The Role of Nutrients for Improving Seedling Quality in Drylands

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Nutrients for Improving Seedling Quality in Drylands The Role of Nutrients for Improving Seedling Quality in Drylands JORDI CORTINA University of Alicante Spain [email protected] DESERTIFICATION: 10-20% = 6 · 106 KM2 Overgrazed alfa grass steppes in Central Tunisia … and S Spain SOILS ARE OFTEN SHALLOW AND NUTRIENT-DEPLEATED Valdecantos et al. (2006). Annals For. Sci. 63: 249-256 ...AND SEEDLINGS ARE NUTRIENT-LIMITED 1,5 Pinus halepensis Quercus ilex 1,3 1,1 0,9 0,10 Pinus halepensis Quercus ilex 0,7 0,5 0,08 Concentración de N (%) 0,3 0,06 0,1 Calizas Margas Calizas Margas 0,04 0,5 Pinus halepensis Quercus ilex Concentración de P (%) 0,02 0,4 0,00 Calizas Margas Calizas Margas 0,3 0,2 Concentración de K (%) 0,1 0,0 Calizas Margas Calizas Margas Valdecantos et al. (2006). Annals For. Sci. 63: 249-256 FOREST PLANTATIONS SPAIN 1940-2005 4.6 Mha 0.7 Mha YEAR MMA (2005). Anuario de Estadística Forestal. Algeria Green Belt (1970-2000) – 122.680 ha (Bensaid, 2003) Forest and pastoral plantations PNDAR Algeria (2000-2007) – 390.900 ha (Terramed, 2009) Tunisia PN Reboisement (1990-2000) + PN Investissement dans le Secteur Forestier (2000-2011) – 885.000 ha (Larbi Chakroune, 2003) Morocco 20th century – 508.000 ha (Sabir, 2003) Total afforested/reforested Magreb – 2,000.000 ha (Le Houérou, 2000) 1927 Ricote Valley (Murcia) DGB-INIA 1994 Ricote Valley (Murcia) ...WHAT HAVE WE LEARNT IN +100 YEARS? Agost Site Indicators of Success PARTICIPATIVE INTEGRATED EVALUATION 1. Aquifer recharge 2. Biodiversity 3. Soil conservation 4. Soil quality 5. Employment 6. Plant cover 7. C sequestration 8. Fire risk 9. Productivity value 10. Touristic value 11. Landscape aesthetic 12. Cultural value 13. Flood prevention ... SEEDLING QUALITY IS IMPORTANT 120 Same site P. pinaster 100 Q. ilex Same year P. halepensis 80 but... 60 40 20 Nursery 1 – 20% MORTALITY - NURSERY 1 0 Nursery 2 – 80% 0 20 40 60 80 100 120 MORTALITY - NURSERY 2 Cortina et al. (2006). MMA BIGGER SEEDLINGS PERFORM BETTER, BUT NOT ALWAYS Quercus ilex ballota Quercus coccifera 100 100 90 80 80 70 60 60 50 40 40 30 20 20 SUPERVIVENCIA (%) SUPERVIVENCIA 10 0 0 <4 4-8 8-12 12-16 16-20 >20 <16 16-21 21-26 >26 CLASES DE ALTURA (cm) CLASES DE ALTURA (cm) Cortina et al. (2000). EC Report EUR 19303. SEEDLINGS FREQUENTLY ADJUST IN THE FIELD STRONG MORPHOLOGICAL RESPONSES TO NUTRIENT REGIMES Pistacia lentiscus Tetraclinis articulata SRF (0’8 g L-1) 160 ppm N 80 ppm N Micro def Harden P def N def STRONG MORPHOLOGICAL RESPONSES TO NUTRIENT REGIMES 25 25 18 30Rhamnus alaternus Rhamnus lycioides 16 