Pyrazolylborate Cyanometalate Single-Molecule Magnets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biology Chemistry III: Computers in Education High School
Abstracts 1-68 Relate to the Sunday Program Biology 1. 100 Years of Genetics William Sofer, Rutgers University, Piscataway, NJ Almost exactly 100 years ago, Thomas Hunt Morgan and his coworkers at Columbia University began studying a small fly, Drosophila melanogaster, in an effort to learn something about the laws of heredity. After a while, they found a single white-eyed male among many thousands of normal red-eyed males and females. The analysis of the offspring that resulted from crossing this mutant male with red-eyed females led the way to the discovery of what determines whether an individual becomes a male or a female, and the relationship of chromosomes and genes. 2. Streptomycin - Antibiotics from the Ground Up Douglas Eveleigh, Rutgers University, New Brunswick, NJ Antibiotics are part of everyday living. We benefit from their use through prevention of infection of cuts and scratches, control of diseases such as typhoid, cholera and potentially of bioterrorist's pathogens, besides allowing the marvels of complex surgeries. Antibiotics are a wondrous medical weapon. But where do they come from? The unlikely answer is soil. Soil is home to a teeming population of insects and roots, plus billions of microbes - billions. But life is not harmonious in soil. Some microbes have evolved strategies to dominate their territory; one strategem is the production of antibiotics. In the 1940s, Selman Waksman, with his research team at Rutgers University, began the first ever search for such antibiotic producing micro-organisms amidst the thousands of soil microbes. The first antibiotics they discovered killed microbes but were toxic to humans. -
Crystallography of Representative Mofs Based on Pillared Cyanonickelate (PICNIC) Architecture
crystals Article Crystallography of Representative MOFs Based on Pillared Cyanonickelate (PICNIC) Architecture Winnie Wong-Ng 1,*, Jeffrey T. Culp 2,3 and Yu-Sheng Chen 4 1 Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 2 National Energy Technology Laboratory, United States Department of Energy, P.O. Box 10940, Pittsburgh, PA 15236, USA; [email protected] 3 AECOM, South Park, PA 15219, USA 4 ChemMatCARS, University of Chicago, Argonne, IL 60439, USA; [email protected] * Correspondence: [email protected] Academic Editor: Helmut Cölfen Received: 2 July 2016; Accepted: 22 August 2016; Published: 5 September 2016 Abstract: The pillared layer motif is a commonly used route to porous coordination polymers or metal organic frameworks (MOFs). Materials based on the pillared cyano-bridged architecture, [Ni’(L)Ni(CN)4]n (L = pillar organic ligands), also known as PICNICs, have been shown to be especially diverse where pore size and pore functionality can be varied by the choice of pillar organic ligand. In addition, a number of PICNICs form soft porous structures that show reversible structure transitions during the adsorption and desorption of guests. The structural flexibility in these materials can be affected by relatively minor differences in ligand design, and the physical driving force for variations in host-guest behavior in these materials is still not known. One key to understanding this diversity is a detailed investigation of the crystal structures of both rigid and flexible PICNIC derivatives. This article gives a brief review of flexible MOFs. It also reports the crystal structures of five PICNICS from our laboratories including three 3-D porous frameworks (Ni-Bpene, NI-BpyMe, Ni-BpyNH2), one 2-D layer (Ni-Bpy), and one 1-D chain (Ni-Naph) compound. -
Biological Treatment of Cyanide by Using Klebsiella Pneumoniae Species
