TPO 1 Native Tree List

Total Page:16

File Type:pdf, Size:1020Kb

TPO 1 Native Tree List City of Pasadena Canyon Live Oak (Quercus chrysolepis) The May 2002 The Canyon Live amendment to the City Trees Oak is a variable tree adapted to and Tree Protection Ordinance the often dry, hot conditions in created protection measures for Southern California. It can three types of trees on private grow in a shrub form in harsh hill- side conditions, or property — native, specimen, and to heights of 70 feet in open areas. landmark. Native trees are specified The average canopy spread is 20-60 feet. The leaves are bright, shiny green on top and bluish for protection because they help gray underneath; leaf edges can be spiny or smooth. The bark tends to be smooth while the maintain native populations of tree is young, but becomes rougher and grayish with age. Besides its exceptionally strong hard birds, insects, and other animals, wood, another feature is the large acorns that take two years to mature and can be between 2 and promote better environmental to 3 inches long. The scientific name “chrysolepis” means “gold scale” and comes from the tiny golden conditions. The 13 native trees hairs that cover the underside of the leaves and the bumpy scales of the acorn cups. that are protected in the amend- California Black Walnut ment are illustrated and described (Juglans californica) in this brochure. To qualify for pro- This native tree is 15-30 feet tall and tection, native trees must have a frequently has sev- eral trunks. Trunks of mature trees are trunk diameter of 8 or more inches dark brown. Many separate leaves, at chest height. In residential the same size and shape, grow along zones, the trees must be in a spec- a stalk up to 11 inches long; they ified setback. On non-residential turn from bright green to yellow properties, native trees are before falling off in the winter. The 1313 protected on the entire site. walnut is small, thick-shelled and when cracked open The brochure is intended as a general guide resembles the face NativeNative TreesTrees to identifying native trees. To determine the of an owl. Black walnuts, like acorns, were an Department of Public Works species on your property, please consult with important food for indigenous people of California Parks and Natural Resources Protected by the City Trees and Tree Protection a certified arborist. and remain important for wildlife. 100 North Garfield Ave., Pasadena, CA 91109 (626) 744-4321 Ordinance May 2002 Amendment www.ci.pasadena.ca.us/publicworks click on tree ordinance California Buckeye California Sycamore Western Cottonwood Engelmann Oak (Aesculus californica) (Platanus racemosa) (Populus fremontii) (Quercus engelmannii) Like other native trees, the California Buckeye, or Horse Sycamores are stream-loving This water-loving tree, also called Also known as the Chestnut, is adapted to Southern California’s dry climate. natives, reaching heights of 80 Fremont Cottonwood, grows to Pasadena Oak, this is a Its umbrella-like canopy spreads out to 30 feet, but it feet with a canopy spread of heights of 80 feet and has a large, wide-spreading only reaches heights 50 feet. The highly recogniza- broad, open canopy. The trunk is evergreen tree. The of 15-25 feet. The ble bark sloughs off as the tree gray with thick, rough bark. The canopy has an average palm-shaped leaves grows, displaying a patchwork triangular leaves are often wider height of 40-50 feet and include 5-7 leaves of light and dark colors. Leaves than long. They are shiny yellow- can be twice as wide. It that are oblong and are broad, deeply fingered and green during spring and summer, has smooth, wavy-edged pointed at the end. turn light brown/orange before but turn bright yellow in the fall before dropping. Fruits are leaves that are 2-3 inches in length and gray-blue in The large, light red dropping in late fall and winter. light brown, egg-shaped capsules that open in the spring to color. The bark is light gray and furrowed. Acorns are or white flower Fruits of this tree are bristly brown balls comprised of many release many cottony seeds. Early settlers planted Cottonwoods round-tipped and half enclosed in bumpy caps. These clusters are attractive small, narrow seeds connected to tufts of “hair.” In natural for shade and windbreaks. Oaks are adapted to Southern California’s dry climate and pungently settings, Sycamores survive dry periods by having deep roots but may lose some leaves during