Tetraclinis articulata 20 20 14 Pistacia lentiscus 12 15 15 25 10 8 10 10 Alturacm Altura cm Altura cm FLL:6 Slow Release Fertilizer 4 5 20 5 OPT:2 Optimum 0 0 0 FLL15 OPT MDP SOP END PNP NDP FLL OPT MDP SOP END PNP NDP MDP: MicronutrientFLL OPT MDP SOP ENDdeficiencyPNP NDP Tratamientos Tratamientos Tratamientos SOP: Suboptimum 10 FLL: Fertilizante Liberación lenta 30 END:25 Nutrient hardening StemHeight (cm) Pistacia lentiscus OPT: Optimo Quercus coccifera 25 PNP:20 Phosphorus deficiency 5 MDP: Deficiencia micronutrientes 20 SOP: Suboptimo NDP:15 Nitrogen deficiency 15 0 END: Endurecimiento 10 Altura cm 10 Altura cm FLL OPT MDP SOPPNP: DeficienciaEND FósforoPNP NDP 5 5 TreatmentsNDP: Deficiencia Nitrógeno 0 0 FLL OPT MDP SOP END PNP NDP FLL OPT MDP SOP END PNP NDP Tratamientos Tratamientos Trubat et al. (2011). Ecol. Eng. 37: 1164–1173 Albatera (Alicante, SE SPain). Semiarid 1000 plants ha-1 - 40 x 40 x 40 cm planting holes – backhoe spider SMALLER SEEDLINGS PERFORMED BETTER 120 120 120 Pistacia lentiscus June 2003 Rhamnus alaternus Tetraclinis articulata October 2003 100 January 2004 100 * 100 October 2005 * * * * 80 80 * 80 * * * 60 60 60 * Survival rate (%) rate Survival 40 (%) rate Survival 40 Survival rate (%) rate Survival 40 20 20 20 0 0 0 CON DEF SRF PFD NDF CON DEF SRF PFD NDF CON DEF SRF PFD NDF 120 120 Quercus coccifera Rhamnus lycioides 100 100 * 80 80 60 60 * * Survival rate (%) rate Survival Survival rate (%) rate Survival 40 40 20 20 0 0 CON DEF SRF PFD NDF CON DEF SRF PFD NDF Trubat et al. (2011). Ecol. Eng. 37: 1164–1173 SMALLER SEEDLINGS PERFORMED BETTER Rhamnus lycioides Tetraclinis articulata Pistacia lentiscus 1,0 1,0 1,0 Odds Ratio = 0.842 Odds Ratio = 0.804 Odds Ratio = 0.845 p = 0.008 p < 0.001 p < 0.001 0,8 IC 95%: 0.74 - 0.95 IC 95%: 0.78 - 0.91 0,8 IC 95 %: 0.72 - 0.89 2 0,8 2 R = 0.09 R2 = 0.208 R = 0.24 0,6 0,6 0,6 0,4 0,4 0,4 0,2 Probability of seedling survival 0,2 Probability ofseedling survival 0,2 Probability of seedlingsurvival 0,0 0,0 0,0 0 5 10 15 20 25 30 35 2 4 6 8 10 12 14 16 18 20 22 0 5 10 15 20 25 30 Height (cm) Height (cm) Height (cm) Quercus coccifera Rhamnus alaternus 1,0 1,0 Odds Ratio = 0.739 Odds Ratio = 0.76 p < 0.001 p < 0.001 0,8 IC 95%: 0.56 - 0.84 2 0,8 IC 95%: 0.69 - 0.84 R = 0.3 R2 = 0.38 0,6 0,6 0,4 0,4 0,2 0,2 Probability ofseedling survival Probability of seedling survival seedling of Probability 0,0 0,0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 Height (cm) Height (cm) Trubat et al. (2011). Ecol. Eng. 37: 1164–1173 HYDRAULIC ARCHITECTURE DOES NOT SEEM TO BE THE CAUSE ) 0,18 -1 0,16 a 0,14 MPa -1 0,12 0,10 b 0,08 root s root b -2 0,06 0,04 (Kg m (Kg 0,02 R K 0,00 -1 Control N- P- 0,25 MPa a -1 0,20 a a 0,15 foliar s -2 0,10 0,05 (Kmg m (Kmg 0,00 RA K Control N- P- NUTRIENT HARDENED SEEDLINGS PERFORMED BETTER TOO STANDARD FERTILIZATION NO AUTUMN N Trubat et al. (2007). J. Arid Environ. 