Meoiterranean Woooy Plant Growth-Forms, Biomass Ano Proouction in the Eastern Part of the Iberian Peninsula

Total Page:16

File Type:pdf, Size:1020Kb

Meoiterranean Woooy Plant Growth-Forms, Biomass Ano Proouction in the Eastern Part of the Iberian Peninsula Homage to Ramon Marga/ef; or, Why there is such p/easure in studying nature 337 (J. D. Ros & N. Prat, eds.). 1991 . Oec% gia aquatica, 10: 337-349 MEOITERRANEAN WOOOY PLANT GROWTH-FORMS, BIOMASS ANO PROOUCTION IN THE EASTERN PART OF THE IBERIAN PENINSULA JAUME TERRADAS Centre de Recerca Ecológica i Aplicacions Forestals (CREAF). Universitat Autónoma de Barcelona. 08 193 Bellaterra. Barcelona. Spain. Received: February 1990 SUMMARY The major physiognomic features of Mediterranean vegetation in the eastem part of the Iberian Peninsula are described considering a coastal and a continental gradient and oro-Mediterranean formations. The main communities include broadleaved evergreen forest, maquis, pine woodlands, "garigue", matorral, thom-scrub and dwarf-shrub steppes along mesic-xeric gradients, and pine-juniper woodlands and xeroacanthic cushion-like formations as altitudinal stages. We discuss sorne morphologico- functional traits of dominant plants from these different formations as related to environmental conditions, and their corresponding energy use strategies. Even though there are relatively few data on biomass and production, a broad synthetic approach is given, with sorne reference values. KEY WORDS : Mediterranean vegetation, growth-forms, biomass, production, energy use strategy INTRODUCTION Different shifts could thus be expected in vegetation structure and plant-grawth forms Two major mesic-xeric gradients are following each gradient. Other factors, such observed in the eastern part of the Iberian as wind, soil, etc., can also affect plant Peninsula (Fig. 1). One runs from the fitness and modify adaptation features. Pyrenees to the south, fram areas with Moreover, there are local deviations fram 700- 1 000 mm annual rainfall to areas with climatic general patterns due to local 190-350 mm. The second runs fram the climatic circumstances that will not be northeast coast to continental areas, and its considered here. annual rainfall ranges fram 600-700 mm to Mediterranean climax ecosystems have 300-400. In what fo llows we refer to them been discussed on phytosociological as coastal gradient and continental gradient. grounds by BOLOS (1985) for most of the Different temperature changes occur along area (Catalan countries), RIVAS (1974) for both gradients. Along the coastal gradient, the southern part, and RIV AS (1987) for all there is an increase in summer length, Spain. BOLOS (1985) distinguishes average temperature and winter rninima. between a boreo-Mediterranean pravince, Along the continental gradient, both winter with climax cornrnunities corresponding to length and thermic amplitude increase, Quercion ilicis alliance, an austra­ whereas winter mínima decrease. Mediterranean pravince, with climax 338 TERRADAS commumt1es corresponding to Rhamno­ (1974) identifies mature commumtles as Quercion coccife rae and Oleo-Ceratonion included in Asparago-Rhamnion oleoidis alliances, and a westem oro-Mediterranean and Periplocion angustifoliae alliances. province, corresponding to high and Ebro river valley vegetation is puzzling, moderately high Mediterranean mountains, and a Rhamno-Quercion cocciferae climax with Pino-Juniperion sabinae, Xeracantho­ has been classically assumed (BRAUN­ Erinaceion and Hypericion balearici climax BLANQUET & BOLOS 1957), but this communities, the last one found only in might be an incomplete view Majorca. (TERRADAS, 1986). In the southem end of the area, RIVAS 'l �4' oo --- .:.::. : ::.:. � Q::::�:: � - 7,6 { �-----::::--�- CONTINENTAL GRADIENT 400;¡¡'�.,oornrn EIVISSA .",-... Palma de Malior<:8 (10m) 400rnrn � ~ D Boreo-Alpine and Eurosiberian Regions D Boreo-Mediterranean Province • Au s tro-Mediterranean Province FIGURE 1. The eastern lberían Península and major features referred to ín the text. MEDITERRANEAN WOODY PLANT PHYSIOGNOMY 339 A PHYSIOGNOMIC DESCRIPTION phanerophyte with long shoots and short OF VEGETATION shoots (dolichoblasts and brachiblasts) and marked seasonal heteromorphism, and the From a morphological point of view, dwarf palm Chamaerops humilis. mature vegetation along the coastal gradient Floristically, they are similar to maquis and changes from the broadleaved evergreen so they are inc1uded by phytosociologists in