Report of Two Spontaneous, Rare Phenotypic Traits in the Genus Phillyrea L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit. -
GREENING ROME the Urban Green of the Metropolitan Area of Rome in the Context of the Italian MAES Process
GREENING ROME The Urban Green of the Metropolitan Area of Rome in the Context of the Italian MAES Process Italian Ministry for the Environment and the Protection of Land and Sea - Maria Carmela Giarratano - Eleonora Bianchi - Eugenio Dupré Italian Botanical Society - Scientific Coordination: Carlo Blasi - Working Group: Marta Alós, Fabio Attorre, Mattia Martin Azzella, Giulia Capotorti, Riccardo Copiz, Lina Fusaro, Fausto Manes, Federica Marando, Marco Marchetti, Barbara Mollo, Elisabetta Salvatori, Laura Zavattero, Pier Carlo Zingari 1. Introduction The Italian Ministry for the Environment provides financial support to academia (Italian Botanical Society – SBI and Italian Zoological Union – UZI) for the implementation of the MAES process in Italy. A preliminary collection of updated and detailed basic data at the national level was carried out, including ecoregions, land units, bioclimate, biogeography, potential natural vegetation and CORINE land cover at the fourth level. Starting from these data, the Italian MAES process has been organised into six steps. The outcomes of this process have provided the Ministry for the Environment with a reliable body of information targeted to: - an effective implementation of the National Biodiversity Strategy (MATTM 2010); - the improvement in biodiversity data within the National Biodiversity Network (Martellos et al. 2011); - the further development of the environmental accounting system (Capotorti et al. 2012b); - the implementation of a road-map to be delivered to the regions (sub-national level); - the effective use of the products of all MAES process to concretely support European structural and investment funds 2014-2020 through the Joint Committee on Biodiversity, the governing body of the Italian National Strategy (Capotorti et al., 2015). -
Hypoestes Aristata (Vahl) Sol
Biol Res 43: 403-409, 2010 BHATT ET AL. Biol Res 43, 2010, 403-409 B403R The foliar trichomes of Hypoestes aristata (Vahl) Sol. ex Roem. & Schult var aristata (Acanthaceae) a widespread medicinal plant species in tropical sub-Saharan Africa: with comments on its possible phylogenetic significance A. Bhatt*, Y. Naidoo and A. Nicholas School of Biological and Conservation Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, KZN, 4000, South Africa ABSTRACT The micromorphology of foliar trichomes of Hypoestes aristata var. aristata was studied using stereo, light and scanning microscopy (SEM). This genus belongs to the advanced angiosperm family Acanthaceae, for which few micromorphological leaf studies exist. Results revealed both glandular and non-glandular trichomes, the latter being more abundant on leaf veins, particularly on the abaxial surface of very young leaves. With leaf maturity, the density of non-glandular trichomes decreased. Glandular trichomes were rare and of two types: long-stalked capitate and globose-like peltate trichomes. Capitate trichomes were observed only on the abaxial leaf surface, while peltate trichomes were distributed on both adaxial and abaxial leaf surfaces. Key terms: Acanthaceae, Glandular trichomes, Hypoestes aristata var. aristata, medicinal plant, Scanning electron microscope. INTRODUCTION zygomorphic flowers supported by prominent bracts and producing explosive capsular fruits. Many studies have The Family Acanthaceae is a large and diverse family of further supported the placement of Hypoestes in a smaller dicotyledonous plants comprising about 202 genera and 3520 clade that includes the prominent genus Justicia (McDade species (Judd et al., 2008); although estimates vary from 2600 and Moody 1999). -
Species: Cytisus Scoparius, C. Striatus