drought years. scented, producing that reach down to ground water. In landscape areas, they White Alder nectar that is deadly need supplemental water during droughts. (Alnus rhobifolia) to bees. In native Black Cottonwood (Populus trichocarpa) settings, this tree Coast Live Oak This is a fast-growing tree that loses its leaves in will reach heights of 50-70 feet, (Quercus agrifolia) This tree is named after midsummer; in with a canopy spread of 40 feet. the dark color of its bark. cultivated areas, it retains them until late fall. Once One of Pasadena’s most common It has one main trunk that is The tallest native the leaves fall, the large, pear-shaped seedpods are native trees, the Coast Live Oak usually very straight and light Cottonwood, it reaches silhouetted against the silvery trunk and bare branches. is highly recognizable by the gray, white or light brown in heights of 120 feet. Fast dense canopy of small, cupped, color. Branches that break off growing, Cottonwoods Arroyo Willow dark green leaves that have from the trunk leave scars that require moist soil that prickly points along the edges. resemble eyes. Alder leaves are (Salix lasiolepis) exists along streams and Trunk bark is gray; smooth and bright green, triangle shaped and in flood plains. Leaves are heart-shaped and have small This tree is native to light colored in youth, rough and darker when mature. The have small teeth on the edges. The seeds are contained in serrated-like edges. They are dark green on top and pale streams where there is acorns are dark brown, thin and pointed. Coast Live Oaks are tiny cones that are clustered on short stems. Alders need a green underneath, turning bright yellow before dropping plenty of water, which generally slow-growing trees that may reach 70 feet in height continuous water supply and grow naturally along streams in the fall. The fruit is a round, brown capsule that allows it to form a with a canopy of 100 feet or more and a root system about the in Pasadena’s canyons. splits open to release many cottony seeds that drift in dense root mass. It same size as the canopy. The trees drop some of their leaves in the breeze. Cottonwood leaves make a distinct rustling may look like a shrub the spring, while gradually gaining new leaves. Over 200 native California Laurel sound in the wind. bird species rely on Coast Live Oaks for food and shelter. in areas that have (Umbellularia californica) frequent scouring floods; otherwise it The Laurel is an evergreen tree Scrub Oak California White (Quercus berberidifolia) can reach heights of Oak/Valley Oak that can grow 90 feet tall and 50 feet wide. The dark green leaves 35-40 feet with a (Quercus lobata) This shrub-like Oak is a 45-foot spread. Arroyo are glossy on top, finely hairy dense growing, short, Willows frequently This majestic tree thrives in beneath, 3-5 inches long and wide tree that may reach have more than one deep, rich soil and can reach leathery. The bark is generally heights of 15 feet. This trunk that is smooth a height of 150 feet, with a smooth and reddish-brown. The species usually grows and gray-brown when spread of 75-100 feet. The round, 1/2 to 1-inch berry is like a shrub with many young, becoming name lobata denotes the leaf’s green when young, turning dark trunks. The bark is darker and rough with age. Leaves are oblong, dark shape with 7-11 lobes. Leaves purple when mature. Bay trees need steady access generally gray, smooth when young and rough when green on top and silvery-white underneath, turning are glossy green in spring and to water and grow naturally on canyon slopes and along older. The Scrub Oak has small, leathery leaves with yellow-brown in summer and falling off in the winter. summer, turning brown before falling in autumn. Valley Oak streams. When rubbed or crushed, the leaves and twigs are spines on the edges and small, oval acorns with knobby Large trees may look like they’re “weeping” because of acorns are 1-2 inches long and chestnut brown. The bark is distinctly aromatic and can cause itching in eyes. Leaves caps. This Oak is not common as a street tree in their hanging branches and long leaves. In spring, the gray, thick and cracked. Legend says that when rainy winters are not to be confused with the cultivated bay leaves that Pasadena, but is abundant in Pasadena’s foothills and cottony seeds can be seen blowing from the tree. are approaching, Valley Oaks drop more acorns than usual. are used in cooking. the Arroyo Seco. .