450 N.H. AVCIOGLU and I. SEYIS BILKAY: Cyanide Removal with K. pneumoniae, Food Technol. Biotechnol. 54 (4) 450–454 (2016) ISSN 1330-9862 original scientifi c paper doi: 10.17113/ft b.54.04.16.4518 Biological Treatment of Cyanide by Using Klebsiella pneumoniae Species Nermin Hande Avcioglu* and Isil Seyis Bilkay Hacett epe University, Faculty of Science, Department of Biology (Biotechnology), Beytepe, TR-06800 Ankara, Turkey Received: November 8, 2015 Accepted: May 13, 2016 Summary In this study, optimization conditions for cyanide biodegradation by Klebsiella pneu- moniae strain were determined to be 25 °C, pH=7 and 150 rpm at the concentration of 0.5 mM potassium cyanide in the medium. Additionally, it was found that K. pneumoniae strain is not only able to degrade potassium cyanide, but also to degrade potassium hexacyano- ferrate(II) trihydrate and sodium ferrocyanide decahydrate with the effi ciencies of 85 and 87.5 %, respectively. Furthermore, this strain degraded potassium cyanide in the presence of diff erent ions such as magnesium, nickel, cobalt, iron, chromium, arsenic and zinc, in variable concentrations (0.1, 0.25 and 0.5 mM) and as a result the amount of the bacteria in the biodegradation media decreased with the increase of ion concentration. Lastly, it was also observed that sterile crude extract of K. pneumoniae strain degraded potassium cya- nide on the fi ft h day of incubation. Based on these results, it is concluded that both culture and sterile crude extract of K. pnemoniae will be used in cyanide removal from diff erent wastes. Key words: Klebsiella pneumoniae, cyanide, biodegradation Introduction alcaligenes (6), Pseudomonas putida (1), Agrobac terium tume- Untreated effl uents of industrial processes are mainly faciens (9), Klebsiella oxytoca (3), Bacillus pumilus (10), Fu- responsible for environmental pollution with various sarium oxysporum (11), Rhizopus oryzae (12) and Trichoderma forms of toxic substances, especially free cyanides and sp. -
Syntheses, Crystal Structures and Magnetic Properties of Two Cyano-Bridged Two-Dimensional Assemblies [Fe(Salpn)]2 [Fe(CN)5NO] and [Fe(Salpn)]2[Ni(CN)4]
Transition Metal Chemistry 29: 100–106, 2004. 100 Ó 2004 Kluwer Academic Publishers. Printed in the Netherlands. Syntheses, crystal structures and magnetic properties of two cyano-bridged two-dimensional assemblies [Fe(salpn)]2 [Fe(CN)5NO] and [Fe(salpn)]2[Ni(CN)4] Xiao-Ping Shen and Zheng Xu* Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, PR China Ai-Hua Yuan Department of Material and Environmental Engineering, East China Shipbuilding Institute, Zhenjiang 212003, PR China Zi-Xiang Huang State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China Received 13 May 2003; accepted 07 July 2003 Abstract III II III II Two cyano-bridged assemblies, [Fe (salpn)]2[Fe (CN)5NO] (1) and [Fe (salpn)]2[Ni (CN)4] (2) [salpn ¼ N, N¢- 1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. 2) 2) + In each complex, [Fe(CN)5NO] or [Ni(CN)4] coordinates with four [Fe(salpn)] cations using four co-planar ) + 2) 2) CN ligands, whereas each [Fe(salpn)] links two [Fe(CN)5NO] or [Ni(CN)4] ions in the trans form, which II III results in a two-dimensional (2D) network consisting of pillow-like octanuclear [AM ACNAFe ANCA]4 units 2) (M ¼ Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO] remains monodentate and the bond angle of FeIIANAO is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)ÁÁÁiron(III) exchange integrals of )0.017 cm)1 for (1) and –0.020 cm-1 for (2), respectively. -
Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks
Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks Bonnie Choi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2018 © 2018 Bonnie Choi All rights reserved Abstract Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks Bonnie Choi This thesis explores the synthesis, properties, and potential applications of molecular clusters and the hierarchical solids that form when complementary clusters are combined. Chapter 1 introduces the diverse set of molecular clusters that I employ as nanoscale building blocks in the assembly of multifunctional materials. The core structure of the molecular clusters is closely related to the superconducting Chevrel phases. In discrete clusters, however, the core is passivated by organic ligands, which add stability and important functionalities. The molecular clusters have rich physical and chemical properties of their own, and I present some of the techniques used to investigate their intrinsic electronic properties. Finally, I review some of the modes by which the molecular clusters interact with another to assemble into hierarchical solids. The structural tunability and complexity embedded in the molecular clusters will enable the design of modular, well-defined, multifunctional materials with desirable electronic and magnetic properties. Chapter 2 details the synthesis and characterization of a family of manganese telluride molecular clusters. By varying the ligands that decorate the surface of the inorganic core, I show that the core structures can be tuned. The study of molecular clusters provides insight into how extended solids form. As such, I make structural comparisons of the clusters to known solid-state compounds. -
