Synthesis, Separation, Structural and DFT Studies of [Re6- Xmoxse8(CN)6]N

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis, Separation, Structural and DFT Studies of [Re6- Xmoxse8(CN)6]N CO-TUTELLE THESE DE DOCTORAT DE L'UNIVERSITE DE RENNES 1 OMUE NIVERSITE RETAGNE OIRE C U B L ECOLE DOCTORALE N° 596 Matière Molécules et Matériaux Spécialité : Chimie Inorganique NIKOLAEV INSTITUTE OF INORGANIC CHEMISTRY (NIIC) Novosibirsk, Russia Par Viktoria Muravieva Briques moléculaires à clusters hétérométalliques chalcogénées {Re 6-xMoxSe8} x = 1-3 : cristallochimie, structures electroniques et propriétés redox Thèse présentée et soutenue à Novosibirsk, le 27 novembre 2019 Unité de recherche : Institut des Sciences Chimiques de Rennes – UMR CNRS 6226 Nikolaev Institute of Inorganic Chemistry, Novosibirsk Rapporteurs avant soutenance : Composition du Jury : Emmanuel CADOT Emmanuel CADOT Professeur, Université de Versailles Professeur, Université de Versailles / rapporteur Sylvie FERLAY Vladimir FEDIN Professeur, Université de Strasbourg Professeur, NIIC de Novosibirsk / examinateur Stéphane CORDIER Directeur de recherches CNRS, Université de Rennes 1 / Directeur de thèse Nikolay NAUMOV Professeur, NIIC de Novosibirsk/ Co-directeur de thèse Maxim SOKOLOV Professeur, Novosibirsk State University / examinateur Galina ROMANENKO Researcher, International Tomography Center, Novosibirsk / examinatrice Membres invités: Pierric LEMOINE Chargé de Recherches CNRS, Université de Rennes 1 1 Carmelo PRESTIPINO Chargé de Recherche CNRS, Université de Rennes 1 1 Contents Résumé détaillé de la thèse ................................................................................................ 5 The list of Acronyms ........................................................................................................ 23 The list of compounds obtained ...................................................................................... 25 1. Literature Review ........................................................................................................ 27 1.1 Introduction.......................................................................................................................27 1.2 Cluster chemistry nomenclature......................................................................................30 1.3 The structure of heterometallic cluster compounds.......................................................31 1.3.1 Triangular cluster complexes ............................................................................. 31 1.3.2 Tetrahedral cluster complexes ........................................................................... 33 1.3.3 Octahedral cluster complexes ............................................................................ 40 1.4 Preparation of heterometallic cluster compounds...........................................................47 1.4.1 High-temperature synthesis ................................................................................ 47 1.4.2 Preparation in solution ....................................................................................... 49 1.5 Reactivity of heterometallic clusters................................................................................52 1.5.1 Reactions with the modification of the metal core atoms .................................. 52 1.5.2 Ligand exchange reactions ................................................................................. 53 1.5.3 Reactions with metal cations with the formation of coordination polymers ..... 55 1.6 Electronic structure of heterometallic cluster complexes [M4-xM'xQ8Ln] and [M6-xM'xQ8L6]..........................................................................................................................57 1.6.1 Triangular clusters [M3Q4Ln] ............................................................................. 57 1.6.2 Tetrahedral cluster complexes [M4Q4Ln] ........................................................... 58 i a i a 1.6.3 Octahedral cluster complexes [M6L 8L 6] and [M6L 12L 6] .................................... 61 1.7 Redox properties of the heterometallic cluster complexes.............................................62 1.7.1 Triangular cluster complexes [M3Q4Ln] ............................................................ 62 1.7.2 Tetrahedral cluster complexes [M4Q4Ln] ........................................................... 