Disassembly of the Mu Transposase Tetramer by the Clpx Chaperone

Total Page:16

File Type:pdf, Size:1020Kb

Disassembly of the Mu Transposase Tetramer by the Clpx Chaperone Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Disassembly of the Mu transposase tetramer by the ClpX chaperone Igor Levchenko, Li Luo, and Tania A. Baker Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, 68-523, Cambridge, Massachusetts 02139 USA Mu transposition is promoted by an extremely stable complex containing a tetramer of the transposase (MuA) bound to the recombining DNA. Here we purify the Escherichia coli ClpX protein, a member of a family of multimeric ATPases present in prokaryotes and eukaryotes (the Clp family), on the basis of its ability to remove the transposase from the DNA after recombination. Previously, ClpX has been shown to function with the ClpP peptidase in protein turnover. However, neither ClpP nor any other protease is required for disassembly of the transposase. The released MuA is not modified extensively, degraded, or irreversibly denatured, and is able to perform another round of recombination in vitro. We conclude that ClpX catalyzes the ATP-dependent release of MuA by promoting a transient conformational change in the protein and, therefore, can be considered a molecular chaperone. ClpX is important at the transition between the recombination and DNA replication steps of transposition in vitro; this function probably corresponds to the essential contribution of ClpX for Mu growth. Deletion analysis reveals that the sequence at the carboxyl terminus of MuA is important for disassembly by ClpX and can target MuA for degradation by ClpXP in vitro. These data contribute to the emerging picture that members of the Clp family are chaperones specifically suited for disaggregating proteins and are able to function with or without a collaborating protease. [Key Words: Clp; Hspl04; transposition; phage Mu; replication] Received }uly 17, 1995; revised version accepted August 22, 1995. Higher order protein-DNA complexes are often critical genome. This tetramer pairs the two ends of the Mu intermediates in initiation of transcription, recombina­ DNA, cleaves these ends, and joins the cleaved ends to a tion, and replication. Timely assembly and disassembly new DNA site in a reaction called strand transfer of these complexes is likely to be essential for the proper (Craigie and Mizuuchi 1987; Surette et al. 1987, 1991; function and regulation of these processes. The protein- Lavoie et al. 1991; Mizuuchi et al. 1992). A second Mu- DNA complexes involved in site-specific recombination encoded transposition protein, MuB, participates in and transposition are among the best understood and, strand transfer by activating MuA and delivering an in- therefore, useful for dissecting the general principles termolecular target site to the transposase complex (Ad- governing the assembly, organization, and disassembly zuma and Mizuuchi 1988; Baker et al. 1991; Surette and of such complexes. Chaconas 1991). Biochemical analysis of transposition by elements as Transposition is used for two steps in the phage Mu diverse as phage Mu, TnlO, Tn7, and human immuno­ life cycle: (1) integration of the Mu genome into that of deficiency virus (HIV) indicate that the transposase and the host cell during infection and (2) replicative ampli­ integrase proteins act by a similar mechanism (for re­ fication of the DNA during lytic growth. Although it is view, see Mizuuchi 1992) and function in stable multi­ well established that phage Mu uses transposition to rep­ meric complexes (Surette et al. 1987; Haniford et al. licate its genome, how replication is initiated after the 1991; Bainton et al. 1993; Ellison and Brown 1994). Al­ strand transfer reaction is not well understood. Mu rep­ though Mu transposase and HIV integrase have only a lication in vivo requires several essential Escherichia modest degree of amino acid sequence similarity (Baker coh genes that encode components of the host replica­ and Luo 1994), recent determination of the structures of tion machinery, indicating that Mu replication forks are the core domains of these proteins reveal remarkable similar to those used for chromosomal replication (Tous- similarities surrounding the active sites (Dyda et al. saint and Faelen 1974; Toussaint and Resibois 1983; 1994; Rice and Mizuuchi 1995). Resibois et al. 1984; Ross et al. 1986). Strand transfer Mu transposase (MuA) catalyzes the