Recommended publications
  • Malosma Laurina (Nutt.) Nutt. Ex Abrams
    I. SPECIES Malosma laurina (Nutt.) Nutt. ex Abrams NRCS CODE: Family: Anacardiaceae MALA6 Subfamily: Anacardiodeae Order: Sapindales Subclass: Rosidae Class: Magnoliopsida Immature fruits are green to red in mid-summer. Plants tend to flower in May to June. A. Subspecific taxa none B. Synonyms Rhus laurina Nutt. (USDA PLANTS 2017) C. Common name laurel sumac (McMinn 1939, Calflora 2016) There is only one species of Malosma. Phylogenetic analyses based on molecular data and a combination of D. Taxonomic relationships molecular and structural data place Malosma as distinct but related to both Toxicodendron and Rhus (Miller et al. 2001, Yi et al. 2004, Andrés-Hernández et al. 2014). E. Related taxa in region Rhus ovata and Rhus integrifolia may be the closest relatives and laurel sumac co-occurs with both species. Very early, Malosma was separated out of the genus Rhus in part because it has smaller fruits and lacks the following traits possessed by all species of Rhus : red-glandular hairs on the fruits and axis of the inflorescence, hairs on sepal margins, and glands on the leaf blades (Barkley 1937, Andrés-Hernández et al. 2014). F. Taxonomic issues none G. Other The name Malosma refers to the strong odor of the plant (Miller & Wilken 2017). The odor of the crushed leaves has been described as apple-like, but some think the smell is more like bitter almonds (Allen & Roberts 2013). The leaves are similar to those of the laurel tree and many others in family Lauraceae, hence the specific epithet "laurina." Montgomery & Cheo (1971) found time to ignition for dried leaf blades of laurel sumac to be intermediate and similar to scrub oak, Prunus ilicifolia, and Rhamnus crocea; faster than Heteromeles arbutifolia, Arctostaphylos densiflora, and Rhus ovata; and slower than Salvia mellifera.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Santa Barbara Ancient Plant Use and the Importance of Geophytes Among the Island Chumash of Santa Cruz
    UNIVERSITY OF CALIFORNIA Santa Barbara Ancient Plant Use and the Importance of Geophytes among the Island Chumash of Santa Cruz Island, California A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Anthropology by Kristina Marie Gill Committee in charge: Professor Michael A. Glassow, Chair Professor Michael A. Jochim Professor Amber M. VanDerwarker Professor Lynn H. Gamble September 2015 The dissertation of Kristina Marie Gill is approved. __________________________________________ Michael A. Jochim __________________________________________ Amber M. VanDerwarker __________________________________________ Lynn H. Gamble __________________________________________ Michael A. Glassow, Committee Chair July 2015 Ancient Plant Use and the Importance of Geophytes among the Island Chumash of Santa Cruz Island, California Copyright © 2015 By Kristina Marie Gill iii DEDICATION This dissertation is dedicated to my Family, Mike Glassow, and the Chumash People. iv ACKNOWLEDGEMENTS I am indebted to many people who have provided guidance, encouragement, and support in my career as an archaeologist, and especially through my undergraduate and graduate studies. For those of whom I am unable to personally thank here, know that I deeply appreciate your support. First and foremost, I want to thank my chair Michael Glassow for his patience, enthusiasm, and encouragement during all aspects of this daunting project. I am also truly grateful to have had the opportunity to know, learn from, and work with my other committee members, Mike Jochim, Amber VanDerwarker, and Lynn Gamble. I cherish my various field experiences with them all on the Channel Islands and especially in southern Germany with Mike Jochim, whose worldly perspective I value deeply. I also thank Terry Jones, who provided me many undergraduate opportunities in California archaeology and encouraged me to attend a field school on San Clemente Island with Mark Raab and Andy Yatsko, an experience that left me captivated with the islands and their history.
    [Show full text]
  • Juglans Californica, Southern California Black Walnut
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T35154A9915361 Juglans californica, Southern California Black Walnut Assessment by: World Conservation Monitoring Centre View on www.iucnredlist.org Citation: World Conservation Monitoring Centre. 1998. Juglans californica. The IUCN Red List of Threatened Species 1998: e.T35154A9915361. http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T35154A9915361.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED
    [Show full text]
  • V. Environmental Impact Analysis C. Biological Resources
    V. ENVIRONMENTAL IMPACT ANALYSIS C. BIOLOGICAL RESOURCES INTRODUCTION A Biological Resources Evaluation for the Proposed Project was prepared by TeraCor Resource Management in November 2003 to analyze the potential impacts on biological resources associated with the Proposed Project. A summary of the Biological Resources Evaluation with respect to potential impacts on biological resources, and as reviewed and revised for consistency with the City of Malibu LCP1, is set forth below. The Biological Resources Evaluation, which is incorporated herein by this reference, is included in its entirety as Appendix D to this Draft Final EIR. A Technical Memorandum amending the Biological Resources Evaluation prepared by Teracor Resource Management was written on 27 March 2007 to clarify and evaluate three issues: 1) to confirm the status of biological resources present on site, 2) to confirm the presence or absence of wetlands, “waters of the U.S.” streambeds, or other water features present on-site, and, 3) determine if California black walnut (Juglans californica) trees are present on-site. The conclusions of the findings made by TeraCor Resource Management with respect to these three issues are set forth below. The Technical Memorandum, which is incorporated herein by reference, is provided in Appendix D-1, Biological Assessment – Verification of Conditions. The purpose of this evaluation is to provide an understanding of the biological resources present within the Project Site, as determined from field reconnaissance and available scientific literature. This biological evaluation inventories floral and faunal resources detected on or near the Project Site, and predicts faunal resources determined likely to be present based on habitat conditions, known species distribution, and field observations.
