH SERIES Turning Machines H 80 – H 400 SERIES H 600 – H 2300 SERIES VDF T/TM SERIES DVT SERIES Crankshaft Machining Horizontal Turning Center Vertical Turning Machines Vertical Shaft Turning Machine Chamfering and Deburring Skiving Machine VDF 221/226 Cx VDF 350 TM SHOP VDM SERIES WDM 250 Machines VS 250 CD/CDA/CDM SERIES Evolute Spline Coldforming Universal Ball Track Cutting High Speed Tripod Grinder Soft and Hard Milling Machine Machine MECCANODORA 1200-HS Window Cage Turning and Gear Manufacturing Technology Turning XK SERIES XG SERIES MECCANODORA 4200-F Vertical Machining Centers and Large Part Systems Vertical CNC System Machines CNC Dual Spindle System Manufacturing Systems and External Grinding Machines Internal Diameter Grinding Machines SPECHT® SERIES Machines Transfer Concepts for Volume for Railway Axles MT500 ID SPECHT® DUO SERIES Production MT2500 HD AGILE MANUFACTURING SYSTEMS Horizontal Machining Center Standardized HMC 630SHOP Automation Solutions MAG CELL External Grinding Machines Universal Grinding Machines Grinding Technology CROSSFLEX A1100 ELEKTRA 1700 Multispindle and Rotary Transfer Technology Multispindle and Rotary Transfer Machining Centers and Manufacturing Systems Service, Engineering BRANDS
    [Show full text]
  • Gear Hobbing Unit
    Gear Hobbing Unit High Productive Manufacturing of Gears with CNC Turning Centers. Maximum flexibility, high surface quality, easy handling. In operation: Gear Hobbing Unit for Turn/Mill Centers | Usable for machining gear quality according to standard 8 ISO 1328, AGMA 8 | Maximum scale swing of ±30° | High stiffness and runout accuracy | Interchangeable milling arbor available in different sizes | Easy cutting tool change through removable counter support and withdrawal of the complete milling arbor | Cutting tools can be pre-set | Sine bar for high accurate angular adjustment interchangeable milling arbor Maximum angular adjustment ±30° with scale and vernier Sine bar removable counter support 2 Operation principle: Sample workpieces Gear hobbing z n c Synchronization of work piece and tool rotation. z n c Feed movement in Z axis. | Splines e.g. DIN 5480, DIN 5482, TORX When hobbing is finished the hob has to move towards X. Please consider: At the end of the gear/spline there has to be sufficient clearance for the hob. Shifting | Spur gear n Initial hob position after tool c change with new cutting tool. y n Hob position at end of c cutting tool life. | Helical gear To optimize the cutting tool life you can move the hob step by step in Y axis direction. This movement enables the usage of all cutting edges of the hob. This procedure is called shifting. © WTO GmbH I Subject to change without notice 3 Gear Hobbing Unit type 1 (up to module 2) | Max. cutting tool size Ø50x50 mm | Ratio i (n1:n2) 1:1 | Max. RPM (n2) 4,000 Maximum angular adjustment Clamping of | Max.
    [Show full text]
  • DYNAMIC ANALYSIS of the CUTTING FORCES in GEAR HOBBING Ali M. Abood, Bsc
    DYNAMIC ANALYSIS OF THE CUTTING FORCES IN GEAR HOBBING by Ali M. Abood, BSc. This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy NEWCASTLE UNIVERSITY LIBRARY 201 29637 7 School of Mechanical and Systems Engineering University of Newcastle upon Tyne, UK December 2002 LIST OF CONTENTS PAGE: i Contents I Abstract v Acknowledgments VI .. Nomenc1ature Vll Chapter One: Introduction 1 1.1 Objectives 1 1.2 Thesis layout 2 Chapter Two: The Gear Hobbing Process 4 2.1 Introduction 4 2.2 Basic principle ofhobbing 4 2.3 Advantages and limitations ofhobbing 6 2.4 Hob description 7 2.4.1 Multi start hobs 9 2.5 Methods ofhobbing 11 2.6 Kinematics requirements 16 2.6.1 Hob settings 16 2.6.2 Index ratio 17 2.7 Hobbing machine 18 2.7.1 Conventional hobbing machine 19 2.7.2 CNC hobbing machine 21 Chapter Three: Literature review 24 3. 1 Introduction 24 3.2 Numerically control hobbing machine 24 3.3 CNC gear hobbing 26 3.4 Gear hobbing kinematics 27 3.4. I Cutting zone and chip shape 28 3.4.2 Hob geometry 29 3.4.3 Cutting forces measurements and cutting parameters 31 3.4.4 Chip formation 34 UNIVERSITY OF NEWCASTLE December 2002 LIST OF CONTENTS PAGE: ii 3.4.5 Generation offinished tooth form 39 3.4.6 Cutting forces 39 3.5 Summary 45 Chapter 4: Kinematics ofhobbing 47 4. 1 Introduction 47 4.2 Time dependant kinematic parameters 49 4.3 Co-ordinate transformations 50 4.3.
    [Show full text]