DNA cleavage complexes (STC) can be replicated efficiently in E. coli and joining reactions central to recombination. MuA is extracts made from uninfected cells indicating that no monomeric in solution but forms a stable tetramer upon Mu proteins other than MuA and MuB are required (Mi­ binding to specific sequences at each end of the phage zuuchi 1983), although the Mu arm functions stimulate GENES & DEVELOPMENT 9:2399-2408 © 1995 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/95 $5.00 2399 Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Levchenko et al. replication in vivo (Waggoner et al. 1981). Recently^ in joined by strand transfer. The releasing activity in the vitro replication with a more purified system confirmed extract was fractionated by chromatography; one activ­ roles for eight of the E. coli replication proteins and in­ ity behaved as a single component and was purified ex­ dicated that additional host factors are required (Krukli- tensively (see Materials and methods). The peak of re­ tis and Nakai 1994). leasing activity correlated with a 46-kD protein during In addition to the replication enzymes, the E. coli clpX several chromatography steps; the activity of fractions gene product is required for lytic growth of phage Mu from the penultimate column (Mono Q) is shown (Fig. (Mhammedi-Alaoui et al. 1994). The kinetics of the la,b). After Superose 6 chromatography, this 46-kD pro­ block in phage growth after induction of a lysogen indi­ tein was >90% pure (Fig. la). cate that ClpX functions after the first strand transfer Several lines of evidence established that the 46-kD reaction but before onset of extensive replication protein was the ClpX protein. The protein (1) reacted (Mhammedi-Alaoui et al. 1994). ClpX is a member of a efficiently with anti-ClpX antibody on a Western blot conserved family of ATPases (the Clp family) present in (data not shown); (2) supported degradation of a known prokaryotes and eukaryotes (Gottesman et al. 1990, substrate of the ClpXP protease in the presence of ClpP 1993). Many organisms, including E. coli have multiple and ATP (see below); and (3) was more abundant in ex­ family members, many of which are heat shock proteins. tracts made from cells overproducing ClpX than from The best studied Clp protein, E. coli ClpA, forms a com­ nonoverproducing cells. Active fractions of ClpX puri­ plex with the ClpP protein, a small serine protease (un­ fied from overproducing cells were >95% pure as judged related in sequence to the other Clp proteins) to promote by densitometery of a Coomassie Blue-stained SDS gel ATP-dependent degradation of specific proteins (Hwang (Fig. Ic). Release of MuA from the STC by purified ClpX et al. 1988; Katayama et al. 1988). ClpX was first purified was relatively efficient; in a reaction containing 1.3 based on its ability to degrade, with the ClpP protease, pmoles of MuA, 1.7 to 3.3 pmoles of ClpX gave rise to the replication initiator protein of phage k, XO protein protein-free product DNA within 5 min (data not (Wojtkowiak et al. 1993). However, although Mu growth shown). requires ClpX and some forms of the Mu repressor ap­ The ATP requirement for release of MuA from the pear to be degraded by ClpXP (Geuskens et al. 1992), Mu STC by ClpX was investigated by modifying the reaction propagates relatively normally in cipP-deficient cells (Mhammedi-Alaoui et al. 1994), indicating that the es­ sential role of ClpX in Mu growth does not involve pro­ tein degradation by ClpXP. In this study, we purify a factor from E. coli cell ex­ MonoQ. fractions Superose 6 overproduced ClpX tracts on the basis of its ability to displace the MuA tetramer from the DNA after strand transfer. This factor is the ClpX protein. ClpX catalyzes the ATP-dependent disassembly of the MuA tetramer into monomers with­ out detectable degradation and the released protein is active in another round of recombination. The impor­ tance of ClpX for Mu replication in vitro is also demon­ strated. Implications of these data for the pathway of Mu replication and the mechanism of action of the Clp pro­ tein family are discussed. Results Purification of ClpX protein as a factor able to release MuA from the STC Upon completion of the cleavage and strand transfer re­ actions in vitro, MuA remains bound to the recombined Figure 1. ClpX removes MuA from strand transfer complexes. DNA in a protein-DNA complex called the STC or type [a] SDS-PAGE of ClpX fractions after Mono Q [left] and