forest to tall thicket matorral and maquis the Rhamno-Quercion alliance, but the (Oleo-Ceratonion), and thom-scrub physiognomy has shifted. We are near the commumt1es (Oleo-Ceratonion and tree border (which is found somewhere Asparago-Rhamnion). Broadleaved between 350 and 400 mm of annual evergreen forests are dominated by Quercus rainfall). AIso replacing communities after ilex ssp. ilex or, on sandy soils in the disturbance are c1early different: large northem part of the area, by Quercus suber. surfaces are covered by chamaephytes, i. e. These forests are often replaced by "tomillares" (Thymo-Siderition leucanthae), pine-oak mixed forests, by Quercion-ilicis or halophytic, nitrophilous or gypsophylous maquis with Arbutus unedo and Erica commumtIes, and by dry therophytic scoparia, or by matorral: Cistion grasslands. The typical thorny shrub mediomediterraneum on siliceous soils and growth-form diversifies to the south, when Quercus coccife ra "garigues" or c1imate becomes drier, with plants like Rosmarino-Ericion scrub on limestone, all Maytenus europaeus, Periploca of them often with pines. Forests, maquis angustifolia, Ziziphus lotus, Asparagus and "garigues" are commumt1es with albus or Lycium intricatum added to phanerophytes with plane leaves, often Rhamnus lycioides (Asparago-Rhamnion coriaceous or sc1erophyIlous and entire, as and Periplocion alliances). the dominant plants, whereas matorral The continental gradient begins at the commumt1es are richer in northeast edge with the broadleaved nanophanerophytes or chamaephytes with sc1erophyl1ous forest or maquis near the soft (malacophyllous) leaves, sometimes coast, which is soon replaced by an plane (like in Cistus species) but in other impoverished Quercus ilex ssp. cases leptophyllous (Erica) or linear. rotundifolia forest with Quercus coccife ra The austro-Mediterranean Oleo- "garigues " , Rosmarino-Ericion matorral or Ceratonion maquis is also dominated by pine woodlands as successional stages. At phanerophytes with coriaceous or sc1erophyllous leaves, mostly medium or ME IC small sized or divided (as in Ceratonia Quercus ilex evergreen sclerophyllous forest siliqua Pistacia lentiscus). or But this () Continental "- sc1erophyllous vegetation has very often ffix Pine Q.rotundifolia Maquis. "garigue" Steppe een been replaced by Cistion or Rosmarino­ �:�;�� '-- Mato rral Ericion cornmumtles. Malacophyllous ;�:�:��iS '" : Maquis plants beco me more frequent and diverse in Matorral o '---- this area. () In the southem part of the territory, eciduous forest maquis broadleaved evergreen Thorn-scrub phanerophytes like Olea europaea, Quercus Ev����:�n-oak "---- Dwarf-shru coccifera Pistacia lentiscus b and are XERIC steppe progressi vely replaced in mature F I GURE 2 . Major plant formations along the two communities by a thom-scrub. These mesic-xeric gradients and on Mediterranean communities are at first dominated by mountains. For the coastal gradient, degradation series Rhamnus lycioides, a malacophyllous are shown. 340 TERRADAS the Ebro valley, rainfall decreases fast and A dense forest is rarely obtained. broadleaved trees disappear, and are Summits of Iberían mountains and southem replaced by a pine woodland with a shrub "sierras" are occupied by spiny cushion-like understory also c1assified Xeracantho-Erinaceion communities, in a phytosociologically as Rhamno-Quercion poor forro if compared with Sierra Nevada coccife rae. Therroophyllous species of thís and Atlas equivalents. community, inc1uding the pine itself, are Spiny cushion-like shrubs are also gradually disappearing to the centre of the present aboye 1100 m in Majorca Ebro valley, where the winter c1imate (Hypericion balearici), with a different becomes colder. There, on gypsic ground, floristic composition. Xeroacanthic shrubs slopes and shallow soils are mostly covered can be considered as an interesting case of by a nitrophilous or gypsophilous evolutionary convergence in oro­ chamaephyte semidesert or steppe Mediterranean c1imates: different families (Salsolo-Peganion, Gypsophylion), whereas are represented by species with similar fine-textured loams are occupied by morphology in these highly fluctuating hemicryptophytic or rhizomatous geophytic windy environments. Similar forros are also perennial grasses (Agropyro-Lygeion). In found on the coasts of the Balearic islands, this landscape, a high diversity of in windy environments too. therophytes covers the free spaces between perennial grasses or shrubs during