72: 879-890 CONFOUNDING FACTORS: SIZE VS. NUTRITIONAL STATUS 20 r = 0.726 18 p < 0.001 n = 30 16 14 12 10 8 6 4 Pistacia lentiscus 2 6 8 10 12 14 16 18 -1 Foliar N concentration (mg g ) THE IMPORTANCE OF NUTRIENT STATUS: LATE SEASON FERTILIZATION Quercus ilex – Nursery, 1-year-old seedlings Control Late-season NF fertilisation LF 100 mg L-1 N : 44 mg L-1 P : 83 mg L-1 K NF LF F1.18 p Stem height (cm) 7.8±0.6 7.3±0.4 0.40 0.533 Root collar diameter (mm) 3.2±0.1 3.3±0.2 0.40 0.536 Number of active root tips (RGP) 45.3±4.8 34.3±9.3 1.10 0.307 SPAD (rel. units) 34.9±2.2 41.3±1.4 5.88 0.026 Leaf N (mg g-1) 9.4±0.5 15.7±0.8 44.7 <0.001 Leaf P (mg g-1) 0.37±0.03 1.46±0.20 30.4 <0.001* Leaf K (mg g-1) 2.3±0.3 2.4±0.3 0.04 0.853 Leaf soluble carbohydrates (mg g-1) 76.3±3.1 75.8±3.6 0.01 0.926 Leaf starch (mg g-1) 62.1±8.24 34.9±5.8 7.46 0.013 Stem N (mg g-1) 3.5±0.3 8.5±0.7 46.6 <0.001 Stem P (mg g-1) 0.23±0.01 1.19±0.15 38.8 <0.001* Stem K (mg g-1) 2.9±0.4 2.9±0.2 0.01 0.949 Root N (mg g-1) 5.3±0.3 8.0±1.0 23.8 <0.001 Root P (mg g-1) 0.29±0.01 1.07±0.17 20.3 <0.001* Root K (mg g-1) 2.2±0.2 3.8±0.5 9.4 0.007 Root soluble carbohydrates (mg g-1) 46.8±2.6 45.42±5.3 0.05 0.826 Root starch (mg g-1) 284.2±9.0 318.6±19.8 2.49 0.132 Planted on 16 plots Mediterranean dry sub-humid conditions Gallinera, Alcalà, Ebo Valleys c. 2,000 ha N Alicante, SE Spain 521-990 mm, 17ºC NUTRIENT STATUS HAD NO EFFECT ON SURVIVAL 100 80 60 Survival (%) 40 NF LF 20 Quercus ilex 0 0 100 200 300 400 500 600 700 Time since 01/01/2008 (julian date) NUTRIENT STATUS HAD A STRONG EFFECT ON EARLY GROWTH 0.350 ) 0.300 Quercus ilex LF -1 NF 0.250 0.200 0.150 0.100 RGR height (month in stem 0.050 0.000 Mar08-Jun08 Jun08-Sept08 Sept08-Sept09 Mar08-Sept09 EFFFECT OF SEEDLING QUALITY EXTENDED +10 YEARS J.A. Alloza CEAM Foundation 1992-1994 (unpubl.) ROOTS GROW SOON AFTER PLANTING 70 C+Cal 60 C+Mar 50 C+Rod 40 30 Fine Root LengthFine (cm) 20 10 0 0 50 100 150 200 250 300 Time (julian date) ROOTING DEPTH >30-40 CM BEFORE SUMMER DROUGHT rooting depth seedling survival Padilla & Pugnaire (2007). Functional Ecology 21: 489–495 HIGHER ARIDITY – HIGHER VARIABILITY Machado et al. (2011). J. Arid Environ. 75: 1244-1253 HIGH SPATIAL VARIIABILITY IN SEEDLING PERFORMANCE Abril 1998 (Ia = 1.35) Diciembre 2000 (Ia = 2.69) ) 25 25 ) m m ( 20 20 ( e e t 15 15 t r r o 10 10 o N 5 5 N 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Este (m) Este (m) Low survival High survival Maestre et al.