Super­ II transposome. Although noncovalent, this complex is ose 6 {right) chromatography. Arrow indicates ClpX protein. stable for days and resists treatment with 6 M urea and Prestained protein markers are myosin (h-chain) 214 kD, phos- heating to 65°C (Surette et al. 1987). Factors able to re­ phorylase Bill kD, BSA 74 kD, ovalbumin 45 kD, and carbonic move MuA from the STC were detected in crude E. coli anhydrase 29 kD. [b] MuA releasing activity of Mono Q frac­ tions of ClpX (5 |xl of each fraction [0.2-1.0 (x,g of total protein] extracts active in Mu DNA replication (data not shown). was added) assayed by agarose gel electrophoresis; arrow indi­ One assay used to detect removal of MuA from the DNA cates STC, bracket indicates topoisomers of free strand transfer depended on the difference in mobility between the STC DNA. The protein-DNA complexes and free DNA products and the strand transfer products on a native agarose gel.
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • Insights Into the Role and Mechanism of the AAA+ Adaptor Clps
    Insights into the role and mechanism of the AAA+ adaptor ClpS by Jennifer Yuan Hou Sc.B. Biochemistry Brown University, 2002 SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2009 © 2009 Jennifer Yuan Hou. All Rights Reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author:_______________________________________________________ Department of Biology May 22, 2009 Certified by:_____________________________________________________________ Tania A. Baker E. C. Whitehead Professor of Biology Thesis Supervisor Accepted by:_____________________________________________________________ Stephen P. Bell Professor of Biology Co-Chair, Graduate Committee 1 2 Insights into the role and mechanism of the AAA+ adaptor ClpS by Jennifer Yuan Hou Submitted to the Department of Biology on May 22, 2009 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT Protein degradation is a vital process in cells for quality control and participation in regulatory pathways. Intracellular ATP-dependent proteases are responsible for regulated degradation and are highly controlled in their function, especially with respect to substrate selectivity. Adaptor proteins that can associate with the proteases add an additional layer of control to substrate selection. Thus, understanding the mechanism and role of adaptor proteins is a critical component to understanding how proteases choose their substrates. In this thesis, I examine the role of the intracellular protease ClpAP and its adaptor ClpS in Escherichia coli.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Mitochondrial Clpx Activates an Essential Biosynthetic Enzyme Through Partial Unfolding Julia R Kardon1,2,3*, Jamie a Moroco4†, John R Engen4, Tania a Baker2,3*
    RESEARCH ARTICLE Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding Julia R Kardon1,2,3*, Jamie A Moroco4†, John R Engen4, Tania A Baker2,3* 1Department of Biochemistry, Brandeis University, Waltham, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States; 4Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States Abstract Mitochondria control the activity, quality, and lifetime of their proteins with an autonomous system of chaperones, but the signals that direct substrate-chaperone interactions and outcomes are poorly understood. We previously discovered that the mitochondrial AAA+ protein unfoldase ClpX (mtClpX) activates the initiating enzyme for heme biosynthesis, 5- aminolevulinic acid synthase (ALAS), by promoting cofactor incorporation. Here, we ask how mtClpX accomplishes this activation. Using S. cerevisiae proteins, we identified sequence and structural features within ALAS that position mtClpX and provide it with a grip for acting on ALAS. Observation of ALAS undergoing remodeling by mtClpX revealed that unfolding is limited to a region extending from the mtClpX-binding site to the active site. Unfolding along this path is required for mtClpX to gate cofactor binding to ALAS. This targeted unfolding contrasts with the *For correspondence: global unfolding canonically executed by ClpX homologs and provides insight into how substrate- [email protected] (JRK); chaperone interactions direct the outcome of remodeling. [email protected] (TAB) Present address: †Broad Institute, Cambridge, United States Introduction AAA+ protein unfoldases use the energy of ATP hydrolysis to pull apart the structures of their sub- Competing interests: The strate proteins.