the short wet periods. Halophytic chamaephytes or DOMINANT WOODY GROWTH nanophanerophytes appear on saline soils, FORM near the bottom of undrained valleys. Further up the mountains in the northem We will now try to summarize the major part of the territory, extra-Mediterranean woody plant growth forros that dominate conditions are soon fo und, which Mediterranean landscapes in our terri tory . correspond to the Euro-Siberian or MARGARIS (198 1) has suggested two Boreo-Alpine regions. But in the Iberían main adaptation syndromes for and southem (sub-Betic, Betic and Mediterranean environments: maquis Penibetic) mountains, sorne features of plants, corresponding to typical Mediterranean c1imates reach higher sc1erophyllous woody plants, and phrygana altitudes. According to BOLOS (1985), plants (equi valents are said
Recommended publications
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • On the Origin of Hops: Genetic Variability, Phylogenetic Relationships, and Ecological Plasticity of Humulus (Cannabaceae)
    ON THE ORIGIN OF HOPS: GENETIC VARIABILITY, PHYLOGENETIC RELATIONSHIPS, AND ECOLOGICAL PLASTICITY OF HUMULUS (CANNABACEAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY MAY 2014 By Jeffrey R. Boutain DISSERTATION COMMITTEE: Will C. McClatchey, Chairperson Mark D. Merlin Sterling C. Keeley Clifford W. Morden Stacy Jørgensen Copyright © 2014 by Jeffrey R. Boutain ii This dissertation is dedicated to my family tree. iii ACKNOWLEDGEMENTS There are a number of individuals to whom I am indebted in many customs. First and foremost, I thank my committee members for their contribution, patience, persistence, and motivation that helped me complete this dissertation. Specifically, thank you Dr. Will McClatchey for the opportunity to study in a botany program with you as my advisor and especially the encouragement to surf plant genomes. Also with great gratitude, thank you Dr. Sterling Keeley for the opportunity to work on much of this dissertation in your molecular phylogenetics and systematics lab. In addition, thank you Dr. Mark Merlin for numerous brainstorming sessions as well as your guidance and expert perspective on the Cannabaceae. Also, thank you Dr. Cliff Morden for the opportunity to work in your lab where the beginnings of this molecular research took place. Thank you Dr. Jianchu Xu for welcoming me into your lab group at the Kunming Institute of Botany, Chinese Academy of Sciences (CAS) and the opportunity to study the Yunnan hop. In many ways, major contributions towards the completion of this dissertation have come from my family, and I thank you for your unconditional encouragement, love, and support.
    [Show full text]
  • Fieldtrip Manual for Plant Biodiversity
    Fieldtrip manual for Plant Biodiversity Ana Juan, Mª Ángeles Alonso, Alejandro Terrones, Joaquín Moreno, Joan Pérez & José Carlos Cristóbal Department of Environmental Sciences and Natural Resources Fieldtrip manual for Plant Biodiversity Introduction Plant Biodiversity is a subject taught during the second year of the Undergraduate Degree in Biology at the University of Alicante. The main principles about the diversity and morphology of the plants are mostly given during the theoretical classes. This fieldtrip practical manual, together with the laboratory sessions, gives the students an opportunity to see our most common wild plant species. Their direct observations allow them to identify properly the main botanical families, genera and species of our wild flora. This Fieldtrip manual for Plant Biodiversity has been written to enhance the understanding of plant diversity and to identify the different ecological conditions for plant species. Students have to understand that “plants do not grow everywhere”. Most of our natural flora, and specially the endemic one, requires specific environmental conditions to grow. So, the objectives of these fieldtrips are to identify wild flora and to recognise the ecological habitats where many of the identified plant species live. According to the official organisation of the subject Plant Biodiversity at the University of Alicante, nine hours correspond to two field practical sessions, which last 4 and 5 hours, respectively. This manual has been organised in only two chapters. Each chapter includes the description of the places to visit: - Chapter 1. Fieldtrip “Urbanova”: study of coastal sand dunes and salt marshes. - Chapter 2. Fieldtrip “Estación Biológica de Torretes”: study of mountain habitats.