Recommended publications
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • On the Origin of Hops: Genetic Variability, Phylogenetic Relationships, and Ecological Plasticity of Humulus (Cannabaceae)
    ON THE ORIGIN OF HOPS: GENETIC VARIABILITY, PHYLOGENETIC RELATIONSHIPS, AND ECOLOGICAL PLASTICITY OF HUMULUS (CANNABACEAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY MAY 2014 By Jeffrey R. Boutain DISSERTATION COMMITTEE: Will C. McClatchey, Chairperson Mark D. Merlin Sterling C. Keeley Clifford W. Morden Stacy Jørgensen Copyright © 2014 by Jeffrey R. Boutain ii This dissertation is dedicated to my family tree. iii ACKNOWLEDGEMENTS There are a number of individuals to whom I am indebted in many customs. First and foremost, I thank my committee members for their contribution, patience, persistence, and motivation that helped me complete this dissertation. Specifically, thank you Dr. Will McClatchey for the opportunity to study in a botany program with you as my advisor and especially the encouragement to surf plant genomes. Also with great gratitude, thank you Dr. Sterling Keeley for the opportunity to work on much of this dissertation in your molecular phylogenetics and systematics lab. In addition, thank you Dr. Mark Merlin for numerous brainstorming sessions as well as your guidance and expert perspective on the Cannabaceae. Also, thank you Dr. Cliff Morden for the opportunity to work in your lab where the beginnings of this molecular research took place. Thank you Dr. Jianchu Xu for welcoming me into your lab group at the Kunming Institute of Botany, Chinese Academy of Sciences (CAS) and the opportunity to study the Yunnan hop. In many ways, major contributions towards the completion of this dissertation have come from my family, and I thank you for your unconditional encouragement, love, and support.
    [Show full text]
  • Fieldtrip Manual for Plant Biodiversity
    Fieldtrip manual for Plant Biodiversity Ana Juan, Mª Ángeles Alonso, Alejandro Terrones, Joaquín Moreno, Joan Pérez & José Carlos Cristóbal Department of Environmental Sciences and Natural Resources Fieldtrip manual for Plant Biodiversity Introduction Plant Biodiversity is a subject taught during the second year of the Undergraduate Degree in Biology at the University of Alicante. The main principles about the diversity and morphology of the plants are mostly given during the theoretical classes. This fieldtrip practical manual, together with the laboratory sessions, gives the students an opportunity to see our most common wild plant species. Their direct observations allow them to identify properly the main botanical families, genera and species of our wild flora. This Fieldtrip manual for Plant Biodiversity has been written to enhance the understanding of plant diversity and to identify the different ecological conditions for plant species. Students have to understand that “plants do not grow everywhere”. Most of our natural flora, and specially the endemic one, requires specific environmental conditions to grow. So, the objectives of these fieldtrips are to identify wild flora and to recognise the ecological habitats where many of the identified plant species live. According to the official organisation of the subject Plant Biodiversity at the University of Alicante, nine hours correspond to two field practical sessions, which last 4 and 5 hours, respectively. This manual has been organised in only two chapters. Each chapter includes the description of the places to visit: - Chapter 1. Fieldtrip “Urbanova”: study of coastal sand dunes and salt marshes. - Chapter 2. Fieldtrip “Estación Biológica de Torretes”: study of mountain habitats.