63 1.7.3 Octahedral cluster complexes [M6Q8L6] ............................................................ 64 2. Experimental part ........................................................................................................ 66 2 2.1 Materials and methods......................................................................................................66 2.2 Preparation protocols........................................................................................................69 a- 2.2.1 The solution-melt preparation of polymeric phase K6[Re3Mo3Se8(CN) a a 2/2(CN) 4] and its depolymerization to the soluble salts: Catn[Re3Mo3Se8(CN)6], + Cat = K, Cs, Ph4P ....................................................................................................... 69 a-a a 2.2.2 The solution-melt preparation of K6[Re3.6Mo2.4Se8(CN) 2/2(CN) 4] and K5[Re5MoSe8(CN)6]∙11H2O ........................................................................................ 72 2.2.3 Methatesis reaction for preparation of (n-Bu4N)4[Re5MoSe8(CN)6] ................. 72 a-a a 2.2.4 Depolymerization of the polymer K6[Re3.6Mo2.4Se8(CN) 2/2(CN) 4] with the + formation of soluble salts Catn[Re3.6Mo2.4Se8(CN)6], Cat = K, Ph4P ........................ 73 n- n- 2.2.5 Separation of cluster anions [Re4Mo2Se8(CN)6] and [Re3Mo3Se8(CN)6] and + their isolation as salts Catn[Re6-xMoxSe8(CN)6], Cat = K, n-Bu4N ............................ 74 5- 2.2.6 Preparation of coordination polymers from [Re3Mo3Se8(CN)6] cyanocluster and transition metal ammine complexes ..................................................................... 76 5- 4- 2.2.7 The ligand exchange reactions of [Re3Mo3Se8(CN)6] and [Re4Mo2Se8(CN)6] : formation of [Re6-xMoxSe8L6], L = tbp, Ph3P ................................................................ 78 3. Results and Discussion ................................................................................................. 80 n- 3.1 Preparation of heterometallic cluster complexes [Re3Mo3Se8(CN)6] , n- n- [Re4Mo2Se8(CN)6] and [Re5MoSe8(CN)6] (n = 4, 5) as species with well-defined composition.............................................................................................................................80 a-a a 3.1.1 Synthetic route from solid state polymer K6[Re3Mo3Se8(CN) 2/2(CN) 4] to soluble species and their mass-spectrometry investigation ........................................ 80 n- n- 3.1.2 The separation of the cluster anions [Re4Mo2Se8(CN)6] and [Re3Mo3Se8(CN)6] + from the mixture and their isolation as salts Catn[Re6-xMoxSe8(CN)6], Cat = K, n-Bu4N ..................................................................................................................................... 86 3.2 Structural features and isomerism of the {Re6-xMox} (x = 1-3) metal cores in the solid state using SC XRD data........................................................................................................89 5- 3.3 Investigation of the isomeric composition of the clusters [Re3Mo3Se8(CN)6] and 4- [Re4Mo2Se8(CN)6] in solution.............................................................................................91 3.4 Quantum chemical calculations for heterometallic cluster anions n- [Re6xMoxSe8(CN)6] ..............................................................................................................92 3 3.5 X-ray absorption spectroscopy analysis of the local geometry of the metal core in 5- 4- [Re3Mo3Se8(CN)6] ∙and [Re4Mo2Se8(CN)6] clusters.........................................................97 4- 3.6 The electrochemical study of the cyanoclusters [Re6-xMoxSe8(CN)6] (x = 1, 2 and 3) in solution..............................................................................................................................100 n- 3.7 UV-Vis spectroscopic investigation of heterometallic anions [Re6-xMoxSe8(CN)6] (x = 1, 2, and 3) in solution...................................................................................................102 5- 3.8 The study of interaction of the heterometallic cyanocluster [Re3Mo3Se8(CN)6] with transition metals ammine complexes and the formation of coordination polymers..........105 5- 3.9 The apical ligand exchange reactions of the clusters [Re3Mo3Se8(CN)6] and 4- [Re4Mo2Se8(CN)6] : formation of the complexes [Re6-xMoxSe8L6] L = tbp, PPh3..........113 3.10 Principal outcome.........................................................................................................115 3.11 Conclusion....................................................................................................................116 4. Detailed description of the crystal structure of heterometallic Re/Mo cluster compounds ...................................................................................................................... 