Assembly of Mn(III) Schiff Base Complexes with Heptacyanorhenate (IV)

Total Page:16

File Type:pdf, Size:1020Kb

Assembly of Mn(III) Schiff Base Complexes with Heptacyanorhenate (IV) inorganics Article Assembly of Mn(III) Schiff Base Complexes with Heptacyanorhenate (IV) Taisiya S. Sukhikh 1,2 and Kira E. Vostrikova 1,* ID 1 Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia; [email protected] 2 Novosibirsk National Research State University, 630090 Novosibirsk, Russia * Correspondence: [email protected]; Tel.: +7-383-316-5831 Received: 8 August 2017; Accepted: 29 August 2017; Published: 1 September 2017 3− Abstract: A pioneering research on a self-assembly of the magneto-anisotropic module [Re(CN)7] with the Mn(III) complexes involving Salen type (N,N0-ethylenebis(salicylideneiminate)) Schiff 3MeO base (SB) ligands was performed using the known [Mn( Salen)(H2O)2]2(ClO4)2·H2O(1) and 5Me the firstly synthesized [Mn2( Salen)2OAc]PF6 (2). In the case of 1, a slow diffusion of the 3MeO component solutions led to the ionic compound Ph4P[Mn( Salen)(H2O)2]2[Re(CN)7]·6H2O(3). The direct mixing of the same solutions has resulted in the microcrystalline nearly insoluble 3MeO solid [Mn( Salen)(H2O))4Re(CN)7]ClO4·1.5MeCN·6.5H2O, which is likely to comprise the III + pentanuclear clusters [(Mn (SB)(H2O))4Re(CN)7] . The use of 2 resulted in a 2D-network 5Me assembly of octanuclear clusters, [{(Mn( Salen))6(H2O)2Re(CN)7}2Re(CN)7]Cl2(PF6)·H2O(4), incorporating one Re-center in a pentagonal bipyramid coordination environment, while another has strongly distorted capped trigonal prism as a coordination polyhedron. The latter was observed for the first time for Re(IV) complexes. A synthetic challenge to obtain the 0D 5Me assemblies with Re:Mn ≥ 3 has yielded a hexanuclear complex [Mn( Salen)H2O(i-PrOH)] 5Me [(Mn( Salen))5H2O(i-PrOH)2Re(CN)7](PF6)2(OAc)·2i-PrOH (5) being 1D chain via a bridging − phenoxyl group. Owing to a low solubility of the final product, an addition of a bulk anion Ph4B 3− to the MeCN/MeOH solution of [Re(CN)7] and 1 in ratio 1:6 resulted in rhenium-free matter 3MeO 3MeO [Mn( Salen)(H2O)2][Mn( Salen)(H2O)MeCN](Ph4B)2·5MeCN (6). Keywords: Mn(III) Schiff base complexes; heptacyanorhennate; Re(IV); salen type ligands 1. Introduction Complexes of Mn(III) with a quadridentate Schiff base (SB) ligand are widely used by chemists for applications in biology [1–4], catalysis [5–8], and molecular magnetism [9–15]. For a good reason, as many as eight Mn(III) ions of the twelve metallic centers are included in the first studied single-molecule magnet (SMM) Mn12O12(OA)16(H2O)4 [16,17]. Along with a high spin state, the {MnIII(SB)} magnetic modules possess uniaxial anisotropy upon completing their axial coordination positions during an assembly in heterometallic species. Why does this happen? Mn(III) ion in the high-spin state with S = 2 (3d4) is described by 5D ground term. In an 5 5 octahedral ligand field, the latter splits onto Eg and T2g levels. Jahn–Teller (JT) distortion lowers 5 5 the symmetry up to D4h (tetragonal geometry), which leads to an additional splitting of Eg into B1g 5 5 5 5 and A1g and of T2g into Eg and B2g (Scheme1). Note that if the complex