    [Show full text]
  • Rhamnus Crocea Nutt
    I.SPECIES Rhamnus crocea Nutt. and Rhamnus ilicifolia Kellogg NRCS CODE: Family: Rhamnaceae 1. RHCR Order: Rhamnales 2. RHIL Subclass: Rosidae Class: Magnoliopsida Rhamnus crocea, San Bernardino Co., 5 June 2015, A. Montalvo Rhamnus ilicifolia, Riverside Co., Rhamnus ilicifolia, Riverside Co. Note the finely serrulate leaf 10 June 2015. A. Montalvo margins. 7 March 2008. A. Montalvo A. Subspecific taxa 1. None recognized by Sawyer (2012b) or in 2019 Jepson e-Flora whereas R. pilosa is recognized as R. c. 1. RHCR Nutt. subsp. pilosa (Trel.) C.B. Wolf in the PLANTS database (USDA PLANTS 2018). 2. RHIL 2. None B. Synonyms 1. RHCR 1 . Rhamnus croceus (spelling variant noted by FNA 2018) 2. RHIL 2. Rhamnus crocea Nutt. subsp. ilicifolia (Kellogg) C.B. Wolf; R. c. Nutt. var. ilicifolia (Kellogg) Greene (USDA PLANTS 2018) last modified: 3/4/2020 RHCR RHIL, page 1 printed: 3/10/2020 C. Common name The name red-berry, redberry, redberry buckthorn, California red-berry, evergreen buckthorn, spiny buckthorn, and hollyleaf buckthorn have been used for multiple taxa of Rhamnus (Painter 2016 a,b) 1. RHCR 1. Spiny redberry (Sawyer 2012a); also little-leaved redberry (Painter 2016a) 2. RHIL 2. Hollyleaf redberry (Sawyer 2012b); also holly-leaf buckthorn, holly-leaf coffeeberry (Painter 2016b) D. Taxonomic relationships There are about 150 species of Rhamnus worldwide and 14 in North America, 6 of which were introduced from other continents (Nesom & Sawyer 2018, FNA). This is after splitting the genus into Rhamnus (buckthorns and redberries) and Frangula (coffeeberries) based on a combination of fruit, leaf venation, and flower traits (Johnston 1975, FNA).
    [Show full text]
  • Assessment of Plant Species Diversity Associated with the Carob Tree (Ceratonia Siliqua, Fabaceae) at the Mediterranean Scale
    Plant Ecology and Evolution 151 (2): 185–193, 2018 https://doi.org/10.5091/plecevo.2018.1423 REGULAR PAPER Assessment of plant species diversity associated with the carob tree (Ceratonia siliqua, Fabaceae) at the Mediterranean scale Alex Baumel1,*, Pascal Mirleau1, Juan Viruel2, Magda Bou Dagher Kharrat3, Stefano La Malfa4, Lahcen Ouahmane5, Katia Diadema6, Marwa Moakhar1, Hervé Sanguin7 & Frédéric Médail1 1Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, CNRS and IRD], Station marine d’Endoume, Chemin de la Batterie des Lions, FR-13007 Marseille, France 2Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom 3Université Saint-Joseph, Faculté des sciences, Laboratoire Caractérisation Génomique des Plantes, B.P. 11-514 Riad El Solh, Beyrouth 1107 2050, Lebanon 4Università degli Studi di Catania, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A) Via Valdisavoia 5 – IT-95123 Catania, Italy 5Université Cadi Ayyad Marrakech, Faculté des Sciences Semlalia, Laboratoire d’Ecologie et Environnement, Morocco 6Conservatoire Botanique National Méditerranéen de Porquerolles (CBNMed), 34 avenue Gambetta, FR-83400 Hyères, France 7Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) [LSTM is sponsored by Univ Montpellier, CIRAD, IRD, INRA, Montpellier SupAgro], TA A-82/J Campus International de Baillarguet FR-34398 Montpellier cedex 5, France *Author for correspondence: [email protected] Background and aims – The thermophilous woodlands of the Mediterranean region constitute reservoirs of genetic resources for several fruit trees. Among them, the carob tree (Ceratonia siliqua) is a key component of traditional Mediterranean agroecosystems but its ecology was never assessed at the scale of its whole distribution area.