118 a-a a 4.1 Crystal structures of the polymeric phases: K6[Re3Mo3Se8(CN) 2/2(CN) 4] and a-a a K6[Re3.6Mo2.4Se8(CN) 2/2(CN) 4].......................................................................................118 4.2 Crystal structures of molecular complexes Cat5[Re3Mo3Se8(CN)6] (Cat = K, Cs) and (Ph4P)4[Re3Mo3Se8(CN)6]∙2CH3CN....................................................................................120 4.3 Crystal structures of tetrabutylammonium salts of
Recommended publications
  • Dealloyed Pt Core-Shell Nanoparticles
    The Strem Product Line OUR LINE OF RESEARCH CHEMICALS Custom Synthesis Biocatalysts & Organocatalysts Electronic Grade Chemicals cGMP Facilities Fullerenes High Purity Inorganics & Alkali Metals FDA Inspected Ionic Liquids Ligands & Chiral Ligands Drug Master Files Metal Acetates & Carbonates Metal Alkoxides & beta-Diketonates Complete Documentation Metal Alkyls & Alkylamides Metal Carbonyls & Derivatives Metal Catalysts & Chiral Catalysts Metal Foils, Wires, Powders & Elements Metal Halides, Hydrides & Deuterides Metal Oxides, Nitrates, Chalcogenides Metal Scavengers Metallocenes Nanomaterials Organofluorines Organometallics Organophosphines & Arsines Porphines & Phthalocyanines Precious Metal & Rare Earth Chemicals Volatile Precursors for MOCVD, CVD & ALD Strem Chemicals, Inc. Strem Chemicals, Inc. 7 Mulliken Way 15, rue de l’Atome Dexter Industrial Park Zone Industrielle Newburyport, MA 01950-4098 F-67800 BISCHHEIM (France) U.S.A. Tel.: +33 (0) 3 88 62 52 60 Fax: +33 (0) 3 88 62 26 81 Office Tel: (978) 499-1600 Email: [email protected] Office Fax: (978) 465-3104 Toll-free (U.S. & Canada) Strem Chemicals, Inc. Tel: (800) 647-8736 Postfach 1215 Fax: (800) 517-8736 D-77672 KEHL, Germany Tel.: +49 (0) 7851 75879 Dealloyed Pt core-shell nanoparticles: Email: [email protected] Fax: +33 (0) 3 88 62 26 81 Active and durable electrocatalysts for low-temperature Email: [email protected] www.strem.com Polymer Electrolyte Membrane Fuel Cells (PEMFCs) Strem Chemicals UK, Ltd. by Professor Dr. Peter Strasser An Independent Distributor of Strem Chemicals Products Newton Hall, Town Street Strem Chemicals Chemist Finds Newton, Cambridge, CB22 7ZE, UK Tel.: +44 (0)1223 873 028 New Way to Drive to Work Fax: +44 (0)1223 870 207 by Dr.
    [Show full text]
  • Publikationsliste - List of Publications
    Publikationsliste - List of Publications Philipp Gütlich (1) Die Reaktion von Aluminiumchlorid mit Chlorwasserstoff in 1,1,2,2- Tetrachloräthan und in Nitromethan Lieser, K.H.; Gütlich, P. Ber. Bunsenges. Phys. Chem. 1963, 67, 445 (2) Der Einfluß der Vorbehandlung auf den heterogenen Isotopenaustausch an derOberfläche von Ionenkristallen und die Bildung von Kationenkörpern und Anionenkörpern Gütlich, P.; Lieser, K.H. Z. Phys. Chem. (Neue Folge) 1965, 46, 3/4, 216 (3) Die spezifische Oberfläche von frisch gefälltem Bariumsulfat Gütlich, P; Lieser, K.H. Z. Phys. Chem. (Neue Folge) 1965, 46, 5/6, 257 (4) Die Geschwindigkeit des heterogenen Isotopenaustausches an der Oberfläche von Ionenkristallen Lieser, K.H.; Gütlich, P.; Rosenbaum, I. Radiochim. Acta 1965, 4, 216 (5) Die Temperaturabhängigkeit des heterogenen Isotopenaustausches an der Oberfläche von Ionenkristallen Lieser, K.H.; Gütlich, P.; Rosenbaum, I. Radiochim. Acta 1966, 5, 38 (6) Kinetics and Mechanism of Heterogeneous Exchange Reactions on the Surface of Ionic Crystals K.H. Lieser, K.H.; Gütlich, P.; Rosenbaum, I. Proc. Int. Atomic Energy Agency, Symp. "Exchange Reactions", Brookhaven 1965 (7) Exchange Equilibria on the Surface of Ionic Crystals Lieser, K.H.; Gütlich, P.; Hild, W.; Hecker, A.; Rosenbaum, I. Proc. Int. Atomic Energy Agency, Symp. "Exchange Reactions", Brookhaven 1965 (8) Hot-Atom Reaction Products in Crystals of Hexa- and Trivalent Chromium Compounds Gütlich, P.; Harbottle, G. Radiochim. Acta 1966, 5, 70 51 (9) A Study of Cr Retention and Annealing in Single Crystals of K2CrO4 Irradiated at Low Neutron Doses Gütlich, P.; Harbottle, G. Radiochim. Acta 1967, 8, 30 (10) Beiträge zur Anwendung des Mößbauer-Effekts in der Chemie Gütlich, P.
