Specific Star Formation Rate Profiles in Nearby Spiral Galaxies: Quantifying the Inside-Out Formation of Disks J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Black Holes in 4 Nearby Radio Galaxies
Astrophys Space Sci (2015) 356:347–351 DOI 10.1007/s10509-014-2166-6 ORIGINAL ARTICLE Black holes in 4 nearby radio galaxies Jeremy Mould · Tony Readhead · Garret Cotter · David Batt · Mark Durré Received: 26 June 2014 / Accepted: 18 October 2014 / Published online: 4 March 2015 © Springer Science+Business Media Dordrecht 2014 Abstract We study the velocity dispersion profiles of the NGC 1326 is a ring barred S0 galaxy in the Fornax clus- nuclei of NGC 1326, 2685, 5273 and 5838 in the CO first ter with circumnuclear star formation (Buta et al. 2000). Our overtone band. There is evidence for a black hole (BH) in second galaxy is a Hubble Atlas polar ring galaxy, an S0 NGC 1326 and 5838. Gas is seen flowing out of the nuclear Seyfert 2. Schinnerer and Scoville (2002) detected four giant region of NGC 5273. We put upper limits on the nuclear molecular cloud associations within the polar ring in NGC BHs responsible for its activity and that of NGC 2685. 2685 (the Helix) with of order 107 M of molecular hy- drogen. Dust has been detected with Spitzer in our third S0 Keywords Infrared: general · Active galactic nuclei · galaxy, NGC 5273, totaling 2.5 × 105 M by Martini et al. Galaxies: elliptical · Radiosources · Black holes (2013). NGC5838 has a nuclear star cluster of 5 × 107 M (Scott and Graham 2013). 1 Introduction 2 Sample and observations Understanding activity in galactic nuclei requires high spa- tial resolution. Kormendy and Richstone (1995) have out- We have drawn our radiogalaxy sample from Brown et al. -
Fourier Dissection of Early-Type Galaxy Bars R
The Astronomical Journal, 132:1859Y1876, 2006 November # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. FOURIER DISSECTION OF EARLY-TYPE GALAXY BARS R. Buta,1 E. Laurikainen,2 H. Salo,2 D. L. Block,3 and J. H. Knapen4 Received 2006 May 4; accepted 2006 July 14 ABSTRACT This paper reports on a near-infrared survey of early-type galaxies designed to provide information on bar strengths, bulges, disks, and bar parameters in a statistically well-defined sample of S0YSa galaxies. Early-type galaxies have the advantage that their bars are relatively free of the effects of dust, star formation, and spiral structure that com- plicate bar studies in later type galaxies. We describe the survey and present results on a detailed analysis of the rela- tive Fourier intensity amplitudes of bars in 26 early-type galaxies. We also evaluate the ‘‘symmetry assumption’’ of these amplitudes with radius, used recently for bar-spiral separation in later type galaxies. The results show a wide variety of radial Fourier profiles of bars, ranging from simple symmetric profiles that can be represented in terms of a single Gaussian component to both symmetric and asymmetric profiles that can be represented by two overlapping Gaussian components. More complicated profiles than these are also found, often due to multiple barlike features including extended ovals or lenses. Based on the gravitational bar torque indicator Qb, double-Gaussian bars are stronger on average than single-Gaussian bars, at least for our small sample. We show that published numerical simulations in which the bar transfers a large amount of angular momentum to the halo can account for many of the observed profiles. -
Arxiv:1904.07129V1 [Astro-Ph.GA] 15 Apr 2019
Draft version April 16, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 SPIRE SPECTROSCOPY OF EARLY TYPE GALAXIES Ryen Carl Lapham and Lisa M. Young Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801; [email protected], [email protected] Draft version April 16, 2019 ABSTRACT We present SPIRE spectroscopy for 9 early-type galaxies (ETGs) representing the most CO-rich and far-infrared (FIR) bright galaxies of the volume-limited Atlas3D sample. Our data include detections of mid to high J CO transitions (J=4-3 to J=13-12) and the [C I] (1-0) and (2-1) emission lines. CO spectral line energy distributions (SLEDs) for our ETGs indicate low gas excitation, barring NGC 1266. We use the [C I] emission lines to determine the excitation temperature of the neutral gas, as well as estimate the mass of molecular hydrogen. The masses agree well with masses derived from CO, making this technique very promising for high redshift galaxies. We do not find a trend between the [N II] 205 flux and the infrared luminosity, but we do find that the [N II] 205/CO(6-5) line ratio is correlated with the 60/100 µm Infrared Astronomical Satellite (IRAS) colors. Thus the [N II] 205/CO(6-5) ratio can be used to infer a dust temperature, and hence the intensity of the interstellar radiation field (ISRF). Photodissociation region (PDR) models show that use of [C I] and CO lines in addition to the typical [C II], [O I], and FIR fluxes drive the model solutions to higher densities and lower values of G0. -
Linking Dust Emission to Fundamental Properties in Galaxies: the Low-Metallicity Picture?
