Dimetrodon Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Dimetrodon Fact Sheet Dimetrodon Fact Sheet Common Name: Dimetrodon limbatus Scientific Name: Two measures of teeth with a black edge Wild Status: Permian Period, 295-272 MYA Habitat: North America, Germany Country: Germany, Countries in North America Shelter: Unknown Life Span: Unknown Size: 11 feet long, 3 feet tall at the hips, 400 pounds Details Despite looking a bit like a lizard, Dimetrodon is not a reptile. It belongs to a group of animals known as synapsids and is more closely related to mammals than it is to reptiles. This group is defined by having only a single skull opening behind the eye, differentiated teeth, and glandular skin. Dimetrodon is also unrelated to dinosaurs and was extinct long before their ancestors had even evolved. There are over a dozen known species of Dimetrodon, with only one from outside of North America. The German species, D. teutonis, was about two feet in length and is the smallest member of the genus. The largest, D. angelensis, was a titan that grew to 15 feet and weighed over 550 pounds. Cool Facts • The name Dimetrodon refers to the fact the animal has two distinct sizes of teeth in its jaws. Small, teardrop-shaped teeth could be found in the front of the mouth along with one or two pairs of serrated, blade-like caniniform teeth. Later species had more serrations on their teeth, which suggests that over time the genus evolved to prey on animals larger than it could swallow whole. • Dimetrodon is best known for having an enormous sail made up of elongated neural projecting from the animal’s vertebrae. Different species had slightly different shaped sails. Various theories have been proposed for its function, including thermoregulation, sexual display, or acting as a swimming aide. Taxonomic Breakdown Kingdom: Animalia Phylum: Chordata Class: Sphenacodontia Order: Pelycosauria Family: Sphenacodontidae Genus: Dimetrodon Species: D. limbatus Conservation & Helping The Dimetrodon is currently extinct, and was believed to exist 295 - 272 Million Years Ago Download all our fact sheets, take our quizzes, and more, all in the Critter Squad Kids’ Zone! https://www.crittersquad.com/kids-zone/.
Recommended publications
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions Gilles Didier, Michel Laurin
    Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier, Michel Laurin To cite this version: Gilles Didier, Michel Laurin. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions. 2021. hal-03258099v2 HAL Id: hal-03258099 https://hal.archives-ouvertes.fr/hal-03258099v2 Preprint submitted on 20 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1 IMAG, Univ Montpellier, CNRS, Montpellier, France 2 CR2P (\Centre de Pal´eontologie { Paris"; UMR 7207), CNRS/MNHN/SU, Mus´eumNational d'Histoire Naturelle, Paris, France September 16, 2021 Abstract Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448028; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1IMAG, Univ Montpellier, CNRS, Montpellier, France 2CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France June 11, 2021 Abstract Given a phylogenetic tree of extinct and extant taxa with fossils where the only temporal infor- mation stands in the fossil ages, we devise a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account the possibility that the taxa or the clade considered may diversify before going extinct, whilst previous methods just rely on the fossil recovery rate to estimate confidence intervals. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian, or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that a biological crisis occurred in the late Kungurian/early Roadian.
    [Show full text]
  • Morphology and Evolutionary Significance of the Atlas−Axis Complex in Varanopid Synapsids
    Morphology and evolutionary significance of the atlas−axis complex in varanopid synapsids NICOLÁS E. CAMPIONE and ROBERT R. REISZ Campione, N.E. and Reisz, R.R. 2011. Morphology and evolutionary significance of the atlas−axis complex in varanopid synapsids. Acta Palaeontologica Polonica 56 (4): 739–748. The atlas−axis complex has been described in few Palaeozoic taxa, with little effort being placed on examining variation of this structure within a small clade. Most varanopids, members of a clade of gracile synapsid predators, have well pre− served atlas−axes permitting detailed descriptions and examination of morphological variation. This study indicates that the size of the transverse processes on the axis and the shape of the axial neural spine vary among members of this clade. In particular, the small mycterosaurine varanopids possess small transverse processes that point posteroventrally, and the axial spine is dorsoventrally short, with a flattened dorsal margin in lateral view. The larger varanodontine varanopids have large transverse processes with a broad base, and a much taller axial spine with a rounded dorsal margin in lateral view. Based on outgroup comparisons, the morphology exhibited by the transverse processes is interpreted as derived in varanodontines, whereas the morphology of the axial spine is derived in mycterosaurines. The axial spine anatomy of Middle Permian South African varanopids is reviewed and our interpretation is consistent with the hypothesis that at least two varanopid taxa are present in South Africa, a region overwhelmingly dominated by therapsid synapsids and parareptiles. Key words: Synapsida, Varanopidae, Mycterosaurinae, Varanodontinae, atlas−axis complex, axial skeleton, Middle Permian, South Africa.