    [Show full text]
  • Rhamnus Crocea Nutt
    I.SPECIES Rhamnus crocea Nutt. and Rhamnus ilicifolia Kellogg NRCS CODE: Family: Rhamnaceae 1. RHCR Order: Rhamnales 2. RHIL Subclass: Rosidae Class: Magnoliopsida Rhamnus crocea, San Bernardino Co., 5 June 2015, A. Montalvo Rhamnus ilicifolia, Riverside Co., Rhamnus ilicifolia, Riverside Co. Note the finely serrulate leaf 10 June 2015. A. Montalvo margins. 7 March 2008. A. Montalvo A. Subspecific taxa 1. None recognized by Sawyer (2012b) or in 2019 Jepson e-Flora whereas R. pilosa is recognized as R. c. 1. RHCR Nutt. subsp. pilosa (Trel.) C.B. Wolf in the PLANTS database (USDA PLANTS 2018). 2. RHIL 2. None B. Synonyms 1. RHCR 1 . Rhamnus croceus (spelling variant noted by FNA 2018) 2. RHIL 2. Rhamnus crocea Nutt. subsp. ilicifolia (Kellogg) C.B. Wolf; R. c. Nutt. var. ilicifolia (Kellogg) Greene (USDA PLANTS 2018) last modified: 3/4/2020 RHCR RHIL, page 1 printed: 3/10/2020 C. Common name The name red-berry, redberry, redberry buckthorn, California red-berry, evergreen buckthorn, spiny buckthorn, and hollyleaf buckthorn have been used for multiple taxa of Rhamnus (Painter 2016 a,b) 1. RHCR 1. Spiny redberry (Sawyer 2012a); also little-leaved redberry (Painter 2016a) 2. RHIL 2. Hollyleaf redberry (Sawyer 2012b); also holly-leaf buckthorn, holly-leaf coffeeberry (Painter 2016b) D. Taxonomic relationships There are about 150 species of Rhamnus worldwide and 14 in North America, 6 of which were introduced from other continents (Nesom & Sawyer 2018, FNA). This is after splitting the genus into Rhamnus (buckthorns and redberries) and Frangula (coffeeberries) based on a combination of fruit, leaf venation, and flower traits (Johnston 1975, FNA).
    [Show full text]
  • Assessment of Plant Species Diversity Associated with the Carob Tree (Ceratonia Siliqua, Fabaceae) at the Mediterranean Scale
    Plant Ecology and Evolution 151 (2): 185–193, 2018 https://doi.org/10.5091/plecevo.2018.1423 REGULAR PAPER Assessment of plant species diversity associated with the carob tree (Ceratonia siliqua, Fabaceae) at the Mediterranean scale Alex Baumel1,*, Pascal Mirleau1, Juan Viruel2, Magda Bou Dagher Kharrat3, Stefano La Malfa4, Lahcen Ouahmane5, Katia Diadema6, Marwa Moakhar1, Hervé Sanguin7 & Frédéric Médail1 1Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, CNRS and IRD], Station marine d’Endoume, Chemin de la Batterie des Lions, FR-13007 Marseille, France 2Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom 3Université Saint-Joseph, Faculté des sciences, Laboratoire Caractérisation Génomique des Plantes, B.P. 11-514 Riad El Solh, Beyrouth 1107 2050, Lebanon 4Università degli Studi di Catania, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A) Via Valdisavoia 5 – IT-95123 Catania, Italy 5Université Cadi Ayyad Marrakech, Faculté des Sciences Semlalia, Laboratoire d’Ecologie et Environnement, Morocco 6Conservatoire Botanique National Méditerranéen de Porquerolles (CBNMed), 34 avenue Gambetta, FR-83400 Hyères, France 7Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) [LSTM is sponsored by Univ Montpellier, CIRAD, IRD, INRA, Montpellier SupAgro], TA A-82/J Campus International de Baillarguet FR-34398 Montpellier cedex 5, France *Author for correspondence: [email protected] Background and aims – The thermophilous woodlands of the Mediterranean region constitute reservoirs of genetic resources for several fruit trees. Among them, the carob tree (Ceratonia siliqua) is a key component of traditional Mediterranean agroecosystems but its ecology was never assessed at the scale of its whole distribution area.