Directed Assembly of Metal-Cyanide Cluster Magnets LIANNE M
Acc. Chem. Res. 2005, 38, 325-334 Directed Assembly of Metal-Cyanide Cluster Magnets LIANNE M. C. BELTRAN AND JEFFREY R. LONG* Department of Chemistry, University of California, Berkeley, California 94720 Received July 13, 2004 ABSTRACT The simple, well-understood coordination chemistry of the cyanide ligand is of significant utility in the design of new single-molecule magnets. Its preference for bridging two transition metals in a linear M′-CN-M geometry permits the use of multidentate blocking ligands in directing the assembly of specific molecular architec- tures. This approach has been employed in the synthesis of numerous high-nuclearity constructs, including simple cubic M4M′4(CN)12 and face-centered cubic M8M′6(CN)24 coordination clusters, as well as some unexpected cluster geometries featuring as many as 27 metal centers. The ability to substitute a range of FIGURE 1. Disc-shaped cluster [Mn12O12(O2CCH3)16(H2O)4]. different transition metal ions into these structures enables adjust- ment of their magnetic properties, facilitating creation of high- spin ground states with axial magnetic anisotropy. To date, at least four different cyano-bridged single-molecule magnets have been characterized, exhibiting spin-reversal barriers as high as 25 cm-1. Ultimately, it is envisioned that this strategy might lead to molecules possessing much larger barriers with the potential for storing information at more practical temperatures. Introduction More than a decade ago, it was discovered that [Mn12O12(O2- 1 CCH3)16(H2O)4] exhibits magnetic bistability. As depicted in Figure 1, this molecular cluster has a disc-shaped core IV consisting of a central Mn 4O4 cubane unit surrounded by a ring of eight oxo- and acetato-linked MnIII centers. -
The Light Triggered Dissolution of Gold Wires Using Potassium Ferrocyanide T Solutions Enables Cumulative Illumination Sensing ⁎ Weida D
Sensors & Actuators: B. Chemical 282 (2019) 52–59 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical journal homepage: www.elsevier.com/locate/snb The light triggered dissolution of gold wires using potassium ferrocyanide T solutions enables cumulative illumination sensing ⁎ Weida D. Chena, Seung-Kyun Kangb, Wendelin J. Starka, John A. Rogersc,d,e, Robert N. Grassa, a Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland b Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 334141, Republic of Korea c Departments of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA d Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA e Simpson Querrey Institute for Nano/Biotechnology, Northwestern University, Evanston, IL 60208, USA ARTICLE INFO ABSTRACT Keywords: Electronic systems with on-demand dissolution or destruction capabilities offer unusual opportunities in hard- Photochemistry ware-oriented security devices, advanced military spying and controlled biological treatment. Here, the dis- Cyanide solution chemistry of gold, generally known as inert metal, in potassium ferricyanide and potassium ferrocya- Sensor nide solutions has been investigated upon light exposure. While a pure aqueous solution of potassium Conductors ferricyanide–K3[Fe(CN)6] does not dissolve gold, an aqueous solution of potassium ferrocyanide–K4[Fe(CN)6] Diffusion limitation irradiated with ambient light is able to completely dissolve a gold electrode within several minutes. Photo Devices activation and dissolution kinetics were assessed at different initial pH values, light irradiation intensities and ferrocyanide concentrations. -
Publications Braunstein