    [Show full text]
  • Tribe Species Secretory Structure Compounds Organ References Incerteae Sedis Alphitonia Sp. Epidermis, Idioblasts, Cavities
    Table S1. List of secretory structures found in Rhamanaceae (excluding the nectaries), showing the compounds and organ of occurrence. Data extracted from the literature and from the present study (species in bold). * The mucilaginous ducts, when present in the leaves, always occur in the collenchyma of the veins, except in Maesopsis, where they also occur in the phloem. Tribe Species Secretory structure Compounds Organ References Epidermis, idioblasts, Alphitonia sp. Mucilage Leaf (blade, petiole) 12, 13 cavities, ducts Epidermis, ducts, Alphitonia excelsa Mucilage, terpenes Flower, leaf (blade) 10, 24 osmophores Glandular leaf-teeth, Flower, leaf (blade, Ceanothus sp. Epidermis, hypodermis, Mucilage, tannins 12, 13, 46, 73 petiole) idioblasts, colleters Ceanothus americanus Idioblasts Mucilage Leaf (blade, petiole), stem 74 Ceanothus buxifolius Epidermis, idioblasts Mucilage, tannins Leaf (blade) 10 Ceanothus caeruleus Idioblasts Tannins Leaf (blade) 10 Incerteae sedis Ceanothus cordulatus Epidermis, idioblasts Mucilage, tannins Leaf (blade) 10 Ceanothus crassifolius Epidermis; hypodermis Mucilage, tannins Leaf (blade) 10, 12 Ceanothus cuneatus Epidermis Mucilage Leaf (blade) 10 Glandular leaf-teeth Ceanothus dentatus Lipids, flavonoids Leaf (blade) (trichomes) 60 Glandular leaf-teeth Ceanothus foliosus Lipids, flavonoids Leaf (blade) (trichomes) 60 Glandular leaf-teeth Ceanothus hearstiorum Lipids, flavonoids Leaf (blade) (trichomes) 60 Ceanothus herbaceus Idioblasts Mucilage Leaf (blade, petiole), stem 74 Glandular leaf-teeth Ceanothus
    [Show full text]
  • Plant Species Climatic Niche and Its Relationship with Population Responses to Extreme Drought Maria Ángeles Pérez Navarro
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Plant Species Climatic Niche and its Relationship with Population Responses to Extreme Drought DOCTORADO EN ECOLOGIA TERRESTRE Centre de Recerca Ecològica i Aplicacions Forestals Universistat Autònoma de Barcelona PhD Thesis Maria Ángeles Pérez Navarro Advisors: Francisco Lloret Maya Miguel Ángel Esteve Selma December 2019 Acknowledgements A pesar de ser firme defensora de que la tesis no supone un mérito excepcional digno de especiales reconocimientos, no desperdiciaré la oportunidad de agradecer todo lo vivido durante estos años y dejar grabado lo mucho que deben estas páginas a las personas que me rodean. Durante esta etapa, que empezó cuando llegué a Barcelona, he tenido la suerte de encontrar a personas maravillosas, de viajar por el mundo y de aprender sobre diferentes aspectos de la vida. Quiero agradecer en primer lugar, a la que fue mi primera familia en Catalunya, mis compañeros de máster, en especial a Estrella, Aida, Alba, Aina, Carla, Enrique, John y Gustavo y a mis compañeros de piso Laura y Josan. Gracias por los ratos en el césped, las visitas a Mataró y las noches arreglando el mundo en el Cop de ma, gracias, en definitiva, por hacerme sentir en casa.