has an axially-elongated 5 5 geometry (D4h), the ground term is B1g, while if the complex is compressed, A1g is the ground term. Further, the ground spin state degeneracy is removed by the second-order spin-orbit coupling 5 5 (SOC)—called zero-field splitting (ZFS) (Scheme1). Application of ZFS to B1g or A1g generates the lowest magnetization levels of Ms = ±2 or 0, with a gap of 4D between the ground spin state and the 5 5 highest excited level. When B1g is the ground term, D is negative, and conversely, when A1g is the Inorganics 2017, 5, 59; doi:10.3390/inorganics5030059 www.mdpi.com/journal/inorganics Inorganics 2017, 5, 59 2 of 16 Inorganics 2017, 5, 59 2 of 16 groundInorganics term, 2017, D5, 59is positive with a Hamiltonian of H = D(Sˆ2 − 1/3S(S + 1)) [9]. It was shown in [18]2 that of 16 III the anisotropy of thethe MnMnIII depends greatly on JT distortion. In In the case of axial elongation, the SB the anisotropy of the MnIII depends greatly on JT distortion. In the case of axial elongation, the SB complexes exhibit a negative ZFS D parameter with finitefinite uniaxialuniaxial anisotropyanisotropy [[19].19]. complexes exhibit a negative ZFS D parameter with finite uniaxial anisotropy [19]. 5B 5B2g 5T 2g 52g NN T2g NN 5 + Eg 5 Mn + Eg Mn 5D 5 O O D O O Free ion Free ion 5A X X 51g X X A1g 5 Ms NN Eg 5E Ms NN g 0 Mn+ 5 D 0 Mn+ Oh B1g D ±1 O 5B ±1 O O h 1g O O D4h 3D R R D4h 3D R R 5Me 2 ±2 5MeSalen – X = CH , R = 5-Me ±2 Salen – X = CH2, R = 5-Me ZFS 3MeOSalen – X = CH2, R = 3-OMe ZFS 3MeOSalen – X = CH2, R = 3-OMe (a) (b) (a) (b) Scheme 1. (a) Splitting of the 55D term by octahedral (Oh) and tetragonal (axial elongation, D4h) fields SchemeScheme 1. 1.( a()a Splitting) Splitting of of the the D5D term term by by octahedral octahedral (O (Oh)h) and and tetragonal tetragonal (axial (axial elongation, elongation, D D4h4h)) fields fields and by zero-field splitting; (b) Quadridentate environment of Mn(III) by Schiff base ligands: acacen andand by by zero-field zero-field splitting; splitting; ( b()b Quadridentate) Quadridentate environment environment of of Mn(III) Mn(III) by by Schiff Schiff base base ligands: ligands:acacen acacen (top) or salen (N,N0′-ethylene-bis(salicylideneiminate) (bottom), see text. (top)(top) or orsalen salen(N (N,N,N-ethylene-bis(salicylideneiminate)′-ethylene-bis(salicylideneiminate) (bottom), (bottom), see see text. text. Thus, the MnIII in the square planar {NNOO} coordination environment of the SB ligand Thus,Thus, thethe MnMnIIIIII inin thethe squaresquare planarplanar {NNOO}{NNOO} coordinationcoordination environmentenvironment ofof thethe SBSB ligandligand (Scheme 2) is an excellent building block for the construction of extended and molecular magnetic (Scheme(Scheme2 )2) is is an an excellent excellent building building block block for for the the construction construction of of extended extended and and molecular molecular magnetic magnetic assemblies, because it possesses potentially vacant axial positions to bind heterometallic complex by assemblies,assemblies, becausebecause itit possessespossesses potentially vacant vacant axial axial positions positions to to bind bind heterometallic heterometallic complex complex