    [Show full text]
  • Biology Chemistry III: Computers in Education High School
    Abstracts 1-68 Relate to the Sunday Program Biology 1. 100 Years of Genetics William Sofer, Rutgers University, Piscataway, NJ Almost exactly 100 years ago, Thomas Hunt Morgan and his coworkers at Columbia University began studying a small fly, Drosophila melanogaster, in an effort to learn something about the laws of heredity. After a while, they found a single white-eyed male among many thousands of normal red-eyed males and females. The analysis of the offspring that resulted from crossing this mutant male with red-eyed females led the way to the discovery of what determines whether an individual becomes a male or a female, and the relationship of chromosomes and genes. 2. Streptomycin - Antibiotics from the Ground Up Douglas Eveleigh, Rutgers University, New Brunswick, NJ Antibiotics are part of everyday living. We benefit from their use through prevention of infection of cuts and scratches, control of diseases such as typhoid, cholera and potentially of bioterrorist's pathogens, besides allowing the marvels of complex surgeries. Antibiotics are a wondrous medical weapon. But where do they come from? The unlikely answer is soil. Soil is home to a teeming population of insects and roots, plus billions of microbes - billions. But life is not harmonious in soil. Some microbes have evolved strategies to dominate their territory; one strategem is the production of antibiotics. In the 1940s, Selman Waksman, with his research team at Rutgers University, began the first ever search for such antibiotic producing micro-organisms amidst the thousands of soil microbes. The first antibiotics they discovered killed microbes but were toxic to humans.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Syntheses, Crystal Structures and Magnetic Properties of Two Cyano-Bridged Two-Dimensional Assemblies [Fe(Salpn)]2 [Fe(CN)5NO] and [Fe(Salpn)]2[Ni(CN)4]
    Transition Metal Chemistry 29: 100–106, 2004. 100 Ó 2004 Kluwer Academic Publishers. Printed in the Netherlands. Syntheses, crystal structures and magnetic properties of two cyano-bridged two-dimensional assemblies [Fe(salpn)]2 [Fe(CN)5NO] and [Fe(salpn)]2[Ni(CN)4] Xiao-Ping Shen and Zheng Xu* Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, PR China Ai-Hua Yuan Department of Material and Environmental Engineering, East China Shipbuilding Institute, Zhenjiang 212003, PR China Zi-Xiang Huang State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China Received 13 May 2003; accepted 07 July 2003 Abstract III II III II Two cyano-bridged assemblies, [Fe (salpn)]2[Fe (CN)5NO] (1) and [Fe (salpn)]2[Ni (CN)4] (2) [salpn ¼ N, N¢- 1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. 2) 2) + In each complex, [Fe(CN)5NO] or [Ni(CN)4] coordinates with four [Fe(salpn)] cations using four co-planar ) + 2) 2) CN ligands, whereas each [Fe(salpn)] links two [Fe(CN)5NO] or [Ni(CN)4] ions in the trans form, which II III results in a two-dimensional (2D) network consisting of pillow-like octanuclear [AM ACNAFe ANCA]4 units 2) (M ¼ Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO] remains monodentate and the bond angle of FeIIANAO is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)ÁÁÁiron(III) exchange integrals of )0.017 cm)1 for (1) and –0.020 cm-1 for (2), respectively.