P. Braunstein - p 1 PUBLICATION LIST Pierre BRAUNSTEIN Laboratoire de Chimie de Coordination Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4, rue Blaise Pascal 67081 STRASBOURG Cedex Téléphone: (+33) 03 68 85 13 08 E-mail: [email protected] P. Braunstein - p 2 BOOKS / SPECIAL ISSUES * “Guest Editor” de "Recent Advances in Di- and Polynuclear Chemistry", New J. Chem. 1988, 12, 307-720. * “Guest Editor” avec W. A. Herrmann de "New Perspectives in Organometallic Chemistry", New J. Chem. 1990, 14, 389-587. * “Guest Editor” avec P. Sobota et J. J. Ziolkowski (Pologne) des "Proceedings of the 13th Summer School on Coordination Chemistry”, Polanica-Zdroj, Pologne, 2-8/6/1996, New J. Chem. 1997, 21, 647-846. * “Guest Editor” de "Inorganic Chemistry in France", Coord. Chem. Rev. 1998, 178-180, 1-1846. * “Editor” avec P. R. Raithby et L. A. Oro de lʻouvrage “Metal Clusters in Chemistry”, Wiley-VCH, 1999, 3 volumes, 1798 pages * REVIEW ARTICLES R1. J. TIROUFLET, P. BRAUNSTEIN Aspects de la chimie organométallique des métaux de transition. Partie I: Synthèse et réactivité. L'Actualité Chimique (Soc. Chim. Fr.), 1975, n° 3, 4-16. R2. J. TIROUFLET, P. DIXNEUF, P. BRAUNSTEIN Aspects de la chimie organométallique des métaux de transition. Partie III: Cinq familles typiques: métallocarbènes, métallocarbynes, ylures, clusters, métallocarboranes et quelques applications. L'Actualité Chimique (Soc. Chim. Fr.), 1975, n° 5, 3-16. R3. E. SAPPA, A. TIRIPICCHIO, P. BRAUNSTEIN Alkyne-substituted Homo- and Heterometallic Carbonyl Clusters of the Iron, Cobalt, and Nickel Triads. Chem. Rev. 1983, 83, 203-239. R4. P. BRAUNSTEIN, J. ROSE Gold in Bimetallic Molecular Clusters. -
Synthesis, Separation, Structural and DFT Studies of [Re6- Xmoxse8(CN)6]N
CO-TUTELLE THESE DE DOCTORAT DE L'UNIVERSITE DE RENNES 1 OMUE NIVERSITE RETAGNE OIRE C U B L ECOLE DOCTORALE N° 596 Matière Molécules et Matériaux Spécialité : Chimie Inorganique NIKOLAEV INSTITUTE OF INORGANIC CHEMISTRY (NIIC) Novosibirsk, Russia Par Viktoria Muravieva Briques moléculaires à clusters hétérométalliques chalcogénées {Re 6-xMoxSe8} x = 1-3 : cristallochimie, structures electroniques et propriétés redox Thèse présentée et soutenue à Novosibirsk, le 27 novembre 2019 Unité de recherche : Institut des Sciences Chimiques de Rennes – UMR CNRS 6226 Nikolaev Institute of Inorganic Chemistry, Novosibirsk Rapporteurs avant soutenance : Composition du Jury : Emmanuel CADOT Emmanuel CADOT Professeur, Université de Versailles Professeur, Université de Versailles / rapporteur Sylvie FERLAY Vladimir FEDIN Professeur, Université de Strasbourg Professeur, NIIC de Novosibirsk / examinateur Stéphane CORDIER Directeur de recherches CNRS, Université de Rennes 1 / Directeur de thèse Nikolay NAUMOV Professeur, NIIC de Novosibirsk/ Co-directeur de thèse Maxim SOKOLOV Professeur, Novosibirsk State University / examinateur Galina ROMANENKO Researcher, International Tomography Center, Novosibirsk / examinatrice Membres invités: Pierric LEMOINE Chargé de Recherches CNRS, Université de Rennes 1 1 Carmelo PRESTIPINO Chargé de Recherche CNRS, Université de Rennes 1 1 Contents Résumé détaillé de la thèse ................................................................................................ 5 The list of Acronyms ....................................................................................................... -
In Partial Fulfullment of the Requirements for the Degree Of
DETERMINATION OF LOW LEVEL HYDROCYANIC ACID IN SOLUTION USING GAS-LIQUID CHROMATOGRAPHY by CARL RUDOLPH SCHNEIDER A THESIS submitted to OREGON STATE UNIVERSITY in partial fulfullment of the requirements for the degree of DOCTOR OP PHILOSOPHY June 1962 APPROVED: Redacted for privacy mmm>*m Professor of/Chemistry In Charge of Major Redacted for privacy • ij Chairman of Departmentof Chemistry Redacted for privacy Chairman of ^ienool Graduate Committee' Redacted for privacy Dean of Graduate School-' Date thesis is presented /•hr- Typed by Linda S. Walker ACKNOWLEDGMENT I wish to express my sincere gratitude to Dr. Harry Preund for his advice and encouragement during the investigations described in this thesis. TABLE OF CONTENTS Page INTRODUCTION ...,....,,,...*... 1 THEORY AND DISCUSSION 1 APPROACH TO THE PROBLEM 14 EXPERIMENTAL , 34 Apparatus for Distribution and Concentration • . ..... 34 Apparatus for Readout ........... 