by means of ambidentate ligands. As a result of such coordination, a uniaxial magnetic anisotropy bymeans means of of ambidentate ambidentate ligands. ligands. As As a aresult result of of such coordination,coordination, aa uniaxialuniaxial magneticmagnetic anisotropyanisotropy appears along the line of joint. Moreover, a wide variation of the SB ligand structure by means of the appearsappears along along thethe lineline ofof joint. Moreover, Moreover, a a wide wide variation variation of of the the SB SB ligand ligand structure structure by by means means of ofthe introduction of various substituents contributes to fine tailoring of target material organization, theintroduction introduction of ofvarious various substituents substituents contributes contributes to to fine fine tailoring tailoring of targettarget materialmaterial organization,organization, which is very important for the tuning of magnetic properties. Besides, it is sometimes necessary to whichwhich is is very very important important for for the the tuning tuning of of magnetic magnetic properties. properties. Besides, Besides, it it is is sometimes sometimes necessary necessary to to take into consideration not only the choice of SB ligand but also the complete parameters of the taketake into into consideration consideration not not only only the the choice choice of SB of ligand SB ligand but also but the also complete the complete parameters parameters of the Mn(III) of the Mn(III) precursor based on it. For example, it is essential to consider the presence or absence of precursorMn(III) precursor based on it.based For example,on it. For it example, is essential it tois consideressential theto consider presence orthe absence presence of dimerizationor absence of dimerization in the manganese complex, as well as carefully select the counterions compensating the indimerization the manganese in the complex, manganese as well comp as carefullylex, as well select as carefully the counterions select the compensating counterions the compensating charge in both the charge in both the starting materials and in the final products. thecharge starting in both materials the starting and in materials the final products.and in the final products. [Mn(3MeOSalen)H O) Re(CN) ]ClO ·1.5MeCN·6.5H O [Mn(3MeOSalen)H2 O)4 Re(CN)7 ]ClO4 ·1.5MeCN·6.5H2 O [Mn(3MeOSalen)(H O) ] (ClO ) ·2H O, 1 Ph PCl 2 4 7 4 2 [Mn(3MeOSalen)(H2 O)2 2] (ClO4 2) ·2H2 O, 1 Ph4 PCl Ph P[Mn(3MeOSalen)(H O) ] [Re(CN) ]·6H O, 3 + (n-Bu N)2 [Re(CN)2 2 4] 2 2 4 Ph4 P[Mn(3MeOSalen)(H2 O)2 2] [Re(CN)7 ]·6H2 O, 3 + (n-Bu4 N)3 [Re(CN)7 ] 4 2 2 2 7 2 4 3 7 NaBPh 3MeO 3MeO NaBPh4 [Mn( 3MeOSalen)(H2O)2][Mn( 3MeOSalen)(H2O)MeCN] 4 [Mn( Salen)(H2O)2][Mn( Salen)(H2O)MeCN] (Ph4B)2·5CH3CN, 6 (Ph4B)2·5CH3CN, 6 PPNCl 5Me PPNCl [{(Mn( 5MeSalen))6(H2O)2Re(CN)7}2Re(CN)7] [Mn (5MeSalen) OAc]PF , 2 [{(Mn( Salen))6(H2O)2Re(CN)7}2Re(CN)7] 2 5Me 2 6 Cl2(PF6)·H2O, 4 [Mn2( Salen)2OAc]PF6, 2 Cl (PF )·H O, 4 + (n-Bu N) [Re(CN) ] 2 5Me6 2 5Me 4 3 7 NH4PF6 [Mn( Salen)(H O)i-PrOH][(Mn( Salen)) H O + (n-Bu4N)3[Re(CN)7] NH PF 5Me 2 5Me 5 2 4 6 [Mn( Salen)(H2O)i-PrOH][(Mn( Salen))5H2O (i-PrOH)2Re(CN)7](PF6)2·H2O·5i-PrOH, 5 (i-PrOH)2Re(CN)7](PF6)2·H2O·5i-PrOH, 5 Scheme 2.