    [Show full text]
  • Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks
    Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks Bonnie Choi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2018 © 2018 Bonnie Choi All rights reserved Abstract Assembly of Multifunctional Materials Using Molecular Cluster Building Blocks Bonnie Choi This thesis explores the synthesis, properties, and potential applications of molecular clusters and the hierarchical solids that form when complementary clusters are combined. Chapter 1 introduces the diverse set of molecular clusters that I employ as nanoscale building blocks in the assembly of multifunctional materials. The core structure of the molecular clusters is closely related to the superconducting Chevrel phases. In discrete clusters, however, the core is passivated by organic ligands, which add stability and important functionalities. The molecular clusters have rich physical and chemical properties of their own, and I present some of the techniques used to investigate their intrinsic electronic properties. Finally, I review some of the modes by which the molecular clusters interact with another to assemble into hierarchical solids. The structural tunability and complexity embedded in the molecular clusters will enable the design of modular, well-defined, multifunctional materials with desirable electronic and magnetic properties. Chapter 2 details the synthesis and characterization of a family of manganese telluride molecular clusters. By varying the ligands that decorate the surface of the inorganic core, I show that the core structures can be tuned. The study of molecular clusters provides insight into how extended solids form. As such, I make structural comparisons of the clusters to known solid-state compounds.
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • “Beyond Li-Ion” Batteries for Electric Vehicles and Grid Decarbonization
    pubs.acs.org/CR Review Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization Yaosen Tian, Guobo Zeng, Ann Rutt, Tan Shi, Haegyeom Kim, Jingyang Wang, Julius Koettgen, Yingzhi Sun, Bin Ouyang, Tina Chen, Zhengyan Lun, Ziqin Rong, Kristin Persson,* and Gerbrand Ceder* Cite This: https://dx.doi.org/10.1021/acs.chemrev.0c00767 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The tremendous improvement in performance and cost of lithium-ion batteries (LIBs) have made them the technology of choice for electrical energy storage. While established battery chemistries and cell architectures for Li-ion batteries achieve good power and energy density, LIBs are unlikely to meet all the performance, cost, and scaling targets required for energy storage, in particular, in large-scale applications such as electrified transportation and grids. The demand to further reduce cost and/or increase energy density, as well as the growing concern related to natural resource needs for Li-ion have accelerated the investigation of so-called “beyond Li-ion” technologies. In this review, we will discuss the recent achievements, challenges, and opportunities of four important “beyond Li-ion” technologies: Na-ion batteries, K-ion batteries, all-solid-state batteries, and multivalent batteries. The fundamental science behind the challenges, and potential solutions toward the goals of a low-cost and/or high-energy-density future, are discussed in detail for each technology. While it is unlikely that any given new technology will fully replace Li-ion in the near future, “beyond Li-ion” technologies should be thought of as opportunities for energy storage to grow into mid/large-scale applications.
    [Show full text]
  • Directed Assembly of Metal-Cyanide Cluster Magnets LIANNE M
    Acc. Chem. Res. 2005, 38, 325-334 Directed Assembly of Metal-Cyanide Cluster Magnets LIANNE M. C. BELTRAN AND JEFFREY R. LONG* Department of Chemistry, University of California, Berkeley, California 94720 Received July 13, 2004 ABSTRACT The simple, well-understood coordination chemistry of the cyanide ligand is of significant utility in the design of new single-molecule magnets. Its preference for bridging two transition metals in a linear M′-CN-M geometry permits the use of multidentate blocking ligands in directing the assembly of specific molecular architec- tures. This approach has been employed in the synthesis of numerous high-nuclearity constructs, including simple cubic M4M′4(CN)12 and face-centered cubic M8M′6(CN)24 coordination clusters, as well as some unexpected cluster