41 Preparation of Standards ......... 43 Procedure for Distribution and Concentration 44 Procedure for Readout 46 Standard Curves and Determination of Concentration Efficiency 47 Effect of Ionic Strength 53 Determination of Hydrogen Cyanide in Air . 55 RESULTS AND DISCUSSION 63 Correction For HCN Loss 63 Analysis of Synthetic Unknowns 63 Interferences 65 Application to Metal-Cyanide Systems .... 66 Unknowns 71 CONCLUSIONS 72 BIBLIOGRAPHY 75 APPENDIX 78 LIST OF FIGURES Figure Page I 15 II 25 III 35 IV 36 V 38 VI 39 VII 40 VIII 42 IX . 48 X 49 XI 73 XII 89 XIII 13-5 LIST OF TABLES Table Page I 19 II 20 III 33 IV 50 V 52 VI 54 VII 58 VIII 61 IX 64 X 67 XI 69 XII 70 XIII 74 DETERMINATION OF LOW LEVEL HYDROCYANIC ACID IN SOLUTION USING GAS-LIQUID CHROMATOGRAPHY INTRODUCTION Doudoroff (8) has presented indirect evidence that the toxicity to fish of systems containing heavy-metal cyanides is due primarily to molecular hydrocyanic acid. -
Expanded Prussian Blue Analogues Incorporating [Re6se8(CN)6] Clusters: Adjusting Porosity Via Charge Balance
8022 J. Am. Chem. Soc. 2001, 123, 8022-8032 3-/4- Expanded Prussian Blue Analogues Incorporating [Re6Se8(CN)6] Clusters: Adjusting Porosity via Charge Balance Miriam V. Bennett, Laurance G. Beauvais, Matthew P. Shores, and Jeffrey R. Long* Contribution from the Department of Chemistry, UniVersity of California, Berkeley, California 94720-1460 ReceiVed April 25, 2001 3-/4- 3-/4- Abstract: Face-capped octahedral [Re6Se8(CN)6] clusters are used in place of octahedral [M(CN)6] complexes for the synthesis of microporous Prussian blue type solids with adjustable porosity. The reaction 3+ 4- between [Fe(H2O)6] and [Re6Se8(CN)6] in aqueous solution yields, upon heating, Fe4[Re6Se8(CN)6]3‚ 36H2O(4). A single-crystal X-ray analysis confirms the structure of 4 to be a direct expansion of Prussian 4- 3+ blue (Fe4[Fe(CN)6]3‚14H2O), with [Re6Se8(CN)6] clusters connected through octahedral Fe ions in a cubic three-dimensional framework. As in Prussian blue, one out of every four hexacyanide units is missing from the structure, creating sizable, water-filled cavities within the neutral framework. Oxidation of (Bu4N)4- [Re6Se8(CN)6](1) with iodine in methanol produces (Bu4N)3[Re6Se8(CN)6](2), which is then metathesized to 2+ 2+ give the water-soluble salt Na3[Re6Se8(CN)6](3). Reaction of [Co(H2O)6] or [Ni(H2O)6] with 3 in aqueous solution affords Co3[Re6Se8(CN)6]2‚25H2O(5)orNi3[Re6Se8(CN)6]2‚33H2O(6). Powder X-ray diffraction data show these compounds to adopt structures based on the same cubic framework present in 4, but with one out of every three cluster hexacyanide units missing as a consequence of charge balance. -
Pp-03-25-New Dots.Qxd 10/23/02 2:41 PM Page 611
pp-03-25-new dots.qxd 10/23/02 2:41 PM Page 611 NICKEL CARBONATE 611 NICKEL CARBONATE [3333-67-3] Formula: NiCO3; MW 118.72 Two basic carbonates are known. They are 2NiCO3•3Ni(OH)2•4H2O [29863- 10-3], and NiCO3•2Ni(OH)2 [12607-70-4], MW 304.17. The second form occurs in nature as a tetrahydrate, mineral, zaratite. Commercial nickel car- bonate is usually the basic salt, 2NiCO3•3Ni(OH)2•4H2O. Uses Nickel carbonate is used to prepare nickel catalysts and several specialty compounds of nickel. It also is used as a neutralizing agent in nickel plating solutions. Other applications are in coloring glass and in the manufacture of ceramic pigments. Physical Properties NiCO3: Light green rhombohedral crystals; decomposes on heating; practi- cally insoluble in water, 93 mg/L at 25°C; dissolves in acids. 2NiCO3•3Ni(OH)2•4H2O: Light green crystals or brown powder; decom- poses on heating; insoluble in water; decomposes in hot water; soluble in acids and in ammonium salts solutions. Zaratite: Emerald greed cubic crystals; density 2.6 g/cm3; insoluble in water; soluble in ammonia and dilute acids. Thermochemical Properties ∆Ηƒ° (NiCO3) –140.6 kcal/mol Preparation Anhydrous nickel carbonate is produced as a precipitate when calcium car- bonate is heated with a solution of nickel chloride in a sealed tube at 150°C. Alternatively, treating nickel powder with ammonia and carbon dioxide fol- lowed by boiling off ammonia yields pure carbonate. When sodium carbonate is added to a solution of Ni(II) salts, basic nickel carbonate precipitates out in impure form.