    [Show full text]
  • Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)
    Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship.
    [Show full text]
  • Status and Impact of Walnut Twig Beetle in Urban Forest, Orchard, and Native Forest Ecosystems
    J. For. 117(2):152–163 BARK BEETLE SPECIAL SECTION doi: 10.1093/jofore/fvy081 Published by Oxford University Press on behalf of the Society of American Foresters 2019. Tis work is written by (a) US Government employee(s) and is in the public domain in the US. entomology Status and Impact of Walnut Twig Beetle in Urban Forest, Orchard, and Native Forest Ecosystems Steven J. Seybold, William E. Klingeman III, Stacy M. Hishinuma, Tom W. Coleman, and Andrew D. Graves The walnut twig beetle, a native phloem-boring bark beetle originating on Arizona walnut, has invaded urban, is fatal to walnut trees (Figure 2) and was frst orchard, and native forest habitats throughout the USA as well as in Italy. Although the beetle has been associated noted in the late 2000s for its involvement with dead and dying walnut trees indigenous to riparian forests of the Southwest, the primary impact appears to in the gradual deterioration and mortality of have been on the health of landscape black walnut trees in urban and peri-urban sites in western US states, and several species of black walnut in the west- in Pennsylvania, Tennessee, and Virginia. This has been refected in numbers of trees removed and tree removal ern United States (Graves et al. 2009, Flint costs. In addition, trees have been killed in the primary US Juglans germplasm repository in northern California, et al. 2010, Tisserat et al. 2011, Seybold and low, but measureable, tree mortality has occurred in some English walnut orchards in California’s Central Valley. et al. 2013b).
    [Show full text]
  • An Evolutionary Perspective on Human Cross-Sensitivity to Tree Nut and Seed Allergens," Aliso: a Journal of Systematic and Evolutionary Botany: Vol
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 33 | Issue 2 Article 3 2015 An Evolutionary Perspective on Human Cross- sensitivity to Tree Nut and Seed Allergens Amanda E. Fisher Rancho Santa Ana Botanic Garden, Claremont, California Annalise M. Nawrocki Pomona College, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, Evolution Commons, and the Nutrition Commons Recommended Citation Fisher, Amanda E. and Nawrocki, Annalise M. (2015) "An Evolutionary Perspective on Human Cross-sensitivity to Tree Nut and Seed Allergens," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 33: Iss. 2, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol33/iss2/3 Aliso, 33(2), pp. 91–110 ISSN 0065-6275 (print), 2327-2929 (online) AN EVOLUTIONARY PERSPECTIVE ON HUMAN CROSS-SENSITIVITY TO TREE NUT AND SEED ALLERGENS AMANDA E. FISHER1-3 AND ANNALISE M. NAWROCKI2 1Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, California 91711 (Current affiliation: Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840); 2Pomona College, 333 North College Way, Claremont, California 91711 (Current affiliation: Amgen Inc., [email protected]) 3Corresponding author ([email protected]) ABSTRACT Tree nut allergies are some of the most common and serious allergies in the United States. Patients who are sensitive to nuts or to seeds commonly called nuts are advised to avoid consuming a variety of different species, even though these may be distantly related in terms of their evolutionary history. This is because studies in the literature report that patients often display sensitivity to multiple nut species (cross- sensitivity) if they have an existing nut allergy.
