Mitochondrial Protein Quality Control in Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
18P Deletions FTNW
18p deletions rarechromo.org 18p deletions A deletion of 18p means that the cells of the body have a small but variable amount of genetic material missing from one of their 46 chromosomes – chromosome 18. For healthy development, chromosomes should contain just the right amount of material – not too much and not too little. Like most other chromosome disorders, 18p deletions increase the risk of birth defects, developmental delay and learning difficulties. However, the problems vary and depend very much on what genetic material is missing. Chromosomes are made up mostly of DNA and are the structures in the nucleus of the body’s cells that carry genetic information (known as genes), telling the body how to develop, grow and function. Base pairs are the chemicals in DNA that form the ends of the ‘rungs’ of its ladder-like structure. Chromosomes usually come in pairs, one chromosome from each parent. Of these 46 chromosomes, two are a pair of sex chromosomes, XX (a pair of X chromosomes) in females and XY (one X chromosome and one Y chromosome) in males. The remaining 44 chromosomes are grouped in 22 pairs, numbered 1 to 22 approximately from the largest to the smallest. Each chromosome has a short ( p) arm (shown at the top in the diagram on the facing page) and a long ( q) arm (the bottom part of the chromosome). People with an 18p deletion have one intact chromosome 18, but the other is missing a smaller or larger piece from the short arm and this can affect their learning and physical development. -
Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10. -
A Novel AFG3L2 Mutation in a German Family with Young Onset, Slow
Zühlke et al. Cerebellum & Ataxias (2015) 2:19 DOI 10.1186/s40673-015-0038-7 RESEARCH Open Access Spinocerebellar ataxia 28: a novel AFG3L2 mutation in a German family with young onset, slow progression and saccadic slowing Christine Zühlke1†, Barbara Mikat2†, Dagmar Timmann3, Dagmar Wieczorek2, Gabriele Gillessen-Kaesbach1 and Katrin Bürk4,5* Abstract Background: Spinocerebellar ataxia type 28 (SCA28) is related to mutations of the ATPase family gene 3-like 2 gene (AFG3L2). To date, 13 private missense mutations have been identified in families of French, Italian, and German ancestry, but overall, the disorder seems to be rare in Europe. Here, we report a kindred of German ancestry with four affected family members presenting with slowly progressive ataxia, mild pyramidal tract signs and slow saccades. Methods: After excluding repeat expansions in the genes for SCA1-3, 6-8, 10, 12, and 17, Sanger sequencing of the coding regions of TTBK2 (SCA11), KCNC3 (SCA13), PRKCG (SCA14), FGF14 (SCA27) and AFG3L2 (SCA28) was performed. The 17 coding exons of AFG3L2 with flanking intronic sequences were amplified by PCR and sequenced on both strands. Results: Sequencing detected a novel potential missense mutation (p.Y689N) in the C-terminal proteolytic domain, the mutational hotspot of AFG3L2. The online programme “PolyPhen-2” classifies this amino acid exchange as probably damaging (score 0.990). Similarly to most of the published SCA28 mutations, the novel mutation is located within exon 16. Mutations in exon 16 alter the proteolytic activity of the protease AFG3L2 that is highly expressed in Purkinje cells. Conclusions: Genetic testing should be considered in dominant ataxia with pyramidal tract signs and saccadic slowing. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Atpase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy
RESEARCH ARTICLE ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy Leonardo Caporali, ScD, PhD ,1 Stefania Magri, ScD, PhD,2 Andrea Legati, ScD, PhD,2 Valentina Del Dotto, ScD, PhD,3 Francesca Tagliavini, ScD, PhD,1 Francesca Balistreri, ScD,2 Alessia Nasca, ScD,2 Chiara La Morgia, MD, PhD,1,3 Michele Carbonelli, MD,1 Maria L. Valentino, MD,1,3 Eleonora Lamantea, ScD,2 Silvia Baratta, ScD,2 Ludger Schöls, MD,4,5 Rebecca Schüle, MD,4,5 Piero Barboni, MD,6,7 Maria L. Cascavilla, MD,7 Alessandra Maresca, ScD, PhD,1 Mariantonietta Capristo, ScD, PhD,1 Anna Ardissone, MD,8 Davide Pareyson, MD ,9 Gabriella Cammarata, MD,10 Lisa Melzi, MD,10 Massimo Zeviani, MD, PhD,11 Lorenzo Peverelli, MD,12 Costanza Lamperti, MD, PhD,2 Stefania B. Marzoli, MD,10 Mingyan Fang, MD ,13 Matthis Synofzik, MD,4,5 Daniele Ghezzi, ScD, PhD ,2,14 Valerio Carelli, MD, PhD,1,3 and Franco Taroni, MD 2 Objective: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. Methods: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next gen- eration sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. Results: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autoso- mal dominant spinocerebellar ataxia 28 (SCA28). -
Yeast Genome Gazetteer P35-65
gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal -
Phd DIMET Functional Analysis of AFG3L2 Mutations Causing