    [Show full text]
  • A New Basal Sphenacodontid Synapsid from the Late Carboniferous of the Saar−Nahe Basin, Germany
    A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar−Nahe Basin, Germany JÖRG FRÖBISCH, RAINER R. SCHOCH, JOHANNES MÜLLER, THOMAS SCHINDLER, and DIETER SCHWEISS Fröbisch, J., Schoch, R.R., Müller, J., Schindler, T., and Schweiss, D. 2011. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar−Nahe Basin, Germany. Acta Palaeontologica Polonica 56 (1): 113–120. A new basal sphenacodontid synapsid, represented by an anterior portion of a mandible, demonstrates for the first time the presence of amniotes in the largest European Permo−Carboniferous basin, the Saar−Nahe Basin. The new taxon, Cryptovenator hirschbergeri gen. et sp. nov., is autapomorphic in the extreme shortness and robustness of the lower jaw, with moderate heterodonty, including the absence of a greatly reduced first tooth and only a slight caniniform develop− ment of the second and third teeth. Cryptovenator shares with Dimetrodon, Sphenacodon, and Ctenospondylus, but nota− bly not with Secodontosaurus, enlarged canines and a characteristic teardrop outline of the marginal teeth in lateral view, possession of a deep symphyseal region, and a strongly concave dorsal margin of the dentary. The new find shows that sphenacodontids were present in the Saar−Nahe Basin by the latest Carboniferous, predating the record of sphenacodontid tracks from slightly younger sediments in this region. Key words: Synapsida, Sphenacodontidae, Carboniferous, Saar−Nahe Basin, Germany. Jörg Fröbisch [[email protected]], Department of Geology, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA and [joerg.froebisch@mfn−berlin.de], Museum für Naturkunde Leibniz−Institut für Evolu− tions− und Biodiversitätsforschung an der Humboldt−Universität zu Berlin, Invalidenstr.
    [Show full text]
  • First Canadian 'Dinosaur' Becomes Dimetrodon Borealis 24 November 2015, by Nicolle Wahl
    Canuckosaur! First Canadian 'dinosaur' becomes Dimetrodon borealis 24 November 2015, by Nicolle Wahl says lead author Kirstin Brink, who did the research while at UTM. "Dimetrodon is actually more closely related to mammals than it is to dinosaurs." In fact, it's believed they went extinct some 40 million years before the dinosaurs. The study appears in the November 23 issue of the Canadian Journal of Earth Sciences. The fossil, previously known at Bathygnathus borealis, was collected in 1845 while a farmer was digging out a well on his property near French River, PEI. As there were no natural history museums in Canada at the time the fossil was found, it was sold to the Academy of Natural Sciences in Philadelphia, where Joseph Leidy—a preeminent paleontologist—could study and name it. Leidy named the fossil Bathygnathus (meaning deep jaw) borealis (from the north) because he mistook it as the lower jaw of a dinosaur, similar to the large bipedal species that were being collected in Europe at the time. The Bathygnathus specimen was the first "dinosaur", and the second vertebrate fossil named Dimetrodon is shown with an overlay of the from Canada (Dendrerpeton, an extinct amphibian "Bathygnathus" fossil from PEI, with a Walchia tree in from Nova Scotia, was named by Sir Richard Owen the background (a common fossil found on PEI). Credit: two months earlier). Several paleontologists have Danielle Dufault studied the Bathygnathus specimen since it was first named, but its precise identity was unknown. For example, it was unclear whether it had Dimetrodon's signature dorsal sail—created by A "dinosaur" fossil originally discovered on Prince tissue stretched between spines sticking up from its Edward Island has been shown to have steak knife- backbone—or lacked a sail like its smaller cousin like teeth, and researchers from U of T Sphenacodon.