    [Show full text]
  • 2018 BIODIVERSITY REPORT City of Los Angeles
    2018 BIODIVERSITY REPORT City of Los Angeles Appendix A Prepared by: Isaac Brown Ecology Studio and LA Sanitation & Environment Appendix A Ecological Subsections Description Appendix A1 p1 Appendix A1 p2 Appendix A1 p3 Appendix A1 p4 Appendix A1 p5 Appendix A1 p6 Appendix A1 p7 Appendix A1 p8 Appendix A1 p9 Appendix A2 Sensitive Biological Resources C. Biological Resources Planning Exhibit C-1 Consultants Habitat-Oriented Biological Research Assessment Planning Zones City of Los Angeles L.A. CEQA Thresholds Guide 2006 Page C-10 Appendix A2 p1 C. Biological Resources Exhibit C-7 SENSITIVE SPECIES COMPENDIUM - CITY OF LOS ANGELES1 KEY State Status - California Department of Fish and Game (CDFG) SE State Listed Endangered ST State Listed Threatened CSC Species of Special Concern2 SCE State Candidate Endangered SCT State Candidate Threatened SFP State Fully Protected SP State Protected SR State Listed Rare Federal Status - U.S. Fish and Wildlife Service (USFWS) FE Federally Listed Endangered FT Federally Listed Threatened FCH Federally Listed Critical Habitat FPE Federally Proposed Endangered FPT Federally Proposed Threatened FPCH Federally Proposed Critical Habitat FPD Federally Proposed Delisting FC Federal Candidate Species EXT Extinct _______________ 1 This list is current as of January 2001. Check the most recent state and federal lists for updates and changes, or consult the CDFG's California Natural Diversity Database. 2 CSC - California Special Concern species. The Department has designated certain vertebrate species as "Species of Special Concern" because declining population levels, limited ranges, and/or continuing threats have made them vulnerable to extinction. The goal of designating species as "Species of Special Concern" is to halt or reverse their decline by calling attention to their plight and addressing the issues of concern early enough to secure their long term viability.
    [Show full text]
  • Santa Monica Mountains National Recreation Area Vascular Plant
    Santa Monica Mountains National Recreation Area Vascular Plant Species List (as derived from NPSpecies 18 Dec 2006) FAMILY NAME Scientific Name (Common Name) (* = non-native) - [Abundance] ASPLENIACEAE AIZOACEAE Asplenium vespertinum (spleenwort) - [Rare] Carpobrotus edulis (hottentot-fig) * - [Common] Galenia pubescens * - [Rare] AZOLLACEAE Malephora crocea * - [Uncommon] Azolla filiculoides (duck fern, mosquito fern) - [Rare] Mesembryanthemum crystallinum (common ice plant) * - [Common] BLECHNACEAE Mesembryanthemum nodiflorum (slender-leaved ice plant) * Woodwardia fimbriata (chain fern) - [Uncommon] - [Uncommon] DENNSTAEDTIACEAE Tetragonia tetragonioides (New Zealand-spinach) * - Pteridium aquilinum var. pubescens (western bracken) - [Uncommon] [Uncommon] AMARANTHACEAE DRYOPTERIDACEAE Amaranthus albus (tumbleweed) - [Common] Dryopteris arguta (coastal woodfern) - [Common] Amaranthus blitoides (prostrate pigweed) * - [Common] Amaranthus californicus (California amaranth) - [Uncommon] EQUISETACEAE Amaranthus deflexus (low amaranth) * - [Uncommon] Equisetum arvense - [Uncommon] Amaranthus powellii - [Unknown] Equisetum hyemale ssp. affine (common scouring rush) - Amaranthus retroflexus (rough pigweed) * - [Common] [Uncommon] Equisetum laevigatum (smooth scouring-rush) - [Uncommon] ANACARDIACEAE Equisetum telmateia ssp. braunii (giant horsetail) - Malosma laurina (laurel sumac) - [Common] [Uncommon] Rhus integrifolia (lemonadeberry) - [Common] Equisetum X ferrissi ((sterile hybrid)) - [Unknown] Rhus ovata (sugar
    [Show full text]
  • Supplementary Material
    Xiang et al., Page S1 Supporting Information Fig. S1. Examples of the diversity of diaspore shapes in Fagales. Fig. S2. Cladogram of Fagales obtained from the 5-marker data set. Fig. S3. Chronogram of Fagales obtained from analysis of the 5-marker data set in BEAST. Fig. S4. Time scale of major fagalean divergence events during the past 105 Ma. Fig. S5. Confidence intervals of expected clade diversity (log scale) according to age of stem group. Fig. S6. Evolution of diaspores types in Fagales with BiSSE model. Fig. S7. Evolution of diaspores types in Fagales with Mk1 model. Fig. S8. Evolution of dispersal modes in Fagales with MuSSE model. Fig. S9. Evolution of dispersal modes in Fagales with Mk1 model. Fig. S10. Reconstruction of pollination syndromes in Fagales with BiSSE model. Fig. S11. Reconstruction of pollination syndromes in Fagales with Mk1 model. Fig. S12. Reconstruction of habitat shifts in Fagales with MuSSE model. Fig. S13. Reconstruction of habitat shifts in Fagales with Mk1 model. Fig. S14. Stratigraphy of fossil fagalean genera. Table S1 Genera of Fagales indicating the number of recognized and sampled species, nut sizes, habits, pollination modes, and geographic distributions. Table S2 List of taxa included in this study, sources of plant material, and GenBank accession numbers. Table S3 Primers used for amplification and sequencing in this study. Table S4 Fossil age constraints utilized in this study of Fagales diversification. Table S5 Fossil fruits reviewed in this study. Xiang et al., Page S2 Table S6 Statistics from the analyses of the various data sets. Table S7 Estimated ages for all families and genera of Fagales using BEAST.
