Intergradation Between the Herring Gull Larus Argentatus and the Southern Herring Gull Larus Cachinnans in European Russia E

Total Page:16

File Type:pdf, Size:1020Kb

Intergradation Between the Herring Gull Larus Argentatus and the Southern Herring Gull Larus Cachinnans in European Russia E Russian Journal of Zoology, Vol. 3, No. 1, 1999, pp. 129–141. Translated from Zoologicheskii Zhurnal, Vol. 78, No. 3, 1999, pp. 334–348. Original Russian Text Copyright © 1999 by Panov, Monzikov. English Translation Copyright © 1999 by åÄàä “ç‡Û͇ /Interperiodica” (Russia). Intergradation between the Herring Gull Larus argentatus and the Southern Herring Gull Larus cachinnans in European Russia E. N. Panov and D. G. Monzikov Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 117071 Russia Received January 8, 1998 Abstract—Five gull populations along a 2000-km transect, running from the Barents Sea coast in the Kola Pen- insula to Nizhegorodskaya oblast, were studied with respect to external morphology, vocalization, and DNA features. The transect crosses the easternmost part of the L. argentatus range, as well as areas of the Middle Volga basin inhabited by the gulls of cachinnans-like type. All the morphological and behavioral features proved to form a cline along the transect. Populations of the Barents Sea and the White Sea represent typical L. argentatus, while in those inhabiting the Upper and Middle Volga basin, L. cachinnans features predominate. The population of the Baltic Sea region is intermediate. Comparative DNA analysis by RAPD method has revealed introgression of L. argentatus genes southeastward, up to Nizhegorodskaya oblast, and those of L. cachinnans genes in the opposite direction, to the Baltic Sea. Two scenarios of introgression are discussed: via L. cachinnans omissus dispersal from Fennoscandia along the Volga basin and due to the expansion of the L. c. cachinans range to the north. Both processes may proceed simultaneously. INTRODUCTION In this work, the authors try to analyze another situ- ation of such a kind, namely, the example of interrela- The concept of biological species prevailing in tionships of the herring gulls Larus argentatus and modern zoology is often difficult to apply to real situa- L. cachinnans; this is a situation of allopatric species tions, notwithstanding its apparent similarity and con- sistency. The so-called “large white-headed gull com- gradually dispersing towards one another. This process plex” represents a good example of difficulties in is most evident in Western Europe. In particular, the applying this concept to demarcation of species. This southward dispersal of L. argentatus started in the late complex consists of about 20 taxa, whose range 1960s, and the northward dispersal of L. cachinnans, in embraces almost the entire Holarctics. There is no gen- 1976. At present, both species form mixed nesting col- erally accepted view on their nomenclature status. onies. Mixed argentatus × cachinnans pairs sometimes These taxa may be grouped by degree of similarity in occur, but all attempts to nest are unsuccessful (Yesou, various combinations, and the number of “good” poly- 1991; Yesou et al., 1994). typic species varies from 3 to 15 in different schemes. This is related to the fact that many taxa, well-differen- A similar tendency toward counter-dispersal of tiated morphologically and, hence, deserving the status these species takes place in Eastern Europe. Rapid of “taxonomic species,” are not closed genetic systems, expansion of L. argentatus southwards from Fennos- because they are connected to other taxa by more or candia and in the Baltic was documented in detail in the less intensive gene flows (Panov, 1989). first quarter of the 20th century (see Mierauskas et al., The pairs of forms, which are completely isolated 1991, for a review). Earlier (Monzikov and Panov, reproductively in some areas (i.e., representing “good 1996a, 1996b), we provided evidence for the hypothe- biological species”) but freely hybridize in others, rep- sis of current dispersal of L. cachinnans upstream along resent the main problem for the concept of biological the Volga basin. In general, the situation in Eastern species. These taxa illustrate the situation of secondary Europe differs from that described for western France. “species fusion” (Mayr, 1969). The gulls Larus argen- There is no direct secondary contact between geneti- tatus and L. hyperboreus provide a good example of cally pure populations of L. argentatus and L. cachin- such a type of relationships within the complex of her- ring gulls. These clearly differentiated species are sym- nans. However, our data allow us to suppose that allo- patric and reproductively isolated over vast areas of the patric autochthonous populations of these species are Subarctic. They hybridize intensively only in two dis- connected by gene flows through a chain of intermedi- tant regions, Iceland and northeastern Alaska (Ingolfs- ate hybrid populations. The purpose of this work is to son, 1970, 1987; Spear, 1987). test this hypothesis. 