PhD PROGRAM IN TRANSLATIONAL AND MOLECULAR MEDICINE DIMET Functional analysis of AFG3L2 mutations causing spinocerebellar ataxia type 28 (SCA28) Coordinator: Prof. Andrea Biondi Tutor: Dr. Valeria Tiranti Cotutor: Dr. Franco Taroni Dr. Valentina Fracasso Matr. No. 037096 XXIII CYCLE ACADEMIC YEAR 2009-2010 1 2 A Andre 3 Table of Contents Chapter 1: General Introduction Ataxia 6 SCA28 14 Clinical Features 15 Linkage analysis 16 AFG3L2 20 Paraplegin……………………………… 21 AFG3L1 22 m-AAA complex 24 The AAA+ superfamily 25 Structure of AAA metalloproteases 27 Role of AAA complexes in yeast 29 Function 30 Phenotype of mutations in yeast Saccharomyces cerevisiae 33 Substrates 34 Human m-AAA 38 Mouse models 40 Scope of the thesis 44 Reference list of chapter 1 45 4 Chapter 2: Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28 50 Supplementary Information for Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28 101 Co-immunoprecipitation of human mitochondrial proteases AFG3L2 and paraplegin heterologously expressed in yeast cells 138 Preparation of yeast mitochondria and in vitro assay of respiratory chain complex activities 147 Chapter 3: Spinocerebellar ataxia type 28: identification and functional analysis of novel AFG3L2 mutations 158 Chapter 4: Summary, conclusions and future perspectives 203 Chapter 5: Publications 211 5 Chapter 1: General Introduction Ataxia Ataxia is a neurological dysfunction of motor coordination that can affect gaze, speech, gait and balance. The aetiology of ataxia encompasses toxic causes, metabolic dysfunction, autoimmunity, paraneoplastic and genetic factors. Hereditary forms are classified as: autosomal recessive and autosomal dominant. Two main mechanisms manifest autosomal recessive ataxias. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
4 Mechanics of the Cytoskeleton
4 Mechanics of the cytoskeleton 4.1 Motivation In the previous section, we have seen how biopolymers dynamically assemble and dis- assemble during polymerization. We have discussed the individual mechanical prop- erties such as Young’s modulus E, the axial stiffness EA, the bending stiffness EI, and the persistence length A for individual filaments. In particular, have talked about actin filaments, intermediate filaments, and microtubules. Now, assuming we know the me- chanical properties of the individual filaments, what does that actually tell us about the assembly of filaments that we find in the cell? Or, to put it differently, if we knew elements of the cytoskeleton microtubules intermediate filaments actin filaments Figure 4.1: The cytoskeleton provides structural stability and is responsible for forces during cell loco- motion. Microtubules are thick hollow cylinders reaching out from the nucleus to the membrane, inter- mediate filaments can be found anywhere in the cytosol, and actin filaments are usually concentrated close to the cell membrane. the structural arrangement of filaments, could we then predict the stiffness of the over- all assembly? How does the filament microstructure affect cytoskeletal properties? Or, more precisely, how can we calculate the macroscopic network properties from the in- dividual microscopic filament properties? In mechanics, the derivation of macroscopic parameters based on microscopic considerations is referred to as homogenization. In this chapter, we illustrate the homogenization by means of three different examples, the fiber bundle model for filopodia, the network model for red blood cell membranes, and the tensegrity model for generic cell structures. 4.2 Fiber bundle model for filopodia Filopodia are thin dynamic cytoplasmic projections composed of tight bundles of long actin filaments extending from the leading edge of migrating cells. -
High Throughput Computational Mouse Genetic Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278465; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. High Throughput Computational Mouse Genetic Analysis Ahmed Arslan1+, Yuan Guan1+, Zhuoqing Fang1, Xinyu Chen1, Robin Donaldson2&, Wan Zhu, Madeline Ford1, Manhong Wu, Ming Zheng1, David L. Dill2* and Gary Peltz1* 1Department of Anesthesia, Stanford University School of Medicine, Stanford, CA; and 2Department of Computer Science, Stanford University, Stanford, CA +These authors contributed equally to this paper & Current Address: Ecree Durham, NC 27701 *Address correspondence to: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278465; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background: Genetic factors affecting multiple biomedical traits in mice have been identified when GWAS data that measured responses in panels of inbred mouse strains was analyzed using haplotype-based computational genetic mapping (HBCGM). Although this method was previously used to analyze one dataset at a time; but now, a vast amount of mouse phenotypic data is now publicly available, which could lead to many more genetic discoveries. Results: HBCGM and a whole genome SNP map covering 53 inbred strains was used to analyze 8462 publicly available datasets of biomedical responses (1.52M individual datapoints) measured in panels of inbred mouse strains. As proof of concept, causative genetic factors affecting susceptibility for eye, metabolic and infectious diseases were identified when structured automated methods were used to analyze the output. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Letters to Nature
letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).