    [Show full text]
  • Viral Elements and Their Potential Influence on Microbial Processes Along the Permanently Stratified Cariaco Basin Redoxcline
    The ISME Journal https://doi.org/10.1038/s41396-020-00739-3 ARTICLE Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline 1 2 3 4 5 Paraskevi Mara ● Dean Vik ● Maria G. Pachiadaki ● Elizabeth A. Suter ● Bonnie Poulos ● 6 2,7 1 Gordon T. Taylor ● Matthew B. Sullivan ● Virginia P. Edgcomb Received: 22 January 2020 / Revised: 18 July 2020 / Accepted: 5 August 2020 © The Author(s) 2020. This article is published with open access Abstract Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference 1234567890();,: 1234567890();,: viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements.
    [Show full text]
  • Glucagon-Like Peptide-1 Receptor Agonists Increase Pancreatic Mass by Induction of Protein Synthesis
    Page 1 of 73 Diabetes Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis Jacqueline A. Koehler1, Laurie L. Baggio1, Xiemin Cao1, Tahmid Abdulla1, Jonathan E. Campbell, Thomas Secher2, Jacob Jelsing2, Brett Larsen1, Daniel J. Drucker1 From the1 Department of Medicine, Tanenbaum-Lunenfeld Research Institute, Mt. Sinai Hospital and 2Gubra, Hørsholm, Denmark Running title: GLP-1 increases pancreatic protein synthesis Key Words: glucagon-like peptide 1, glucagon-like peptide-1 receptor, incretin, exocrine pancreas Word Count 4,000 Figures 4 Tables 1 Address correspondence to: Daniel J. Drucker M.D. Lunenfeld-Tanenbaum Research Institute Mt. Sinai Hospital 600 University Ave TCP5-1004 Toronto Ontario Canada M5G 1X5 416-361-2661 V 416-361-2669 F [email protected] 1 Diabetes Publish Ahead of Print, published online October 2, 2014 Diabetes Page 2 of 73 Abstract Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67+ cells in the exocrine compartment, however pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 kinase phosphorylation, and mediated through the GLP-1 receptor.
    [Show full text]
  • CRISPR Screens in Physiologic Medium Reveal Conditionally Essential Genes in Human Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.275107; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells Nicholas J. Rossiter1, Kimberly S. Huggler1,2, Charles H. Adelmann3,4,5,6, Heather R. Keys3, Ross W. Soens1,2, David M. Sabatini3,4,5,6*, and Jason R. Cantor1,2,7,8* 1Morgridge Institute for Research, Madison, WI 53715, USA 2Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA 3Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA 4Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA 6Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA 7Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA 8Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA *Correspondence: [email protected] or [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.275107; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY Forward genetic screens across hundreds of diverse cancer cell lines have started to define the genetic dependencies of proliferating human cells and how these vary by genotype and lineage. Most screens, however, have been carried out in culture media that poorly resemble metabolite availability in human blood.
    [Show full text]
  • Mitochondrial Protein Quality Control in Cancer
    International Journal of Molecular Sciences Review Failure to Guard: Mitochondrial Protein Quality Control in Cancer Joseph E. Friedlander 1,†, Ning Shen 1,2,†, Aozhuo Zeng 1, Sovannarith Korm 1 and Hui Feng 1,2,* 1 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; [email protected] (J.E.F.); [email protected] (N.S.); [email protected] (A.Z.); [email protected] (S.K.) 2 Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA * Correspondence: [email protected]; Tel.: +1-617-358-4688; Fax: +1-617-358-1599 † Equal contribution. Abstract: Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these Citation: Friedlander, J.E.; Shen, N.; alterations for the development of anti-cancer drugs. Zeng, A.; Korm, S.; Feng, H.
    [Show full text]