Recommended publications
  • Biology Chemistry III: Computers in Education High School
    Abstracts 1-68 Relate to the Sunday Program Biology 1. 100 Years of Genetics William Sofer, Rutgers University, Piscataway, NJ Almost exactly 100 years ago, Thomas Hunt Morgan and his coworkers at Columbia University began studying a small fly, Drosophila melanogaster, in an effort to learn something about the laws of heredity. After a while, they found a single white-eyed male among many thousands of normal red-eyed males and females. The analysis of the offspring that resulted from crossing this mutant male with red-eyed females led the way to the discovery of what determines whether an individual becomes a male or a female, and the relationship of chromosomes and genes. 2. Streptomycin - Antibiotics from the Ground Up Douglas Eveleigh, Rutgers University, New Brunswick, NJ Antibiotics are part of everyday living. We benefit from their use through prevention of infection of cuts and scratches, control of diseases such as typhoid, cholera and potentially of bioterrorist's pathogens, besides allowing the marvels of complex surgeries. Antibiotics are a wondrous medical weapon. But where do they come from? The unlikely answer is soil. Soil is home to a teeming population of insects and roots, plus billions of microbes - billions. But life is not harmonious in soil. Some microbes have evolved strategies to dominate their territory; one strategem is the production of antibiotics. In the 1940s, Selman Waksman, with his research team at Rutgers University, began the first ever search for such antibiotic producing micro-organisms amidst the thousands of soil microbes. The first antibiotics they discovered killed microbes but were toxic to humans.
    [Show full text]
  • Syntheses, Crystal Structures and Magnetic Properties of Two Cyano-Bridged Two-Dimensional Assemblies [Fe(Salpn)]2 [Fe(CN)5NO] and [Fe(Salpn)]2[Ni(CN)4]
    Transition Metal Chemistry 29: 100–106, 2004. 100 Ó 2004 Kluwer Academic Publishers. Printed in the Netherlands. Syntheses, crystal structures and magnetic properties of two cyano-bridged two-dimensional assemblies [Fe(salpn)]2 [Fe(CN)5NO] and [Fe(salpn)]2[Ni(CN)4] Xiao-Ping Shen and Zheng Xu* Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, PR China Ai-Hua Yuan Department of Material and Environmental Engineering, East China Shipbuilding Institute, Zhenjiang 212003, PR China Zi-Xiang Huang State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China Received 13 May 2003; accepted 07 July 2003 Abstract III II III II Two cyano-bridged assemblies, [Fe (salpn)]2[Fe (CN)5NO] (1) and [Fe (salpn)]2[Ni (CN)4] (2) [salpn ¼ N, N¢- 1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. 2) 2) + In each complex, [Fe(CN)5NO] or [Ni(CN)4] coordinates with four [Fe(salpn)] cations using four co-planar ) + 2) 2) CN ligands, whereas each [Fe(salpn)] links two [Fe(CN)5NO] or [Ni(CN)4] ions in the trans form, which II III results in a two-dimensional (2D) network consisting of pillow-like octanuclear [AM ACNAFe ANCA]4 units 2) (M ¼ Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO] remains monodentate and the bond angle of FeIIANAO is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)ÁÁÁiron(III) exchange integrals of )0.017 cm)1 for (1) and –0.020 cm-1 for (2), respectively.
    [Show full text]
  • Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks
    Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks Bonnie Choi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2018 © 2018 Bonnie Choi All rights reserved Abstract Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks Bonnie Choi This thesis explores the synthesis, properties, and potential applications of molecular clusters and the hierarchical solids that form when complementary clusters are combined. Chapter 1 introduces the diverse set of molecular clusters that I employ as nanoscale building blocks in the assembly of multifunctional materials. The core structure of the molecular clusters is closely related to the superconducting Chevrel phases. In discrete clusters, however, the core is passivated by organic ligands, which add stability and important functionalities. The molecular clusters have rich physical and chemical properties of their own, and I present some of the techniques used to investigate their intrinsic electronic properties. Finally, I review some of the modes by which the molecular clusters interact with another to assemble into hierarchical solids. The structural tunability and complexity embedded in the molecular clusters will enable the design of modular, well-defined, multifunctional materials with desirable electronic and magnetic properties. Chapter 2 details the synthesis and characterization of a family of manganese telluride molecular clusters. By varying the ligands that decorate the surface of the inorganic core, I show that the core structures can be tuned. The study of molecular clusters provides insight into how extended solids form. As such, I make structural comparisons of the clusters to known solid-state compounds.