129 130 PANOV, MONZIKOV MATERIALS AND METHODS ties of attribution of all signals from the groups 2–5 to the vocalization type of L. argentatus or L. cachinnans. To test this hypothesis, we undertook a comparative In addition, we undertook discriminant analysis for six analysis of morphobiological peculiarities of gulls in and seven groups. In the last case, it was the sample the following transect: Ainovy Islands, Barents Sea from population 5, Nizhegorodskaya oblast, which was (population 1); Kandalaksha Bay of the White Sea, a priori divided into two subgroups, including signals Murmansk oblast (population 2); Remisaar Island, the typical for L. argentatus and L. cachinnans, respec- Gulf of Finland of the Baltic Sea, Leningradskaya tively. Group numbers (1–6 and 1–7) were used as an oblast (population 3); Rybinsk Reservoir, Yaroslavl independent variable. The resulting Machalanobis dis- oblast (population 4); Sitniki Village, Nizhegorodskaya tance matrix between groups was used for classification oblast (population 5). The transect length was ca. of groups with use of different methods of cluster anal- 2000 km. ysis: full relations, unweighted method of mean rela- For comparison, we used materials on the geneti- tion, and the Ward method. In addition, we made clus- cally pure populations of L. cachinnans from the Cas- terization of all 170 cases, i.e., particular phonograms, pian Sea (population 6) and Black Sea. Phenotypic fea- without their a priori classification, i.e., without pre- tures of 78 live mature birds and 87 chicks were ana- liminary attribution to one of the six or seven groups. In lyzed. Blood samples were taken for DNA analysis by this analysis, We used the above-mentioned methods modified PCR method. Adult gulls were caught from with different metrics (Euclidean and Pearson coeffi- their nests by narcotization of birds using baits with cient). α-chloralose, 33 mg per a bird weighing 800–1500 g. The analysis of DNA polymorphism was conducted We visually examined phenotypic composition of all using RAPD (modified method of polymerase chain the colonies visited and data obtained on nesting biol- reaction with random primer). This method allows us to ogy of all populations, as well as phonograms and vid- compare taxon-specific sets of “bands” (patterns) eos characterizing the specificity of signal behavior of obtained as products of DNA amplification with a ran- the gulls of the Ainovy Islands, Kandalaksha Bay, and dom primer. For identification of taxa, the RAPD Rybinsk Reservoir. The sounds were recorded using method was modified by us for future labeling of Realistic and Sony TCM-121 portable tape recorders, amplification products and their separation in polyacry- and videos were made using a CCD-TR570E camera. lamide gel with subsequent radiography. This provides We used A-PC Avisoft–Sonagraph software for the for higher resolution of this method applied to amplifi- analysis of phonograms. In addition, we analyzed gull cation products of similar lengths, owing to the better collections in the Zoological Museum of Moscow State separation of fragments. The zone of differences University, totalling 276 specimens. When analyzing between “pure” L. argentatus and L. cachinnans is in morphometric features, We used different methods of the area of 280–300 and 550–600 nucleotides, respec- cluster analysis: agglomerative methods (singular and tively. Our collection for genetic analysis included full relations, unweighted mean relation, and the Ward blood samples from 19 taxa (species and subspecies) method, all with Euclidean distance) and iterative from the family Laridae (257 specimens). We analyzed methods (the k-mean method). Calculations were based blood samples from 17 individuals from 3 autochtho- on standardized data. Due to a lack of data on males nous populations of L. argentatus, 19 individuals from from the population from the Rybinsk Reservoir, clus- the autochthonous population of L. cachinnans from tering was done by female samples from all the popula- the Sea of Azov, and 52 individuals from the Baltic tions studied. region and the Volga basin. The analysis of geographic variation in the “long The blood obtained from the wing vein was mixed call” acoustic signal was done on the basis of 170 pho- with conservation buffer containing 50 mM EDTA, 1% nograms using 7 independent variables: durations of NaF, and thymol and was stored without freezing at the last “long syllable” in the initial part of the signal; temperatures not lower than 4°ë. We studied the total second and fifth short syllables; pauses between “long” DNA extracted by phenol-chloroform method without and the first short syllables, between the first and sec- preliminary sedimentation of nuclei. Each polymerase ond and the fourth and fifth short syllables (all in ms); chain reaction (PCR) was performed using one ran- as well as the value of interharmonic interval, in kHz. domly chosen primer. We used two 10-nucleotide prim- The total sample was divided into 6 groups by the num- ers, designated below as primer 29 (5'–CCGGCCT- ber of geographic localities, or local populations, where TAC-3') and 45 (5'-GCCGTCCGAG-3'). The PCR pro- the phonograms were obtained. Sample size ranged cedure was made up of two steps. The first, without from 16 to 52 phonograms.