    [Show full text]
  • Tribe Species Secretory Structure Compounds Organ References Incerteae Sedis Alphitonia Sp. Epidermis, Idioblasts, Cavities
    Table S1. List of secretory structures found in Rhamanaceae (excluding the nectaries), showing the compounds and organ of occurrence. Data extracted from the literature and from the present study (species in bold). * The mucilaginous ducts, when present in the leaves, always occur in the collenchyma of the veins, except in Maesopsis, where they also occur in the phloem. Tribe Species Secretory structure Compounds Organ References Epidermis, idioblasts, Alphitonia sp. Mucilage Leaf (blade, petiole) 12, 13 cavities, ducts Epidermis, ducts, Alphitonia excelsa Mucilage, terpenes Flower, leaf (blade) 10, 24 osmophores Glandular leaf-teeth, Flower, leaf (blade, Ceanothus sp. Epidermis, hypodermis, Mucilage, tannins 12, 13, 46, 73 petiole) idioblasts, colleters Ceanothus americanus Idioblasts Mucilage Leaf (blade, petiole), stem 74 Ceanothus buxifolius Epidermis, idioblasts Mucilage, tannins Leaf (blade) 10 Ceanothus caeruleus Idioblasts Tannins Leaf (blade) 10 Incerteae sedis Ceanothus cordulatus Epidermis, idioblasts Mucilage, tannins Leaf (blade) 10 Ceanothus crassifolius Epidermis; hypodermis Mucilage, tannins Leaf (blade) 10, 12 Ceanothus cuneatus Epidermis Mucilage Leaf (blade) 10 Glandular leaf-teeth Ceanothus dentatus Lipids, flavonoids Leaf (blade) (trichomes) 60 Glandular leaf-teeth Ceanothus foliosus Lipids, flavonoids Leaf (blade) (trichomes) 60 Glandular leaf-teeth Ceanothus hearstiorum Lipids, flavonoids Leaf (blade) (trichomes) 60 Ceanothus herbaceus Idioblasts Mucilage Leaf (blade, petiole), stem 74 Glandular leaf-teeth Ceanothus
    [Show full text]
  • Plant Species Climatic Niche and Its Relationship with Population Responses to Extreme Drought Maria Ángeles Pérez Navarro
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Plant Species Climatic Niche and its Relationship with Population Responses to Extreme Drought DOCTORADO EN ECOLOGIA TERRESTRE Centre de Recerca Ecològica i Aplicacions Forestals Universistat Autònoma de Barcelona PhD Thesis Maria Ángeles Pérez Navarro Advisors: Francisco Lloret Maya Miguel Ángel Esteve Selma December 2019 Acknowledgements A pesar de ser firme defensora de que la tesis no supone un mérito excepcional digno de especiales reconocimientos, no desperdiciaré la oportunidad de agradecer todo lo vivido durante estos años y dejar grabado lo mucho que deben estas páginas a las personas que me rodean. Durante esta etapa, que empezó cuando llegué a Barcelona, he tenido la suerte de encontrar a personas maravillosas, de viajar por el mundo y de aprender sobre diferentes aspectos de la vida. Quiero agradecer en primer lugar, a la que fue mi primera familia en Catalunya, mis compañeros de máster, en especial a Estrella, Aida, Alba, Aina, Carla, Enrique, John y Gustavo y a mis compañeros de piso Laura y Josan. Gracias por los ratos en el césped, las visitas a Mataró y las noches arreglando el mundo en el Cop de ma, gracias, en definitiva, por hacerme sentir en casa.