    [Show full text]
  • Directed Assembly of Metal-Cyanide Cluster Magnets LIANNE M
    Acc. Chem. Res. 2005, 38, 325-334 Directed Assembly of Metal-Cyanide Cluster Magnets LIANNE M. C. BELTRAN AND JEFFREY R. LONG* Department of Chemistry, University of California, Berkeley, California 94720 Received July 13, 2004 ABSTRACT The simple, well-understood coordination chemistry of the cyanide ligand is of significant utility in the design of new single-molecule magnets. Its preference for bridging two transition metals in a linear M′-CN-M geometry permits the use of multidentate blocking ligands in directing the assembly of specific molecular architec- tures. This approach has been employed in the synthesis of numerous high-nuclearity constructs, including simple cubic M4M′4(CN)12 and face-centered cubic M8M′6(CN)24 coordination clusters, as well as some unexpected cluster geometries featuring as many as 27 metal centers. The ability to substitute a range of FIGURE 1. Disc-shaped cluster [Mn12O12(O2CCH3)16(H2O)4]. different transition metal ions into these structures enables adjust- ment of their magnetic properties, facilitating creation of high- spin ground states with axial magnetic anisotropy. To date, at least four different cyano-bridged single-molecule magnets have been characterized, exhibiting spin-reversal barriers as high as 25 cm-1. Ultimately, it is envisioned that this strategy might lead to molecules possessing much larger barriers with the potential for storing information at more practical temperatures. Introduction More than a decade ago, it was discovered that [Mn12O12(O2- 1 CCH3)16(H2O)4] exhibits magnetic bistability. As depicted in Figure 1, this molecular cluster has a disc-shaped core IV consisting of a central Mn 4O4 cubane unit surrounded by a ring of eight oxo- and acetato-linked MnIII centers.
    [Show full text]
  • Publications Braunstein
    P. Braunstein - p 1 PUBLICATION LIST Pierre BRAUNSTEIN Laboratoire de Chimie de Coordination Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4, rue Blaise Pascal 67081 STRASBOURG Cedex Téléphone: (+33) 03 68 85 13 08 E-mail: [email protected] P. Braunstein - p 2 BOOKS / SPECIAL ISSUES * “Guest Editor” de "Recent Advances in Di- and Polynuclear Chemistry", New J. Chem. 1988, 12, 307-720. * “Guest Editor” avec W. A. Herrmann de "New Perspectives in Organometallic Chemistry", New J. Chem. 1990, 14, 389-587. * “Guest Editor” avec P. Sobota et J. J. Ziolkowski (Pologne) des "Proceedings of the 13th Summer School on Coordination Chemistry”, Polanica-Zdroj, Pologne, 2-8/6/1996, New J. Chem. 1997, 21, 647-846. * “Guest Editor” de "Inorganic Chemistry in France", Coord. Chem. Rev. 1998, 178-180, 1-1846. * “Editor” avec P. R. Raithby et L. A. Oro de lʻouvrage “Metal Clusters in Chemistry”, Wiley-VCH, 1999, 3 volumes, 1798 pages * REVIEW ARTICLES R1. J. TIROUFLET, P. BRAUNSTEIN Aspects de la chimie organométallique des métaux de transition. Partie I: Synthèse et réactivité. L'Actualité Chimique (Soc. Chim. Fr.), 1975, n° 3, 4-16. R2. J. TIROUFLET, P. DIXNEUF, P. BRAUNSTEIN Aspects de la chimie organométallique des métaux de transition. Partie III: Cinq familles typiques: métallocarbènes, métallocarbynes, ylures, clusters, métallocarboranes et quelques applications. L'Actualité Chimique (Soc. Chim. Fr.), 1975, n° 5, 3-16. R3. E. SAPPA, A. TIRIPICCHIO, P. BRAUNSTEIN Alkyne-substituted Homo- and Heterometallic Carbonyl Clusters of the Iron, Cobalt, and Nickel Triads. Chem. Rev. 1983, 83, 203-239. R4. P. BRAUNSTEIN, J. ROSE Gold in Bimetallic Molecular Clusters.