Recommended publications
  • Microevolution: Species Concept Core Course: ZOOL3014 B.Sc. (Hons’): Vith Semester
    Microevolution: Species concept Core course: ZOOL3014 B.Sc. (Hons’): VIth Semester Prof. Pranveer Singh Clines A cline is a geographic gradient in the frequency of a gene, or in the average value of a character Clines can arise for different reasons: • Natural selection favors a slightly different form along the gradient • It can also arise if two forms are adapted to different environments separated in space and migration (gene flow) takes place between them Term coined by Julian Huxley in 1838 Geographic variation normally exists in the form of a continuous cline A sudden change in gene or character frequency is called a stepped cline An important type of stepped cline is a hybrid zone, an area of contact between two different forms of a species at which hybridization takes place Drivers and evolution of clines Two populations with individuals moving between the populations to demonstrate gene flow Development of clines 1. Primary differentiation / Primary contact / Primary intergradation Primary differentiation is demonstrated using the peppered moth as an example, with a change in an environmental variable such as sooty coverage of trees imposing a selective pressure on a previously uniformly coloured moth population This causes the frequency of melanic morphs to increase the more soot there is on vegetation 2. Secondary contact / Secondary intergradation / Secondary introgression Secondary contact between two previously isolated populations Two previously isolated populations establish contact and therefore gene flow, creating an
    [Show full text]
  • Clinal Variation at Microsatellite Loci Reveals Historical Secondary Intergradation Between Glacial Races of Coregonus Artedi (Teleostei: Coregoninae)
    Evolution, 55(11), 2001, pp. 2274±2286 CLINAL VARIATION AT MICROSATELLITE LOCI REVEALS HISTORICAL SECONDARY INTERGRADATION BETWEEN GLACIAL RACES OF COREGONUS ARTEDI (TELEOSTEI: COREGONINAE) JULIE TURGEON1,2,3 AND LOUIS BERNATCHEZ1,4 1Groupe Interuniversitaire de Recherche en OceÂanographie du QueÂbec, DeÂpartement de biologie, Universite Laval, Ste-Foy, QueÂbec G1K 7P4, Canada 2E-mail: [email protected] 4E-mail: [email protected] Abstract. Classical models of the spatial structure of population genetics rely on the assumption of migration-drift equilibrium, which is seldom met in natural populations having only recently colonized their current range (e.g., postglacial). Population structure then depicts historical events, and counfounding effects due to recent secondary contact between recently differentiated lineages can further counfound analyses of association between geographic and genetic distances. Mitochondrial polymorphisms have revealed the existence of two closely related lineages of the lake cisco, Coregonus artedi, whose signi®cantly different but overlaping geographical distributions provided a weak signal of past range fragmentation blurred by putative subsequent extensive secondary contacts. In this study, we analyzed geographical patterns of genetic variation at seven microsatellite loci among 22 populations of lake cisco located along the axis of an area covered by proglacial lakes 12,000±8000 years ago in North America. The results clearly con®rmed the existence of two genetically distinct races characterized by different sets of microsatellite alleles whose frequencies varied clinally across some 3000 km. Equilibrium and nonequilibrium analyses of isolation by distance revealed historical signal of gene ¯ow resulting from the nearly complete admixture of these races following neutral secondary contacts in their historical habitat and indicated that the colonization process occurred by a stepwise expansion of an eastern (Atlantic) race into a previously established Mississippian race.