Species: Cytisus scoparius, C. striatus http://www.fs.fed.us/database/feis/plants/shrub/cytspp/all.html SPECIES: Cytisus scoparius, C. striatus Table of Contents Introductory Distribution and occurrence Botanical and ecological characteristics Fire ecology Fire effects Management considerations References INTRODUCTORY AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS Scotch broom Portuguese broom © Br. Alfred Brousseau, Saint Mary's © 2005 Michael L. Charters, Sierra Madre, College CA. AUTHORSHIP AND CITATION: Zouhar, Kris. 2005. Cytisus scoparius, C. striatus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: CYTSCO CYTSTR CYTSPP 1 of 54 9/24/2007 4:15 PM Species: Cytisus scoparius, C. striatus http://www.fs.fed.us/database/feis/plants/shrub/cytspp/all.html SYNONYMS: None NRCS PLANT CODE [141]: CYSC4 CYST7 COMMON NAMES: Scotch broom Portuguese broom English broom scotchbroom striated broom TAXONOMY: The scientific name for Scotch broom is Cytisus scoparius (L.) Link [48,55,57,63,105,112,126,132,147,154,160] and for Portuguese broom is C. striatus (Hill) Rothm. [55,63,132]. Both are in the pea family (Fabaceae). In North America, there are 2 varieties of Scotch broom, distinguished by their flower color: C. scoparius var. scoparius and C. scoparius var. andreanus (Puiss.) Dipp. The former is the more widely distributed variety, and the latter occurs only in California [63]. This review does not distinguish between these varieties. -
Torus-Bearing Pit Membranes in Species of Osmanthus
IAWA Journal, Vol. 31 (2), 2010: 217–226 TORUS-BEARING PIT MEMBRANES IN SPECIES OF OSMANTHUS Roland Dute1, 5, David Rabaey2, John Allison1 and Steven Jansen3, 4 SUMMARY Torus thickenings of pit membranes are found not only in gymnosperms, but also in certain genera of dicotyledons. One such genus is Osmanthus. Wood from 17 species of Osmanthus was searched for tori. Fourteen spe- cies from three of the four sections investigated possessed these thick- enings. Ten of the species represent new records. Only the three New Caledonian species of Section Notosmanthus lacked tori. This observation in combination with other factors serves to isolate this section from the remainder of the genus. Key words: Notelaea, Osmanthus, pit membrane, torus. INTRODUCTION Osmanthus is a member of the Oleaceae (Olive Family), a moderate-sized family with circa 24 genera and 615 spp. (Stevens 2001). There are 33 natural species within the genus (Table 1; Xiang et al. 2008), and they show a tropical to temperate distribution (Bailey & Bailey 1976; Denk et al. 2001; Xiang et al. 2008). Generally, individual shrubs are found in moist forests (Hsieh et al. 1998; Chou et al. 2000; Denk et al. 2001), frequently on steep slopes (Green 1958). In some instances populations are sub- ject to monsoon conditions and hence to periods of relatively low rainfall (Yang et al. 2008; Hua 2008). Tori are thickenings of intervascular pit membranes found not only in gymnosperm, but also in angiosperm wood, including that of Osmanthus (Dute et al. 2008; Dute et al. 2010). Tori were first observed in O. fragrans, O. -
Structural Diversity and Contrasted Evolution of Cytoplasmic Genomes in Flowering Plants :A Phylogenomic Approach in Oleaceae Celine Van De Paer
Structural diversity and contrasted evolution of cytoplasmic genomes in flowering plants :a phylogenomic approach in Oleaceae Celine van de Paer To cite this version: Celine van de Paer. Structural diversity and contrasted evolution of cytoplasmic genomes in flowering plants : a phylogenomic approach in Oleaceae. Vegetal Biology. Université Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30228. tel-02325872 HAL Id: tel-02325872 https://tel.archives-ouvertes.fr/tel-02325872 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REMERCIEMENTS Remerciements Mes premiers remerciements s'adressent à mon directeur de thèse GUILLAUME BESNARD. Tout d'abord, merci Guillaume de m'avoir proposé ce sujet de thèse sur la famille des Oleaceae. Merci pour ton enthousiasme et ta passion pour la recherche qui m'ont véritablement portée pendant ces trois années. C'était un vrai plaisir de travailler à tes côtés. Moi qui étais focalisée sur les systèmes de reproduction chez les plantes, tu m'as ouvert à un nouveau domaine de la recherche tout aussi intéressant qui est l'évolution moléculaire (même si je suis loin de maîtriser tous les concepts...). Tu as toujours été bienveillant et à l'écoute, je t'en remercie. -
Olea Europaea) Disentangles Ancient Allo- and Autopolyploidizations in Lamiales