A&A 582, A121 (2015) Astronomy DOI: 10.1051/0004-6361/201526067 & c ESO 2015 Astrophysics Linking dust emission to fundamental properties in galaxies: the low-metallicity picture? A. Rémy-Ruyer1;2, S. C. Madden2, F. Galliano2, V. Lebouteiller2, M. Baes3, G. J. Bendo4, A. Boselli5, L. Ciesla6, D. Cormier7, A. Cooray8, L. Cortese9, I. De Looze3;10, V. Doublier-Pritchard11, M. Galametz12, A. P. Jones1, O. Ł. Karczewski13, N. Lu14, and L. Spinoglio15 1 Institut d’Astrophysique Spatiale, CNRS, UMR 8617, 91405 Orsay, France e-mail: [email protected]; [email protected] 2 Laboratoire AIM, CEA/IRFU/Service d’Astrophysique, Université Paris Diderot, Bât. 709, 91191 Gif-sur-Yvette, France 3 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Laboratoire d’Astrophysique de Marseille – LAM, Université d’Aix-Marseille & CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France 6 Department of Physics, University of Crete, 71003 Heraklion, Greece 7 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 8 Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 9 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, Hawthorn VIC 3122, Australia 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Max-Planck für Extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching-bei-München, Germany 12 European Southern Observatory, Karl-Schwarzschild-Str. -
CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, -
The Centre of the Active Galaxy NGC 1097
Figure 4: Relative map- References ping speed of SCOWL 1000000 versus the ALMA Com- The OWL Instrument Concept Studies have been pact Configuration. published as ESO internal reports. They can be ob- tained from the PI’s or ESO. 10000 (1) D’Odorico S., Moorwood A. F .M., Beckers, J. 1991, Journal of Optics 22, 85 (2) CODEX, Cosmic Dynamics Experiment, OWL–CSR-ESO-00000-0160, October 2005 100 (3) T-OWL, Thermal Infrared Imager and Spectrograph for OWL, OWL–CSR-ESO-00000-0161, October 2005 (4) QuantEYE, OWL–CSR-ESO-00000-0162, October 0 2005 (5) SCOWL, Submillimeter Camera for OWL; OWL–CSR-ESO-00000-0163, September 2005 (6) MOMFIS, Multi Object Multi Field IR Spectrograph, OWL–CSR-ESO-00000-0164, September 2005 0.01 (7) ONIRICA, OWL NIR Imaging Camera, OWL–CSR-ESO-00000-0165, October 2005 (8) EPICS, Earth-like Planet Imaging Camera and Spectrograph, OWL–CSR-ESO-00000-0166, 0.0001 October 2005 850 450 350 850 450 350 λ(µm) (9) HyTNIC, Hyper-Telescope Near Infrared Camera, ALMA Compact SCOWL OWL–CSR-ESO-00000-0167, October 2005 The Centre of the Active Galaxy NGC 1097 Near-infrared images of the active galaxy A colour-composite image of the cen- NGC 1097 have been obtained by a team of tral 5 500 light-years wide region of astronomers1 using NACO on the VLT. Located the spiral galaxy NGC 1097, obtained with NACO on the VLT. More than at a distance of about 45 million light years in 300 star-forming regions – white spots the southern constellation Fornax, NGC 1097 is in the image – are distributed along a relatively bright, barred spiral galaxy seen a ring of dust and gas in the image. -
The Radio Properties of a Complete Sample of Bright Galaxies
Aust. J. Phys., 1982,35,321-50 The Radio Properties of a Complete Sample of Bright Galaxies J. I. Harnett School of Physics, University of Sydney, Sydney, N.S.W. 2006. Abstract Results are given for the radio continuum properties of an optically complete sample of 294 bright galaxies, 147 of which have been detected. Data were obtained with the 408 MHz Molonglo Radio Telescope. The radio luminosity functions for all galaxies and for spiral galaxies alone are derived and the radio emission for different galaxy types is investigated. Spectral indices of 73 galaxies which had been detected at other frequencies were derived; the mean index of a reliable subsample is <ex) = -0,71. 1. Introduction There have been many extensive surveys of continuum radio emission from bright galaxies. The earliest comprehensive survey of high sensitivity was that of Cameron (1971a, 1971b) using the Molonglo Cross Radio Telescope at 408 MHz. Cameron observed two optically complete samples south of b = + 18° and defined the radio luminosity function with reasonable statistics at radio powers of ~ 1022 W HZ-I. In the past decade the optical properties of galaxies have been revised so that the selection of an optically complete sample is more reliable. In addition, between 1970 and 1978 the sensitivity of the 408 MHz Molonglo Cross was improved by more than a magnitude, permitting more detections and more accurate measurements of weak' radio emission. Before observations at 408 MHz with the Molonglo Cross ceased in 1978, a new survey was made to improve Cameron's results and provide the best possible data base for subsequent investigations at different frequencies. -