    [Show full text]
  • OSME List V3.4 Passerines-2
    The Ornithological Society of the Middle East, the Caucasus and Central Asia (OSME) The OSME Region List of Bird Taxa: Part C, Passerines. Version 3.4 Mar 2017 For taxa that have unproven and probably unlikely presence, see the Hypothetical List. Red font indicates either added information since the previous version or that further documentation is sought. Not all synonyms have been examined. Serial numbers (SN) are merely an administrative conveninence and may change. Please do not cite them as row numbers in any formal correspondence or papers. Key: Compass cardinals (eg N = north, SE = southeast) are used. Rows shaded thus and with yellow text denote summaries of problem taxon groups in which some closely-related taxa may be of indeterminate status or are being studied. Rows shaded thus and with white text contain additional explanatory information on problem taxon groups as and when necessary. A broad dark orange line, as below, indicates the last taxon in a new or suggested species split, or where sspp are best considered separately. The Passerine Reference List (including References for Hypothetical passerines [see Part E] and explanations of Abbreviated References) follows at Part D. Notes↓ & Status abbreviations→ BM=Breeding Migrant, SB/SV=Summer Breeder/Visitor, PM=Passage Migrant, WV=Winter Visitor, RB=Resident Breeder 1. PT=Parent Taxon (used because many records will antedate splits, especially from recent research) – we use the concept of PT with a degree of latitude, roughly equivalent to the formal term sensu lato , ‘in the broad sense’. 2. The term 'report' or ‘reported’ indicates the occurrence is unconfirmed.
    [Show full text]
  • Chv), Coastal Clay (Cc), and Plateau Harsh Voice (Phv
    Heredity (1978),40 (3), 339-348 INTRA-SPECIFIC DIVERGENCE IN THE WESTERN AUSTRALIAN FROG RANIDELLA INSIGNIFERA I. THE EVIDENCE FROM GENE FREQUENCIES AND GENETIC DISTANCE JENEFER N. BLACKWELL* Department of Zoology, University of Western Australia, Nedlands, Western Australia 6009 Received26.viii.77 SUMMARY Analysis of gene frequencies at ten enzyme loci (six polymorphic) failed to produce any evidence that races exist in the frog Ranidellainsign/fera associated with the edaphic feature of sand and clay based ponds. Most polymorphic loci exhibited macrogeographic uniformity of allele frequencies but in no case had any one allele become fixed in any one population. Nor were there any alleles unique to sand populations only or to clay populations only. Genetic distance algorithms failed to show any intra-specific divergence intermediate between inter-population and inter-sibling species levels. 1. INTRODUCTION ON the basis of aurally distinguishable differences in male mating call Main (1957) divided the leptodactylid frog species, Ranidella insignfera (recently removed from the genus Crinia by Blake, 1973) from south-western Australia into three call-types: Coastal harsh voice (Chv), Coastal clay (Cc), and Plateau harsh voice (Phv). Phv appeared to remain unchanged over its range and absence of intergrading calls with either Chv or Cc indicated a lack of gene flow. Phv was therefore regarded as a valid species, R. pseud- insignèra, reproductively isolated from R. insignjfera. Intergradation of calls, in some localities abruptly and in others in a more gradual manner, demon- strated the presence of gene flow between Chv and Cc which were then regarded as two races of one polytypic species, R.