bioRxiv preprint doi: https://doi.org/10.1101/163063; this version posted July 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Page 1 of 36 Phylogenomics of the olive tree (Olea europaea) disentangles ancient allo- and autopolyploidizations in Lamiales. Irene Julca1,2,3,*, Marina Marcet-Houben1,2,*, Pablo Vargas4, and Toni Gabaldón1,2,5,# 1) Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2) Universitat Pompeu Fabra (UPF). 08003 Barcelona, Spain. 3) Universitat Autònoma de Barcelona (UAB). 08193 Barcelona, Spain. 10 4) Real Jardín Botánico de Madrid (CSIC-RJB). 28014 Madrid, Spain. 5) ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain. *Both authors contributed equally # Author for correspondence: [email protected] 15 Abstract Background Polyploidization is one of the major evolutionary processes that shape eukaryotic genomes, being particularly common in plants. Polyploids can arise through direct genome doubling within a species (autopolyploidization) or through the merging of genomes from distinct 20 species after hybridization (allopolyploidization). The relative contribution of either mechanism in plant evolution is debated. Here we used phylogenomics to dissect the tempo and mode of duplications in the genome of the olive tree (Olea europaea), one of the first domesticated Mediterranean fruit trees. Results bioRxiv preprint doi: https://doi.org/10.1101/163063; this version posted July 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Flora Graeca Digitalis: Old Library Stock
Purdue University Purdue e-Pubs Proceedings of the IATUL Conferences 2017 IATUL Proceedings Flora Graeca Digitalis: Old Library Stock Wolfgang Stille University and State Library of Darmstadt, [email protected] Wolfgang Stille, "Flora Graeca Digitalis: Old Library Stock." Proceedings of the IATUL Conferences. Paper 2. https://docs.lib.purdue.edu/iatul/2017/diglib/2 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. FLORA GRAECA DIGITALIS: OLD LIBRARY STOCK MEETS LINKED OPEN DATA, DIGITAL STROLLING, AND MOBILE DEVICES Wolfgang Stille University and State Library Darmstadt, Germany [email protected] Abstract Libraries have been digitizing old stock for several years now – mostly for a specific and restricted scientific user group. But what about the social obligation to preserve, and therefore call to mind digital cultural heritage in a contemporary manner? Flora Graeca is a large format masterpiece of printing, engraving, color and design of almost thousand plants of the Mediterranean area in the late 18th century comprising ten volumes. It was discovered in Darmstadt’s University and State Library three years ago. Encouraged by the overall good condition and the finely crafted, hand-colored illustrations, the library conducted a high-quality digitization of the whole work in order to make it digitally available to the public. The key question of the work presented here was how to reach a circle beyond scientific users, i.e. botanists and historians, and draw the general public’s interest to this wonderful masterpiece. The offer should address in particular young student library patrons, who use the library in hundreds as a place of work and communication. -
Influence of Seasonal Weather Variations on Fuel Status for Some Shrubs Typical of Mediterranean Basin
P1.16 INFLUENCE OF SEASONAL WEATHER VARIATIONS ON FUEL STATUS FOR SOME SHRUBS TYPICAL OF MEDITERRANEAN BASIN Grazia Pellizzaro1*, Andrea Ventura1, Pierpaolo Zara1 1CNR – IBIMET, Institute of Biometeorology, Sassari, Italy 1. INTRODUCTION Therefore, the knowledge of seasonal variation of ignitability and vegetation moisture The term flammability refers to the ability of content could contribute to identify critical a particular fuel to ignite and sustain fire. periods of high fire risk in Mediterranean maquis Although there is not an accepted standard for ecosystems. flammability vegetation measurement, most The main objectives of this work were (i) to methods are based on measuring the “ignition describe the seasonal pattern of live fine fuel delay time” (ID time) or time to ignition, which is moisture content (LFMC) and ignitability values the time required for the fuel to start ignition in for some Mediterranean shrubs, and (ii) to presence of a constant heat source (Trabaud, evaluate the influence of weather seasonality, on 1976; Valette, 1990; Dimitrakopoulos and LFMC variation. Papaioannou, 2001). Ignitability of living vegetation is influenced by several factors 2. MATERIALS AND METHODS including structural properties, chemical properties and moisture content. The moisture The study was carried out in a natural content of living plant is a critical parameter reserve located in North Western Sardinia, Italy affecting fire ignition (Van Wagner, 1977; (40° 36’ N; 8° 09’ E, 30 m a.s.l.). The climate is Chandler et al., 1983; Carlson and Burgan, Mediterranean with a water deficit from May 2003). Depending on the moisture content, through September and precipitation mainly living vegetation may act as a heat source or a concentrated in autumn and winter. -