Extra-Nuclear Starbursts: Young Luminous Hinge Clumps In
Extra-Nuclear Starbursts: Young Luminous Hinge Clumps in Interacting Galaxies Beverly J. Smith1, Roberto Soria2, Curtis Struck3, Mark L. Giroux1, Douglas A. Swartz4, and Mihoko Yukita5 ABSTRACT Hinge clumps are luminous knots of star formation near the base of tidal features in some interacting galaxies. We use archival Hubble Space Telescope UV/optical/IR images and Chandra X-ray maps along with GALEX UV, Spitzer IR, and ground-based optical/near-IR images to investigate the star forming properties in a sample of 12 hinge clumps in five interacting galaxies. 1 The most extreme of these hinge clumps have star formation rates of 1 9 M yr− , comparable to or larger than the ‘overlap’ region of intense star formation between− the⊙ two disks of the colliding galaxy system the Antennae. In the HST images, we have found remarkably large and luminous sources at the centers of these hinge clumps. These objects are much larger and more luminous than typical ‘super-star clusters’ in interacting galaxies, and are sometimes embedded in a linear ridge of fainter star clusters, consistent with star formation along a narrow caustic. These central sources have diameters of 70 pc, compared to 3 pc in ‘ordinary’ super-star clusters. ∼ ∼ Their absolute I magnitudes range from MI 12.2 to 16.5, thus if they are individual star clusters they would lie near the top of the ‘super∼ − star cluster’− luminosity function of star clusters. These sources may not be individual star clusters, but instead may be tightly packed groups of clusters that are blended together in the HST images. -
115 Abell Galaxy Cluster # 373
WINTER Medium-scope challenges 271 # # 115 Abell Galaxy Cluster # 373 Target Type RA Dec. Constellation Magnitude Size Chart AGCS 373 Galaxy cluster 03 38.5 –35 27.0 Fornax – 180 ′ 5.22 Chart 5.22 Abell Galaxy Cluster (South) 373 272 Cosmic Challenge WINTER Nestled in the southeast corner of the dim early winter western suburbs. Deep photographs reveal that NGC constellation Fornax, adjacent to the distinctive triangle 1316 contains many dust clouds and is surrounded by a formed by 6th-magnitude Chi-1 ( 1), Chi-2 ( 2), and complex envelope of faint material, several loops of Chi-3 ( 3) Fornacis, is an attractive cluster of galaxies which appear to engulf a smaller galaxy, NGC 1317, 6 ′ known as Abell Galaxy Cluster – Southern Supplement to the north. Astronomers consider this to be a case of (AGCS) 373. In addition to his research that led to the galactic cannibalism, with the larger NGC 1316 discovery of more than 80 new planetary nebulae in the devouring its smaller companion. The merger is further 1950s, George Abell also examined the overall structure signaled by strong radio emissions being telegraphed of the universe. He did so by studying and cataloging from the scene. 2,712 galaxy clusters that had been captured on the In my 8-inch reflector, NGC 1316 appears as a then-new National Geographic Society–Palomar bright, slightly oval disk with a distinctly brighter Observatory Sky Survey taken with the 48-inch Samuel nucleus. NGC 1317, about 12th magnitude and 2 ′ Oschin Schmidt camera at Palomar Observatory. In across, is visible in a 6-inch scope, although averted 1958, he published the results of his study as a paper vision may be needed to pick it out. -
Structure and Star Formation in Disk Galaxies I. Sample Selection And