    [Show full text]
  • Natural Selection Along an Environmental Gradient: a Classic Cline in Mouse Pigmentation
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2008.00425.x NATURAL SELECTION ALONG AN ENVIRONMENTAL GRADIENT: A CLASSIC CLINE IN MOUSE PIGMENTATION Lynne M. Mullen1,2 and Hopi E. Hoekstra1,3 1Department of Organismic and Evolutionary Biology and The Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138 2E-mail: [email protected] 3E-mail: [email protected] Received January 30, 2008 Accepted April 22, 2008 We revisited a classic study of morphological variation in the oldfield mouse (Peromyscus polionotus) to estimate the strength of selection acting on pigmentation patterns and to identify the underlying genes. We measured 215 specimens collected by Francis Sumner in the 1920s from eight populations across a 155-km, environmentally variable transect from the white sands of Florida’s Gulf coast to the dark, loamy soil of southeastern Alabama. Like Sumner, we found significant variation among populations: mice inhabiting coastal sand dunes had larger feet, longer tails, and lighter pigmentation than inland populations. Most striking, all seven pigmentation traits examined showed a sharp decrease in reflectance about 55 km from the coast, with most of the phenotypic change occurring over less than 10 km. The largest change in soil reflectance occurred just south of this break in pigmentation. Geographic analysis of microsatellite markers shows little interpopulation differentiation, so the abrupt change in pigmentation is not associated with recent secondary contact or reduced gene flow between adjacent populations. Using these genetic data, we estimated that the strength of selection needed to maintain the observed distribution of pigment traits ranged from 0.0004 to 21%, depending on the trait and model used.
    [Show full text]
  • Taxonomic Aspects of Avian Hybridization
    TAXONOMIC ASPECTS OF AVIAN HYBRIDIZATION LESTER L. SHORT INSTANCESof natural hybridizationfrequently pose difficult taxonomic problems.A decisionregarding the taxonomicstatus of hybridizingforms shouldbe basedupon an evaluationof all availablebiological information concerningtheir relationship.The paucity of availableinformation usually hamperstaxonomists treating hybridizationamong the higher vertebrates. Also it is difficult or impossibleto subjectsuch animals, and particularly animal populations,to experimentalstudy. Neverthelesstaxonomists must renderdecisions that reflect current availableknowledge. I offer the follow- ing discussionand definitionsin the hopeof facilitating suchdecisions by taxonomists,especially those working with terrestrial vertebrates. Ex- amplesforming the frameworkfor the discussionare drawn from the litera- ture of avian hybridization,including some work of my own. The widely divergent treatment of hybridizing forms evident in the recent ornithological literature demonstratesthe need for some guide- lines. At one extremethis divergenttreatment appearsto reflect a hold- over of typologicalthinking (e.g. Godfrey, 1966; Sutton, 1967), while the oppositeextreme (e.g. Phillips et al., 1964; West, 1962) resultsfrom an overly strict interpretationof the biologicalspecies definition in that different speciesdo not interbreed,and henceinterbreeding forms must be conspecific.The resultsof such divergenttreatment are taxonomicover- splittingin the formercase, and overlumpingin the latter. I definehybridization as the
    [Show full text]
  • AOU Classification Committee – North and Middle America Proposal Set 2017-B
    AOU Classification Committee – North and Middle America Proposal Set 2017-B No. Page Title 01 02 Recognize additional species in the Aulacorhynchus “prasinus” toucanet complex 02 17 Treat the subspecies (A) spectabilis and (B) viridiceps as separate species from Eugenes fulgens (Magnificent Hummingbird) 03 23 Elevate Turdus rufopalliatus graysoni to species rank 04 26 Recognize newly described species Arremon kuehnerii 05 30 Revise the classification of the Icteridae: (A) add seven subfamilies; (B) split Leistes from Sturnella; (C) resurrect Ptiloxena for Dives atroviolaceus; and (D) modify the linear sequence of genera 06 34 Revise familial limits and the linear sequence of families within the nine- primaried oscines 07 42 Lump Acanthis flammea and Acanthis hornemanni into a single species 08 48 Split Lanius excubitor into two or more species 09 54 Add Mangrove Rail Rallus longirostris to the main list 10 56 Revise the generic classification and linear sequence of Anas 1 2017-B-1 N&MA Classification Committee p. Recognize additional species in the Aulacorhynchus “prasinus” toucanet complex Background: The AOU (1998) presently considers there to be just one species of Aulacorhynchus prasinus, which ranges from Mexico to Guyana and Bolivia. This taxon’s range combines the taxonomic oversight regions of both the North American and South American classification committees, so this proposal is designed to be submitted to both, with committee-structured voting sections at the end. This is easy to do biologically, because the taxa fall out fairly neatly split between North and South America. (The Panamanian blue-throated population breeding on Cerro Tacarcuna (subspecies cognatus) has (Hilty and Brown 1986) and has not been (Donegan et al.