    [Show full text]
  • Synthesis, Separation, Structural and DFT Studies of [Re6- Xmoxse8(CN)6]N
    CO-TUTELLE THESE DE DOCTORAT DE L'UNIVERSITE DE RENNES 1 OMUE NIVERSITE RETAGNE OIRE C U B L ECOLE DOCTORALE N° 596 Matière Molécules et Matériaux Spécialité : Chimie Inorganique NIKOLAEV INSTITUTE OF INORGANIC CHEMISTRY (NIIC) Novosibirsk, Russia Par Viktoria Muravieva Briques moléculaires à clusters hétérométalliques chalcogénées {Re 6-xMoxSe8} x = 1-3 : cristallochimie, structures electroniques et propriétés redox Thèse présentée et soutenue à Novosibirsk, le 27 novembre 2019 Unité de recherche : Institut des Sciences Chimiques de Rennes – UMR CNRS 6226 Nikolaev Institute of Inorganic Chemistry, Novosibirsk Rapporteurs avant soutenance : Composition du Jury : Emmanuel CADOT Emmanuel CADOT Professeur, Université de Versailles Professeur, Université de Versailles / rapporteur Sylvie FERLAY Vladimir FEDIN Professeur, Université de Strasbourg Professeur, NIIC de Novosibirsk / examinateur Stéphane CORDIER Directeur de recherches CNRS, Université de Rennes 1 / Directeur de thèse Nikolay NAUMOV Professeur, NIIC de Novosibirsk/ Co-directeur de thèse Maxim SOKOLOV Professeur, Novosibirsk State University / examinateur Galina ROMANENKO Researcher, International Tomography Center, Novosibirsk / examinatrice Membres invités: Pierric LEMOINE Chargé de Recherches CNRS, Université de Rennes 1 1 Carmelo PRESTIPINO Chargé de Recherche CNRS, Université de Rennes 1 1 Contents Résumé détaillé de la thèse ................................................................................................ 5 The list of Acronyms .......................................................................................................
    [Show full text]
  • Expanded Prussian Blue Analogues Incorporating [Re6se8(CN)6] Clusters: Adjusting Porosity Via Charge Balance
    8022 J. Am. Chem. Soc. 2001, 123, 8022-8032 3-/4- Expanded Prussian Blue Analogues Incorporating [Re6Se8(CN)6] Clusters: Adjusting Porosity via Charge Balance Miriam V. Bennett, Laurance G. Beauvais, Matthew P. Shores, and Jeffrey R. Long* Contribution from the Department of Chemistry, UniVersity of California, Berkeley, California 94720-1460 ReceiVed April 25, 2001 3-/4- 3-/4- Abstract: Face-capped octahedral [Re6Se8(CN)6] clusters are used in place of octahedral [M(CN)6] complexes for the synthesis of microporous Prussian blue type solids with adjustable porosity. The reaction 3+ 4- between [Fe(H2O)6] and [Re6Se8(CN)6] in aqueous solution yields, upon heating, Fe4[Re6Se8(CN)6]3‚ 36H2O(4). A single-crystal X-ray analysis confirms the structure of 4 to be a direct expansion of Prussian 4- 3+ blue (Fe4[Fe(CN)6]3‚14H2O), with [Re6Se8(CN)6] clusters connected through octahedral Fe ions in a cubic three-dimensional framework. As in Prussian blue, one out of every four hexacyanide units is missing from the structure, creating sizable, water-filled cavities within the neutral framework. Oxidation of (Bu4N)4- [Re6Se8(CN)6](1) with iodine in methanol produces (Bu4N)3[Re6Se8(CN)6](2), which is then metathesized to 2+ 2+ give the water-soluble salt Na3[Re6Se8(CN)6](3). Reaction of [Co(H2O)6] or [Ni(H2O)6] with 3 in aqueous solution affords Co3[Re6Se8(CN)6]2‚25H2O(5)orNi3[Re6Se8(CN)6]2‚33H2O(6). Powder X-ray diffraction data show these compounds to adopt structures based on the same cubic framework present in 4, but with one out of every three cluster hexacyanide units missing as a consequence of charge balance.