geometries featuring as many as 27 metal centers. The ability to substitute a range of FIGURE 1. Disc-shaped cluster [Mn12O12(O2CCH3)16(H2O)4]. different transition metal ions into these structures enables adjust- ment of their magnetic properties, facilitating creation of high- spin ground states with axial magnetic anisotropy. To date, at least four different cyano-bridged single-molecule magnets have been characterized, exhibiting spin-reversal barriers as high as 25 cm-1. Ultimately, it is envisioned that this strategy might lead to molecules possessing much larger barriers with the potential for storing information at more practical temperatures. Introduction More than a decade ago, it was discovered that [Mn12O12(O2- 1 CCH3)16(H2O)4] exhibits magnetic bistability. As depicted in Figure 1, this molecular cluster has a disc-shaped core IV consisting of a central Mn 4O4 cubane unit surrounded by a ring of eight oxo- and acetato-linked MnIII centers.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Publications Braunstein
    P. Braunstein - p 1 PUBLICATION LIST Pierre BRAUNSTEIN Laboratoire de Chimie de Coordination Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4, rue Blaise Pascal 67081 STRASBOURG Cedex Téléphone: (+33) 03 68 85 13 08 E-mail: [email protected] P. Braunstein - p 2 BOOKS / SPECIAL ISSUES * “Guest Editor” de "Recent Advances in Di- and Polynuclear Chemistry", New J. Chem. 1988, 12, 307-720. * “Guest Editor” avec W. A. Herrmann de "New Perspectives in Organometallic Chemistry", New J. Chem. 1990, 14, 389-587. * “Guest Editor” avec P. Sobota et J. J. Ziolkowski (Pologne) des "Proceedings of the 13th Summer School on Coordination Chemistry”, Polanica-Zdroj, Pologne, 2-8/6/1996, New J. Chem. 1997, 21, 647-846. * “Guest Editor” de "Inorganic Chemistry in France", Coord. Chem. Rev. 1998, 178-180, 1-1846. * “Editor” avec P. R. Raithby et L. A. Oro de lʻouvrage “Metal Clusters in Chemistry”, Wiley-VCH, 1999, 3 volumes, 1798 pages * REVIEW ARTICLES R1. J. TIROUFLET, P. BRAUNSTEIN Aspects de la chimie organométallique des métaux de transition. Partie I: Synthèse et réactivité. L'Actualité Chimique (Soc. Chim. Fr.), 1975, n° 3, 4-16. R2. J. TIROUFLET, P. DIXNEUF, P. BRAUNSTEIN Aspects de la chimie organométallique des métaux de transition. Partie III: Cinq familles typiques: métallocarbènes, métallocarbynes, ylures, clusters, métallocarboranes et quelques applications. L'Actualité Chimique (Soc. Chim. Fr.), 1975, n° 5, 3-16. R3. E. SAPPA, A. TIRIPICCHIO, P. BRAUNSTEIN Alkyne-substituted Homo- and Heterometallic Carbonyl Clusters of the Iron, Cobalt, and Nickel Triads. Chem. Rev. 1983, 83, 203-239. R4. P. BRAUNSTEIN, J. ROSE Gold in Bimetallic Molecular Clusters.
    [Show full text]
  • Expanded Prussian Blue Analogues Incorporating [Re6se8(CN)6] Clusters: Adjusting Porosity Via Charge Balance
    8022 J. Am. Chem. Soc. 2001, 123, 8022-8032 3-/4- Expanded Prussian Blue Analogues Incorporating [Re6Se8(CN)6] Clusters: Adjusting Porosity via Charge Balance Miriam V. Bennett, Laurance G. Beauvais, Matthew P. Shores, and Jeffrey R. Long* Contribution from the Department of Chemistry, UniVersity of California, Berkeley, California 94720-1460 ReceiVed April 25, 2001 3-/4- 3-/4- Abstract: Face-capped octahedral [Re6Se8(CN)6] clusters are used in place of octahedral [M(CN)6] complexes for the synthesis of microporous Prussian blue type solids with adjustable porosity. The reaction 3+ 4- between [Fe(H2O)6] and [Re6Se8(CN)6] in aqueous solution yields, upon heating, Fe4[Re6Se8(CN)6]3‚ 36H2O(4). A single-crystal X-ray analysis confirms the structure of 4 to be a direct expansion of Prussian 4- 3+ blue (Fe4[Fe(CN)6]3‚14H2O), with [Re6Se8(CN)6] clusters connected through octahedral Fe ions in a cubic three-dimensional framework. As in Prussian blue, one out of every four hexacyanide units is missing from the structure, creating sizable, water-filled cavities within the neutral framework. Oxidation of (Bu4N)4- [Re6Se8(CN)6](1) with iodine in methanol produces (Bu4N)3[Re6Se8(CN)6](2), which is then metathesized to 2+ 2+ give the water-soluble salt Na3[Re6Se8(CN)6](3). Reaction of [Co(H2O)6] or [Ni(H2O)6] with 3 in aqueous solution affords Co3[Re6Se8(CN)6]2‚25H2O(5)orNi3[Re6Se8(CN)6]2‚33H2O(6). Powder X-ray diffraction data show these compounds to adopt structures based on the same cubic framework present in 4, but with one out of every three cluster hexacyanide units missing as a consequence of charge balance.
    [Show full text]