    [Show full text]
  • Why Was Darwin's View of Species Rejected by Twentieth Century
    Biol Philos (2010) 25:497–527 DOI 10.1007/s10539-010-9213-7 Why was Darwin’s view of species rejected by twentieth century biologists? James Mallet Published online: 1 May 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Historians and philosophers of science agree that Darwin had an understanding of species which led to a workable theory of their origins. To Darwin species did not differ essentially from ‘varieties’ within species, but were distin- guishable in that they had developed gaps in formerly continuous morphological variation. Similar ideas can be defended today after updating them with modern population genetics. Why then, in the 1930s and 1940s, did Dobzhansky, Mayr and others argue that Darwin failed to understand species and speciation? Mayr and Dobzhansky argued that reproductively isolated species were more distinct and ‘real’ than Darwin had proposed. Believing species to be inherently cohesive, Mayr inferred that speciation normally required geographic isolation, an argument that he believed, incorrectly, Darwin had failed to appreciate. Also, before the sociobiology revolution of the 1960s and 1970s, biologists often argued that traits beneficial to whole populations would spread. Reproductive isolation was thus seen as an adaptive trait to prevent disintegration of species. Finally, molecular genetic markers did not exist, and so a presumed biological function of species, repro- ductive isolation, seemed to delimit cryptic species better than character-based criteria like Darwin’s. Today, abundant genetic markers are available and widely used to delimit species, for example using assignment tests: genetics has replaced a Darwinian reliance on morphology for detecting gaps between species.
    [Show full text]
  • Racial Discrimination: How Not to Do It
    Penultimate draft. Published in Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44(3):278-286 If you do not have access to the final version feel free to ask me for a copy [email protected] Racial discrimination: How not to do it Adam Hochman Abstract The UNESCO Statements on Race of the early 1950s are understood to have marked a consensus amongst natural scientists and social scientists that ‘race’ is a social construct. Human biological diversity was shown to be predominantly clinal, or gradual, not discreet, and clustered, as racial naturalism implied. From the seventies social constructionists added that the vast majority of human genetic diversity resides within any given racialised group. While social constructionism about race became the majority consensus view on the topic, social constructionism has always had its critics. Neven Sesardic (2010) has compiled these criticisms into one of the strongest defences of racial naturalism in recent times. In this paper I argue that Sesardic equivocates between two versions of racial naturalism: a weak version and a strong version. As I shall argue, the strong version is not supported by the relevant science. The weak version, on the other hand, does not contrast properly with what social constructionists think about ‘race’. By leaning on this weak view Sesardic’s racial naturalism intermittently gains an appearance of plausibility, but this view is too weak to revive racial naturalism. As Sesardic demonstrates, there are new arguments for racial naturalism post-Human Genome Diversity Project. The positive message behind my critique is how to be a social constructionist about race in the post-genomic era.