Biological Fire Prevention Method: Evaluating the Effects of Goat Grazing on the Fire-Prone Mediterranean Scrub J
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Forest Systems 2012 21(2), 199-204 Available online at www.inia.es/forestsystems ISSN: 2171-5068 http://dx.doi.org/10.5424/fs/2012212-02289 eISSN: 2171-9845 Biological fire prevention method: Evaluating the effects of goat grazing on the fire-prone mediterranean scrub J. M. Mancilla-Leytón* and A. Martín Vicente Dep. Biología Vegetal y Ecología. Universidad de Sevilla. Apdo.1095 Sevilla 41080 Abstract The effect of goat grazing on the shrubby understory of a pine forest in Doñana Natural Park was evaluated using non-destructive measures of vegetation volume over a period of twenty-four months. After establishing grazing exclu- sion fenced plots 350 adult Payoyas goats were introduced. Vegetation was sampled before the introduction of goats and afterwards twice a year, using the point intercept method and thereby obtaining data of height, frequency, cover and biovolume of species. After two years the total biovolume of the vegetation of the ungrazed area had increased signifi- cantly by 32.9%, while at grazed area, vegetation biovolume decreased significantly by 23.1%, leading to a significant decrease in mean height of the species. Although the number of species remained unchanged throughout the study, significant changes in their relative abundance were found in grazed area. The different responses of scrub species to grazing can be used as a tool to control species sensitive to grazing in shrubby forested areas. Significant reduction of total biovolume due to a reduction in vegetation height will help to reduce fire risk, thus contributing to the conserva- tion of Mediterranean woodlands and forests while also fulfilling an important role in the economic and social lives of the rural population of Mediterranean countries. -
Biodiversity Assessment for Georgia
Biodiversity Assessment for Georgia Task Order under the Biodiversity & Sustainable Forestry IQC (BIOFOR) USAID C ONTRACT NUMBER: LAG-I-00-99-00014-00 SUBMITTED TO: USAID WASHINGTON E&E BUREAU, ENVIRONMENT & NATURAL RESOURCES DIVISION SUBMITTED BY: CHEMONICS INTERNATIONAL INC. WASHINGTON, D.C. FEBRUARY 2000 TABLE OF CONTENTS SECTION I INTRODUCTION I-1 SECTION II STATUS OF BIODIVERSITY II-1 A. Overview II-1 B. Main Landscape Zones II-2 C. Species Diversity II-4 SECTION III STATUS OF BIODIVERSITY CONSERVATION III-1 A. Protected Areas III-1 B. Conservation Outside Protected Areas III-2 SECTION IV STRATEGIC AND POLICY FRAMEWORK IV-1 A. Policy Framework IV-1 B. Legislative Framework IV-1 C. Institutional Framework IV-4 D. Internationally Supported Projects IV-7 SECTION V SUMMARY OF FINDINGS V-1 SECTION VI RECOMMENDATIONS FOR IMPROVED BIODIVERSITY CONSERVATION VI-1 SECTION VII USAID/GEORGIA VII-1 A. Impact of the Program VII-1 B. Recommendations for USAID/Georgia VII-2 ANNEX A SECTIONS 117 AND 119 OF THE FOREIGN ASSISTANCE ACT A-1 ANNEX B SCOPE OF WORK B-1 ANNEX C LIST OF PERSONS CONTACTED C-1 ANNEX D LISTS OF RARE AND ENDANGERED SPECIES OF GEORGIA D-1 ANNEX E MAP OF LANDSCAPE ZONES (BIOMES) OF GEORGIA E-1 ANNEX F MAP OF PROTECTED AREAS OF GEORGIA F-1 ANNEX G PROTECTED AREAS IN GEORGIA G-1 ANNEX H GEORGIA PROTECTED AREAS DEVELOPMENT PROJECT DESIGN SUMMARY H-1 ANNEX I AGROBIODIVERSITY CONSERVATION IN GEORGIA (FROM GEF PDF GRANT PROPOSAL) I-1 SECTION I Introduction This biodiversity assessment for the Republic of Georgia has three interlinked objectives: · Summarizes the status of biodiversity and its conservation in Georgia; analyzes threats, identifies opportunities, and makes recommendations for the improved conservation of biodiversity.