    [Show full text]
  • Rhamnus Crocea Nutt. and Rhamnus Ilicifolia Kellogg
    I.SPECIES Rhamnus crocea Nutt. and Rhamnus ilicifolia Kellogg NRCS CODE: Family: Rhamnaceae 1. RHCR Order: Rhamnales 2. RHIL Subclass: Rosidae Class: Magnoliopsida Rhamnus crocea, San Bernardino Co., 5 June 2015, A. Montalvo Rhamnus ilicifolia, Riverside Co., Rhamnus ilicifolia, Riverside Co. Note the finely serrulate leaf 10 June 2015. A. Montalvo margins. 7 March 2008. A. Montalvo A. Subspecific taxa 1. None recognized by Sawyer (2012b) or in 2019 Jepson e-Flora whereas R. pilosa is recognized as R. c. 1. RHCR Nutt. subsp. pilosa (Trel.) C.B. Wolf in the PLANTS database (USDA PLANTS 2018). 2. RHIL 2. None B. Synonyms 1. RHCR 1 . Rhamnus croceus (spelling variant noted by FNA 2018) 2. RHIL 2. Rhamnus crocea Nutt. subsp. ilicifolia (Kellogg) C.B. Wolf; R. c. Nutt. var. ilicifolia (Kellogg) Greene (USDA PLANTS 2018) last modified: 3/4/2020 RHCR RHIL, page 1 printed: 3/10/2020 C. Common name The name red-berry, redberry, redberry buckthorn, California red-berry, evergreen buckthorn, spiny buckthorn, and hollyleaf buckthorn have been used for multiple taxa of Rhamnus (Painter 2016 a,b) 1. RHCR 1. Spiny redberry (Sawyer 2012a); also little-leaved redberry (Painter 2016a) 2. RHIL 2. Hollyleaf redberry (Sawyer 2012b); also holly-leaf buckthorn, holly-leaf coffeeberry (Painter 2016b) D. Taxonomic relationships There are about 150 species of Rhamnus worldwide and 14 in North America, 6 of which were introduced from other continents (Nesom & Sawyer 2018, FNA). This is after splitting the genus into Rhamnus (buckthorns and redberries) and Frangula (coffeeberries) based on a combination of fruit, leaf venation, and flower traits (Johnston 1975, FNA).
    [Show full text]
  • Natural Seed Limitation and Effectiveness of Forest Plantations to Restore Semiarid Abandoned Metal Mining Areas in SE Spain
    Article Natural Seed Limitation and Effectiveness of Forest Plantations to Restore Semiarid Abandoned Metal Mining Areas in SE Spain Marta Bindang Oná 1,2, Marta Goberna 1 and Jose Antonio Navarro-Cano 1,* 1 Department of Environment and Agronomy, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, INIA-CSIC, Ctra. de la Coruña, km 7.5, 28040 Madrid, Spain; [email protected] (M.B.O.); [email protected] (M.G.) 2 Facultad de Medio Ambiente, Universidad Nacional de Guinea Ecuatorial (UNGE), Hassan II s/n, Malabo 661, Guinea Ecuatorial * Correspondence: [email protected] Abstract: The natural regeneration of forests in mining areas is typically hampered by edaphic stress. Semiarid conditions add a climatic stress that challenges the restoration of these harsh ecosystems. This is the case of Tetraclinis articulata (Vahl) Masters mixed forests in the Western Mediterranean region colonizing mining structures abandoned three decades ago. We studied the factors controlling the natural establishment of nine shrub and tree species key in these forests in eight metal mine tailings in SE Spain. In addition, we assessed the success of reintroducing 1480 individuals of the nine species 15 months after planting in one of the tailings. Specifically, we analyzed the effect of (i) species identity in terms of sapling survival, growth, nutritional status and metal bioaccumulation, and (ii) adding organic amendments into the planting holes on the same parameters. Our results indicated that natural colonization is a recent process, with seedling cohorts that vary up to two Citation: Oná, M.B.; Goberna, M.; orders of magnitude among species and a practical absence of adult plants in most species excepting Navarro-Cano, J.A.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K. E-mail: [email protected]. E-mail: [email protected]. Abstract The Libyan flora was last documented in a series of volumes published between 1976 and 1989. Since then there has been a substantial realignment of family and generic boundaries and the discovery of many new species. The lack of an update or revision since 1989 means that the Libyan Flora is now out of date and requires a reassessment using modern approaches. Here we report initial efforts to provide an updated checklist covering 43 families out of the 150 in the published flora of Libya, including 138 genera and 411 species. Updating the circumscription of taxa to follow current classification results in 11 families (Coridaceae, Guttiferae, Leonticaceae, Theligonaceae, Tiliaceae, Sterculiaceae, Bombacaeae, Sparganiaceae, Globulariaceae, Asclepiadaceae and Illecebraceae) being included in other generally broader and less morphologically well-defined families (APG-IV, 2016). As a consequence, six new families: Hypericaceae, Adoxaceae, Lophiocarpaceae, Limeaceae, Gisekiaceae and Cleomaceae are now included in the Libyan Flora.