    [Show full text]
  • COMMUNICATION a Multi-Redox Responsive Cyanometalate-Based
    COMMUNICATION A Multi-redox Responsive Cyanometalate-based Metallogel Kiyotaka Mitsumoto,[a] Jamie M. Cameron,[a] Rong-Jia Wei,[a] Hiroyuki Nishikawa,[b] Takuya Shiga,[a] Masayuki Nihei,[a] Graham N. Newton,*[a][c] Hiroki Oshio*[a] Abstract: A tetrathiafulvalene (TTF) based tridentate ligand (-(4’- gelators possessing inherent multi-redox behaviour may methyl-4,5-di-n-dodecylthylthiotetrathiafulvalene-5’-ylthio)-’-[tris- therefore contribute to the development of unique functional gels, 2,2,2-(1-pyrazolyl)ethoxy]-p-xylene) (L) with long-chain alkyl such as those with multi-step isothermal sol-gel-transformations moieties was prepared in order to obtain a new multi-redox active induced by the changes in the electronic state of the multi- gelator based on a mixed-metal octanuclear complex nuclear core. We have previously reported that cyanide-bridged III II [Fe 4Ni 4(CN)12(tp)4(L)4](BF4)4 (1). The magnetism, electrochemistry octanuclear complexes with TTF moieties exhibited multi-step and gelation behaviour of 1 were studied and 1,2-dichlorobenzene redox processes involving eight- or twelve-electron transfers.[4] solutions of 1 are shown to display thermoreversible gelation Thus, they are expected to behave as discrete, electronically behaviour at room temperature. Furthermore, the gel phase of 1 is active gelating units, paving the way towards new multi-redox shown to undergo room-temperature gel-to-sol transformations LMWGs.[5] induced by both the oxidation and reduction of the gelator complex Here, the synthesis, gelation properties and electrochemical by F TCNQ or [FeII(Cp*) ], respectively. 4 2 studies of both the tridentate thioalkyl TTF-based ligands ((-(4’- methyl-4,5-di-n-dodecylthylthiotetrathiafulvalene-5’-ylthio)-’- Low-molecular-weight gelators (LMWGs) are known to show [tris-2,2,2-(1-pyrazolyl)ethoxy]-p-xylene)) (L) (Fig.
    [Show full text]
  • Metal-Containing Proteins, Macrocycles, and Coordination Complexes in Therapeutic Applications and Disease
    Metal-Based Drugs Metal-Containing Proteins, Macrocycles, and Coordination Complexes in Therapeutic Applications and Disease Guest Editors: Jannie C. Swarts, Michael J. Cook, and Edward N. Baker Metal-Containing Proteins, Macrocycles, and Coordination Complexes in Therapeutic Applications and Disease Metal-Based Drugs Metal-Containing Proteins, Macrocycles, and Coordination Complexes in Therapeutic Applications and Disease Guest Editors: Jannie C. Swarts, Michael J. Cook, and Edward N. Baker Copyright © 2008 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in volume 2008 of “Metal-Based Drugs.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editor-in-Chief Gianni Sava, University of Trieste, Italy Associate Editors A. S. Abu-Surrah, Jordan Claire Corot, France Rafael Moreno-Sanchez,´ Mexico Silvio Aime, Italy Clemens Decristoforo, Austria Giovanni Natile, Italy Roger Alberto, Switzerland Paul J. Dyson, Switzerland Domenico Osella, Italy Enzo Alessio, Italy Melpomeni Fani, Greece Dieter Rehder, Germany Carolyn J. Anderson, USA Simon P. Fricker, Canada Roberto A. Sanchez-Delgado,´ USA AlbertaBergamo,Italy Dan Gibson, Israel Jan H.M. Schellens, The Netherlands Andrea Bonetti, Italy Zijian Guo, China Edward I. Solomon, USA Viktor Brabec, Czech Republic Bernhard Keppler, Austria Enzo Terreno, Italy David Brautigan, USA Irena Kostova, Bulgaria Iztok Turel, Slovenia Carolyn L. Cannon, USA S. Liu, USA Gail R. Willsky, USA C. M. Che, Hong Kong Eric L. Meggers, USA Wiley J. Youngs, USA Mauro Coluccia, Italy Enrico Mini, Italy Contents Metal-Containing Proteins, Macrocycles, and Coordination Complexes in Therapeutic Applications and Disease, Jannie C.