    [Show full text]
  • Rhamnus Crocea Nutt. and Rhamnus Ilicifolia Kellogg
    I.SPECIES Rhamnus crocea Nutt. and Rhamnus ilicifolia Kellogg NRCS CODE: Family: Rhamnaceae 1. RHCR Order: Rhamnales 2. RHIL Subclass: Rosidae Class: Magnoliopsida Rhamnus crocea, San Bernardino Co., 5 June 2015, A. Montalvo Rhamnus ilicifolia, Riverside Co., Rhamnus ilicifolia, Riverside Co. Note the finely serrulate leaf 10 June 2015. A. Montalvo margins. 7 March 2008. A. Montalvo A. Subspecific taxa 1. None recognized by Sawyer (2012b) or in 2019 Jepson e-Flora whereas R. pilosa is recognized as R. c. 1. RHCR Nutt. subsp. pilosa (Trel.) C.B. Wolf in the PLANTS database (USDA PLANTS 2018). 2. RHIL 2. None B. Synonyms 1. RHCR 1 . Rhamnus croceus (spelling variant noted by FNA 2018) 2. RHIL 2. Rhamnus crocea Nutt. subsp. ilicifolia (Kellogg) C.B. Wolf; R. c. Nutt. var. ilicifolia (Kellogg) Greene (USDA PLANTS 2018) last modified: 3/4/2020 RHCR RHIL, page 1 printed: 3/10/2020 C. Common name The name red-berry, redberry, redberry buckthorn, California red-berry, evergreen buckthorn, spiny buckthorn, and hollyleaf buckthorn have been used for multiple taxa of Rhamnus (Painter 2016 a,b) 1. RHCR 1. Spiny redberry (Sawyer 2012a); also little-leaved redberry (Painter 2016a) 2. RHIL 2. Hollyleaf redberry (Sawyer 2012b); also holly-leaf buckthorn, holly-leaf coffeeberry (Painter 2016b) D. Taxonomic relationships There are about 150 species of Rhamnus worldwide and 14 in North America, 6 of which were introduced from other continents (Nesom & Sawyer 2018, FNA). This is after splitting the genus into Rhamnus (buckthorns and redberries) and Frangula (coffeeberries) based on a combination of fruit, leaf venation, and flower traits (Johnston 1975, FNA).
    [Show full text]
  • Natural Seed Limitation and Effectiveness of Forest Plantations to Restore Semiarid Abandoned Metal Mining Areas in SE Spain
    Article Natural Seed Limitation and Effectiveness of Forest Plantations to Restore Semiarid Abandoned Metal Mining Areas in SE Spain Marta Bindang Oná 1,2, Marta Goberna 1 and Jose Antonio Navarro-Cano 1,* 1 Department of Environment and Agronomy, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, INIA-CSIC, Ctra. de la Coruña, km 7.5, 28040 Madrid, Spain; [email protected] (M.B.O.); [email protected] (M.G.) 2 Facultad de Medio Ambiente, Universidad Nacional de Guinea Ecuatorial (UNGE), Hassan II s/n, Malabo 661, Guinea Ecuatorial * Correspondence: [email protected] Abstract: The natural regeneration of forests in mining areas is typically hampered by edaphic stress. Semiarid conditions add a climatic stress that challenges the restoration of these harsh ecosystems. This is the case of Tetraclinis articulata (Vahl) Masters mixed forests in the Western Mediterranean region colonizing mining structures abandoned three decades ago. We studied the factors controlling the natural establishment of nine shrub and tree species key in these forests in eight metal mine tailings in SE Spain. In addition, we assessed the success of reintroducing 1480 individuals of the nine species 15 months after planting in one of the tailings. Specifically, we analyzed the effect of (i) species identity in terms of sapling survival, growth, nutritional status and metal bioaccumulation, and (ii) adding organic amendments into the planting holes on the same parameters. Our results indicated that natural colonization is a recent process, with seedling cohorts that vary up to two Citation: Oná, M.B.; Goberna, M.; orders of magnitude among species and a practical absence of adult plants in most species excepting Navarro-Cano, J.A.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K. E-mail: [email protected]. E-mail: [email protected]. Abstract The Libyan flora was last documented in a series of volumes published between 1976 and 1989. Since then there has been a substantial realignment of family and generic boundaries and the discovery of many new species. The lack of an update or revision since 1989 means that the Libyan Flora is now out of date and requires a reassessment using modern approaches. Here we report initial efforts to provide an updated checklist covering 43 families out of the 150 in the published flora of Libya, including 138 genera and 411 species. Updating the circumscription of taxa to follow current classification results in 11 families (Coridaceae, Guttiferae, Leonticaceae, Theligonaceae, Tiliaceae, Sterculiaceae, Bombacaeae, Sparganiaceae, Globulariaceae, Asclepiadaceae and Illecebraceae) being included in other generally broader and less morphologically well-defined families (APG-IV, 2016). As a consequence, six new families: Hypericaceae, Adoxaceae, Lophiocarpaceae, Limeaceae, Gisekiaceae and Cleomaceae are now included in the Libyan Flora.