    [Show full text]
  • Flora and Vegetation of Israel and Adjacent Areas
    18 Danin: Flora and vegetation of Israel and adjacent areas Flora and vegetation of Israel and adjacent areas Avinoam Danin Introduction Israel is a meeting area of plant geographical regions and has high climatic, lithologic, and edapnic diversity. These factors together with prolonged influence of human activity have led to the development of a rich flora and diverse vegetation. Eig (1931-1932, 1946) has established the foundations or the botanical research in Israel. The history of geobotanical and floristic research until thc 1970's was reviewed by Zohary (1962, 1973). The basic taxonomic research on thc country's flora, "Flora palaestina", was completed in 1986 (Zohary 1966, 1972; Feinbrun-Dothan 1978, 1986). Recently, a new "Analytical Flora" was published (Feinbrun-Dothan & Danin 1991). In the last two decades many Ph.D. and M.Se. theses were carricd out. Many of these theses were written in Hebrew and are not accessiblc to those who do not read this language. The vegetation of parts of thc Galilee was studied by Rabinovitch (1970, 1979), and Berliner (1971); that of Mt. Hermon by Shmida (1977a); that of the Judean foothills by Sapir (1977); and that of the southern Negev by Lipkin (1971). Much of the present information was summarized in Waisel (1984). In the following chapter a generai dcscriplion or thc flora, i.e., the inventory of species with their geographical affinitics, and or thc vegctation of Israel is presented. In order to present the description of vcgctalion lO a wider audience I have avoided the use of the modern phytosociologic nomenclalure and have used thc generaI non-ranked term "plant community" to describe the principal vegctation units of the country.
    [Show full text]
  • Appendix O20309
    Oikos o20309 Soliveres, S., Torices, R. and Maestre, F. T. 2012. Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant–plant interactions. – Oikos 121: 1638-1648. Appendix 1 Table A1. Summary of the outcomes of the pairwise interactions found at each site. Plot name Stipa tenacissima Quercus coccifera Neutral/negative Positive Neutral/negative Positive · Atractylis humilis · Atractylis humilis · Biscutella valentina · Biscutella valentina · Coris monspeliensis · Cynodon dactylon · Coris monspeliensis · Fumana thymifolia · Helianthemum violaceum · Cynodon dactylon · Fumana thymifolia · Helianthemum violaceum · Polygala rupestris · Polygala rupestris Barrax · Teucrium pseudochamaepytis · Sedum sediforme · Sedum sediforme · Stipa parviflora · Teucrium sp. · Teucrium sp · Stipa parviflora · Teucrium pseudochamaepytis · Thesium divaricatum · T. capitatum · Teucrium capitatum · Thesium divaricatum ·Thymus vulgaris · Thymus vulgaris · T. zygis · T. zygis · Genista scorpius · Genista scorpius · Helianthemum cinereum · Rosmarinus officinalis · Helianthemum cinereum Camporreal · Rosmarinus officinalis · Teucrium pseudochamaepytis · Teucrium pseudochamaepytis · Thymus vulgaris · Thymus vulgaris · Anthyllis citisoides · Asparagus horridus · Fumana sp. · Anthyllis citisoides · Asphodelus ramosus · Fumana thymifolia · F. thymifolia · Asparagus horridus Carrascoy · Brachypodium retusum · Globularia allipum · Globularia allipum · Asphodelus ramosus · Cistus clusii · Helianthemum marifolium · Helianthemum
    [Show full text]