    [Show full text]
  • Design and Characterization of Metal-Thiocyanate Coordination Polymers
    Design and characterization of metal-thiocyanate coordination polymers by Didier Savard M.Sc., University of Ottawa, 2010 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Chemistry Faculty of Science Didier Savard 2018 SIMON FRASER UNIVERSITY Spring 2018 Approval Name: Didier Savard Degree: Doctor of Philosophy Title: Design and characterization of metal-thiocyanate coordination polymers Examining Committee: Chair: Hua-Zhong Yu Professor Daniel B. Leznoff Senior Supervisor Professor Tim Storr Supervisor Associate Professor Zuo-Guang Ye Supervisor Professor Jeffrey J. Warren Internal Examiner Assistant Professor Prof. Mark M. Turnbull External Examiner Professor Carlson School of Chemistry Clark University Date Defended/Approved: January 12, 2018 ii Abstract This thesis focuses on exploring the synthesis and chemical reactivity of thiocyanate- y- based building blocks of the type [M(SCN)x] for the synthesis of coordination polymers. A series of potassium, ammonium, and tetraalkylammonium metal isothiocyanate salts of the type Qy[M(SCN)x] were synthesized and structurally characterized. Most of the salts were revealed to be isostructural and classic Werner complexes, but for (Et4N)3[Fe(NCS)6] and (n-Bu4N)3[Fe(NCS)6], a solid-state size-dependent change in colour from red to green was observed. This phenomenon was attributed to a Brillouin light scattering effect by analyzing the UV-Visible spectra of various samples with different sized crystals. Coordination polymers of the type [M(L)x][Pt(SCN)4] were prepared and structurally characterized using a variety of bi- or tri-dentate capping ligands (ethylenediamine, 2,2’- bipyridine, 2,2';6',2"-terpyridine, N,N,N′,N′-Tetramethylethane-1,2-diamine).
    [Show full text]
  • Advances in F-Element Cyanide Chemistry Jean-Claude Berthet, Pierre Thuéry, Michel Ephritikhine
    Advances in f-element cyanide chemistry Jean-Claude Berthet, Pierre Thuéry, Michel Ephritikhine To cite this version: Jean-Claude Berthet, Pierre Thuéry, Michel Ephritikhine. Advances in f-element cyanide chemistry. Dalton Transactions, Royal Society of Chemistry, 2015, 44, pp.7727-7742. 10.1039/C5DT00692A. hal-01157634 HAL Id: hal-01157634 https://hal.archives-ouvertes.fr/hal-01157634 Submitted on 17 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Advances in f-element cyanide chemistry Cite this: Dalton Trans., 2015, 44, Jean-Claude Berthet, Pierre Thuéry and Michel Ephritikhine 7727 This Dalton perspective gives an overview of the development of cyanide chemistry of 4f- and 5f-elements, a field which was poorly explored in contrast to the attention paid to the cyanide complexes of the d transition metals. The use of the cyanide ligand led to the discovery of mono- and polycyanide complexes which exhibit unprecedented and unexpected coordination geometries. A new type of linear 3− − metallocenes including [U(Cp*)2(CN)5] (Cp* = C5Me5) and the first bent actinocenes [An(Cot)2(CN)] (An = Th, U; Cot = C8H8) were isolated.
    [Show full text]
  • Interplay Between Structure and Properties in Dicyanoaurate-Based Coordination Polymers
    INTERPLAY BETWEEN STRUCTURE AND PROPERTIES IN DICYANOAURATE-BASED COORDINATION POLYMERS by Julie Lefebvre B.Sc, McGill University, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Chemistry © Julie Lefebvre 2008 SIMON FRASER UNIVERSITY Spring 2008 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-46809-8 Our file Notre reference ISBN: 978-0-494-46809-8 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]