    [Show full text]
  • The Nature of Race
    Book. Submitted to Open Behavioral Genetics December 25, 2014 Published in Open Behavioral Genetics June 20, 2015 The Nature of Race John Fuerst1 Abstract: Racial constructionists, anti-naturalists, and anti-realists have challenged users of the biological race concept to provide and defend, from the perspective of biology, biological philosophy, and ethics, a biologically informed concept of race. In this paper, an onto- epistemology of biology is developed. What it is, by this, to be "biological real" and "biologically meaningful" and to represent a "biological natural division" is explained. Early 18th century race concepts are discussed in detail and are shown to be both sensible and not greatly dissimilar to modern concepts. A general biological race concept (GBRC) is developed. It is explained what the GBRC does and does not entail and how this concept unifies the plethora of specific ones, past and present. Other race concepts as developed in the philosophical literature are discussed in relation to the GBRC. The sense in which races are both real and natural is explained. Racial essentialism of the relational sort is shown to be coherent. Next, the GBRC is discussed in relation to anthropological discourse. Traditional human racial classifications are defended from common criticisms: historical incoherence, arbitrariness, cluster discordance, etc. Whether or not these traditional human races could qualify as taxa subspecies – or even species – is considered. It is argued that they could qualify as taxa subspecies by liberal readings of conventional standards. Further, it is pointed out that some species concepts potentially allow certain human populations to be designated as species.
    [Show full text]
  • Hillis, D. M. 2020. the Detection and Naming of Geographic Variation
    52 POINTS OF VIEW POINTS OF VIEW Herpetological Review, 2020, 51(1), 52–56. © 2020 by Society for the Study of Amphibians and Reptiles The Detection and Naming of Geographic Variation Within Species Subspecies is the only taxonomic rank below species transitions, and some herpetologists began to abuse the concept recognized by the International Code of Zoological Nomenclature of subspecies to designate arbitrary slices of continuous clines (1999). The use of subspecies to denote morphologically distinct as subspecies. This practice led to objections (e.g., Wilson and races that occupy different parts of a species range became Brown 1953) about the overuse of subspecies, as authors noted standard practice in zoology in the late 1800s (Mallet 2013). that different morphological features varied across a species Subspecies differ from species in that there are no reproductive range in different ways, so that the application of subspecies or genetic barriers among subspecies, so they typically exhibit was often arbitrary. More recently, other authors have argued a genetically continuous zone of intergradation from one that some subspecies designations are misleading about non- subspecies to the next across geographical space (Mayr 1969, morphological geographic variation or historical sublineages 1982). As noted by Mayr (1969), this means that subspecies are within species (Frost et al. 1992; Zink 2004). not units of evolution (independent evolutionary lineages, in Despite the objections to the often-arbitrary nature of modern terms). Instead, Mayr (1969) argued that subspecies subspecies, they continue to be useful in some contexts, such as represent geographic areas of recognizable morphology within field guides and studies of color-pattern selection, for designating a species, such that the appearance of the animals in one area of strikingly different-looking geographic races within species.
    [Show full text]
  • Ecnomiohyla Rabborum. Rabb's Fringe-Limbed Treefrog Is One of the Most Significantly Threatened Amphibians in Central America
    Ecnomiohyla rabborum. Rabb’s Fringe-limbed Treefrog is one of the most significantly threatened amphibians in Central America. This species is one of the most unusual anurans in the region because of its highly specialized reproductive mode, in which the eggs are laid in water-containing tree cavities and are attached to the interior of the cavity just above the water line. Females depart the tree cavity after oviposition, leaving the males to brood the eggs and the developing tadpoles, and parental care apparently extends to feeding the tadpoles flecks of skin from the male’s body (AmphibiaWeb site: accessed 24 July 2014). Mendelson et al. (2008) described this tree canopy treefrog from “montane cloudforest in the immediate vicinity of the town of El Valle de Antón” (Am- phibiaWeb site: accessed 24 July 2014) in central Panama, at elevations from 900 to 1,150 m. This mode of reproduction is typical of the members of the genus Ecnomiohyla, which now comprises 14 species (Batista et al. 2014) with a collective distribution extending from southern Mexico to northwestern South America (Colombia and Ecuador). This treefrog appears to be one of the many casualties of a sweep-through of Panama by the fungal pathogen Batrachochytrium dendrobatidis in 2006. The arrival of this pathogen was anticipated by a team of amphibian biologists, who observed the disastrous effects of B. dendrobatidis on the popula- tions of anurans in the El Valle de Antón region. Individuals of E. rabbororum were taken into captivity and housed at Zoo Atlanta, but only a single male remains alive.
    [Show full text]