    [Show full text]
  • A California-Friendly Guide to Native and Drought Tolerant Gardens
    A California-Friendly Guide to Native and Drought Tolerant Gardens 1 Scale: 1/4” = 1’ 2 WELCOME to our newest edition of “A California-Friendly Guide to Native and Drought Tolerant Gardens”, a collection of plants featured in our customer newsletter, The Current Flow, plus useful information. This publication is intended to help beginning and experienced gardeners become familiar with the different varieties of plants that can help reduce water usage while providing a pleasing and attractive landscape. Native and drought tolerant plants are important for this region, not just because they are water efficient, but because they are the cornerstone of biological diversity and the foundations of the native ecosystems in our local Santa Monica Mountains environment. Using “California-friendly” plants for everything from backyard gardens to wide scale re-vegetation is a positive practice that will benefit the local habitat and all residents who live here. With our current climate conditions of increasing warmth and less moisture, more and more Californians are becoming interested in replacing high-maintenance, lawns that require a lot of water and fertilizers, with water-conserving plants. These can be anything from ground covers to a field of meadow flowers to stately oak trees – they all provide the benefits of lower water needs, reduced maintenance requirements, restored soil health, increased diversity that attracts birds and butterflies, as well as the aesthetic beauty of blending in with the natural landscapes. Visit www.LVMWD.com for conservation information including irrigation tips, how to obtain and use Community Compost, rebate programs, how to register for landscape and garden classes, controlling urban runoff, and more.
    [Show full text]
  • Hybridization Between Native and Non-Native Plant Species in the Riparian Ecosystem Project Information
    Hybridization between native and non-native plant species in the riparian ecosystem Project Information 1. Proposal Title: Hybridization between native and non-native plant species in the riparian ecosystem 2. Proposal applicants: Kristina Schierenbeck, California State University, Chico 3. Corresponding Contact Person: Kristina Schierenbeck Calif. State Univ. Chico Dept. of Biological Sciences Chico, CA 95929-0515 530 898-6410 [email protected] 4. Project Keywords: At-risk species, plants Genetic Conservation and Engineering Nonnative Invasive Species 5. Type of project: Research 6. Does the project involve land acquisition, either in fee or through a conservation easement? No 7. Topic Area: Non-Native Invasive Species 8. Type of applicant: University 9. Location - GIS coordinates: Latitude: 40.0 Longitude: -121.5 Datum: Describe project location using information such as water bodies, river miles, road intersections, landmarks, and size in acres. in riparian corridors along Sacramento River and its tributaries 10. Location - Ecozone: 3.3 Chico Landing to Colusa, 4.1 Clear Creek, 7.3 Mill Creek, 7.4 Deer Creek, 7.5 Big Chico Creek, 7.6 Butte Creek, 8.1 Feather River, 9.2 Lower American River, 10.1 Cache Creek, 10.2 Putah Creek 11. Location - County: Butte, Colusa, Glenn, Plumas, Tehama, Yolo 12. Location - City: Does your project fall within a city jurisdiction? Yes If yes, please list the city: Chico 13. Location - Tribal Lands: Does your project fall on or adjacent to tribal lands? No 14. Location - Congressional District: second 15. Location: California State Senate District Number: 1 California Assembly District Number: 3 16. How many years of funding are you requesting? 3 17.
    [Show full text]