    [Show full text]
  • Flora and Vegetation of Israel and Adjacent Areas
    18 Danin: Flora and vegetation of Israel and adjacent areas Flora and vegetation of Israel and adjacent areas Avinoam Danin Introduction Israel is a meeting area of plant geographical regions and has high climatic, lithologic, and edapnic diversity. These factors together with prolonged influence of human activity have led to the development of a rich flora and diverse vegetation. Eig (1931-1932, 1946) has established the foundations or the botanical research in Israel. The history of geobotanical and floristic research until thc 1970's was reviewed by Zohary (1962, 1973). The basic taxonomic research on thc country's flora, "Flora palaestina", was completed in 1986 (Zohary 1966, 1972; Feinbrun-Dothan 1978, 1986). Recently, a new "Analytical Flora" was published (Feinbrun-Dothan & Danin 1991). In the last two decades many Ph.D. and M.Se. theses were carricd out. Many of these theses were written in Hebrew and are not accessiblc to those who do not read this language. The vegetation of parts of thc Galilee was studied by Rabinovitch (1970, 1979), and Berliner (1971); that of Mt. Hermon by Shmida (1977a); that of the Judean foothills by Sapir (1977); and that of the southern Negev by Lipkin (1971). Much of the present information was summarized in Waisel (1984). In the following chapter a generai dcscriplion or thc flora, i.e., the inventory of species with their geographical affinitics, and or thc vegctation of Israel is presented. In order to present the description of vcgctalion lO a wider audience I have avoided the use of the modern phytosociologic nomenclalure and have used thc generaI non-ranked term "plant community" to describe the principal vegctation units of the country.
    [Show full text]
  • Appendix O20309
    Oikos o20309 Soliveres, S., Torices, R. and Maestre, F. T. 2012. Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant–plant interactions. – Oikos 121: 1638-1648. Appendix 1 Table A1. Summary of the outcomes of the pairwise interactions found at each site. Plot name Stipa tenacissima Quercus coccifera Neutral/negative Positive Neutral/negative Positive · Atractylis humilis · Atractylis humilis · Biscutella valentina · Biscutella valentina · Coris monspeliensis · Cynodon dactylon · Coris monspeliensis · Fumana thymifolia · Helianthemum violaceum · Cynodon dactylon · Fumana thymifolia · Helianthemum violaceum · Polygala rupestris · Polygala rupestris Barrax · Teucrium pseudochamaepytis · Sedum sediforme · Sedum sediforme · Stipa parviflora · Teucrium sp. · Teucrium sp · Stipa parviflora · Teucrium pseudochamaepytis · Thesium divaricatum · T. capitatum · Teucrium capitatum · Thesium divaricatum ·Thymus vulgaris · Thymus vulgaris · T. zygis · T. zygis · Genista scorpius · Genista scorpius · Helianthemum cinereum · Rosmarinus officinalis · Helianthemum cinereum Camporreal · Rosmarinus officinalis · Teucrium pseudochamaepytis · Teucrium pseudochamaepytis · Thymus vulgaris · Thymus vulgaris · Anthyllis citisoides · Asparagus horridus · Fumana sp. · Anthyllis citisoides · Asphodelus ramosus · Fumana thymifolia · F. thymifolia · Asparagus horridus Carrascoy · Brachypodium retusum · Globularia allipum · Globularia allipum · Asphodelus ramosus · Cistus clusii · Helianthemum marifolium · Helianthemum
    [Show full text]