Mon. Not. R. Astron. Soc. 000, 1–9 (2003) Printed 31 October 2018 (MN LATEX style file v1.4) Structure and star formation in disk galaxies I. Sample selection and near infrared imaging J. H. Knapen1,2, R. S. de Jong3, S. Stedman1 and D. M. Bramich4 1University of Hertfordshire, Department of Physical Sciences, Hatfield, Herts AL10 9AB 2Isaac Newton Group of Telescopes, Apartado 321, E-38700 Santa Cruz de La Palma, Spain 3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 4School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS Accepted March 2003. Received ; in original form ABSTRACT We present near-infrared imaging of a sample of 57 relatively large, Northern spiral galaxies with low inclination. After describing the selection criteria and some of the basic properties of the sample, we give a detailed description of the data collection and reduction procedures. The Ks λ =2.2µm images cover most of the disk for all galaxies, with a field of view of at least 4.2 arcmin. The spatial resolution is better than an arcsec for most images. We fit bulge and exponential disk components to radial profiles of the light distribution. We then derive the basic parameters of these components, as well as the bulge/disk ratio, and explore correlations of these parameters with several galaxy parameters. Key words: galaxies: spiral – galaxies: structure – infrared: galaxies 1 INTRODUCTION only now starting to be published (e.g., 2MASS: Skrutskie et al. 1997, Jarrett et al. 2003; Seigar & James 1998a, 1998b; Near-infrared (NIR) imaging of galaxies is a better tracer Moriondo et al. -
Arxiv:1603.06895V2 [Astro-Ph.GA] 10 May 2016 Cno Ta.19)I
A Selection of Giant Radio Sources from NVSS D. D. Proctor Visiting Scientist, Lawrence Livermore National Laboratory, L-405, 7000 East Avenue, Livermore, CA, 94550; [email protected] ABSTRACT Results of the application of pattern recognition techniques to the problem of identifying Giant Radio Sources (GRS) from the data in the NVSS catalog are presented and issues affecting the process are explored. Decision-tree pat- tern recognition software was applied to training set source pairs developed from known NVSS large angular size radio galaxies. The full training set consisted of 51,195 source pairs, 48 of which were known GRS for which each lobe was primarily represented by a single catalog component. The source pairs had a maximum separation of 20′ and a minimum component area of 1.87 square arc minutes at the 1.4 mJy level. The importance of comparing resulting probabil- ity distributions of the training and application sets for cases of unknown class ratio is demonstrated. The probability of correctly ranking a randomly selected (GRS, non-GRS) pair from the best of the tested classifiers was determined to be 97.8+1.5%. The best classifiers were applied to the over 870,000 candidate pairs from the entire catalog. Images of higher ranked sources were visually screened and a table of over sixteen hundred candidates, including morphological annota- tion, is presented. These systems include doubles and triples, Wide-Angle Tail (WAT) and Narrow-Angle Tail (NAT), S- or Z-shaped systems, and core-jets and resolved cores. While some resolved lobe systems are recovered with this technique, generally it is expected that such systems would require a different approach. -
Eric Joseph Murphy
Eric Joseph Murphy First-Author 100. Murphy, Eric J. 2013, Astrophysical Journal, 777, 58 Refereed “The Role of Merger Stage on Galaxy Radio Spectra in Local Infrared-Bright Starburst Galaxies” Publications 99. Murphy, E.J., et al. 2013, Astrophysical Journal, 768, 2 “Radio and Mid-Infrared Properties of Compact Starbursts: Distancing Themselves from the Main Sequence” 98. Murphy, E.J., et al. 2012, Astrophysical Journal, 761, 97 “The Star Formation in Radio Survey: GBT 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-Forming Regions” 97. Murphy, E.J., Porter, T.A., Moskalenko, I.V., Helou, G., and Strong, A.W., 2012, Astrophysical Journal, 750, 126 “Characterizing Cosmic-Ray Propagation in Massive Star-Forming Regions: The Case of 30Doradus and the Large Magellanic Cloud” 96. Murphy, E.J., et al. 2011, Astrophysical Journal, 737, 67 “Calibrating Extinction-Free Star Formation Rate Diagnostics with 33 GHz Free-Free Emission in NGC 6946” 95. Murphy, E.J., Chary, R-.R., Dickinson, M., Pope, A., Frayer, D.T., and Lin, L. 2011, Astrophysical Journal, 732, 126 “An Accounting of the Dust-Obscured Star Formation and Accretion Histories Over the Last ∼11 Billion Years” 94. Murphy, E.J., et al. 2010, Astrophysical Journal Letters, 709, L108 “The Detection of Anomalous Dust Emission in the Nearby Galaxy NGC 6946” 93. Murphy, Eric J. 2009, Astrophysical Journal, 706, 482 “The Far-Infrared–Radio Correlation at High Redshifts: Physical Considerations and Prospects for the Square Kilometer Array” 92. Murphy, E.J., Chary, R.-R., Alexander, D. M., Dickinson, M., Magnelli, B., Morrison, G., Pope, A., and Teplitz, H.