    [Show full text]
  • Volume 26C-Nogrid
    Priscum Volume 26 | Issue 1 May 2021 The Newsletter of the Paleontological Society Inside this issue Diversity, Equity, and Inclusion Matter in Diversity, Equity, & Inclusion matter in Paleontology Paleontology PS Development Developments Building an inclusive and equitable Where are we now? PaleoConnect Paleontological Society (see Section 12 of the Member Code of Conduct for definitions) is Since the Paleontological Society (PS) was Journal Corner essential to realizing our core purpose — founded in 1908, its membership has been advancing the field of paleontology (see Article dominated by white men from the United PS-AGI Summer 2020 Interns II of the Articles of Incorporation). However, like States. Racial and ethnic diversity in the PS many other scientific societies, ours has remain extremely low. More than 88% of Tribute to William Clemens, Jr. historically only fostered a sense of belonging respondents to PS membership surveys Educational Materials for a subset of individuals. conducted in 2013 and 2019 self-identified as White (Stigall, 2013; unpublished data, 2019). PS Ethics Committee Report Consider your outreach experiences. Imagine These surveys revealed that, unlike the visiting a series of first grade classrooms — proportion of women, which has increased in Research and Grant Awardees overwhelmingly, the children are fascinated by younger age cohorts (Stigall, 2013), racial and PS Annual meeting at GSA Connects dinosaur bones, scale trees, and trilobites — ethnic diversity varied little among age groups, 2021 regardless of their identities. Now, reflect on suggesting that substantial barriers to the your experiences in paleontological settings as inclusion of most racial and ethnic groups have Upcoming Opportunities an adult; do they include as much diversity as persisted across generations of PS members.
    [Show full text]
  • Callibrachion and Datheosaurus, Two Historical and Previously Mistaken Basal Caseasaurian Synapsids from Europe
    Callibrachion and Datheosaurus, two historical and previously mistaken basal caseasaurian synapsids from Europe FREDERIK SPINDLER, JOCELYN FALCONNET, and JÖRG FRÖBISCH Spindler, F., Falconnet, J., and Fröbisch, J. 2016. Callibrachion and Datheosaurus, two historical and previously mis- taken basal caseasaurian synapsids from Europe. Acta Palaeontologica Polonica 61 (3): 597–616. This study represents a re-investigation of two historical fossil discoveries, Callibrachion gaudryi (Artinskian of France) and Datheosaurus macrourus (Gzhelian of Poland), that were originally classified as haptodontine-grade sphenaco- dontians and have been lately treated as nomina dubia. Both taxa are here identified as basal caseasaurs based on their overall proportions as well as dental and osteological characteristics that differentiate them from any other major syn- apsid subclade. As a result of poor preservation, no distinct autapomorphies can be recognized. However, our detailed investigations of the virtually complete skeletons in the light of recent progress in basal synapsid research allow a novel interpretation of their phylogenetic positions. Datheosaurus might represent an eothyridid or basal caseid. Callibrachion shares some similarities with the more derived North American genus Casea. These new observations on Datheosaurus and Callibrachion provide new insights into the early diversification of caseasaurs, reflecting an evolutionary stage that lacks spatulate teeth and broadened phalanges that are typical for other caseid species. Along with Eocasea, the former ghost lineage to the Late Pennsylvanian origin of Caseasauria is further closed. For the first time, the presence of basal caseasaurs in Europe is documented. Key words: Synapsida, Caseasauria, Carboniferous, Permian, Autun Basin, France, Intra-Sudetic Basin, Poland. Frederik Spindler [[email protected]], Dinosaurier-Park Altmühltal, Dinopark 1, 85095 Denkendorf, Germany.
    [Show full text]
  • Journey to the Permian
    Travel to a time long before dinosaurs when Permian monsters ruled the earth! The Permian Period, about 299 to 252 million years ago, was a time interval that occurred before the “Age of Dinosaurs.” At this time, most of the continents on earth were linked together in one large supercontinent called Pangaea and surrounded by one large ocean. Many different types of plants and animals evolved during this time, including reptiles. Different groups of early land vertebrates living at this time would become the ancestors to the first mammals and dinosaurs. The Permian Period ended in the largest mass extinction in history. Over 90% of all plant and animal life on Week 9: Earth went extinct at the end of the Permian due to climate change, especially warming of global temperatures, and volcanic activity. Together, these factors greatly changed Journey to ocean levels, temperatures and chemistry, and levels of carbon dioxide and oxygen in the air and water. Survivors of this extinction would repopulate the Earth over time with the Permian a different diversity of species. Learning about the Permian Period can tell us about what life on Earth was like in the past and how it changed over time! Day 2: Designer Dimetrodon One of the most famous Permian “monsters” is Dimetrodon, an animal that lived right here in Oklahoma. Dimetrodon is often mistaken for a dinosaur because of how it looks, but it became extinct well before the dinosaurs lived and was not closely related to them. In fact, Dimetrodon is a type of animal called a synapsid and is an ancient relative to mammals.
    [Show full text]
  • THREE PELYCOSAURS INTHE AMERICAN MUSEUM of There Are in the Collections of the American Museum Three Skulls of Pelycosaurs Which
    56.81.7:14.71.4 Article XXXII.- RECONSTRUCTIONS OF THE SKULLS OF THREE PELYCOSAURS IN THE AMERICAN MUSEUM OF NATURAL HISTORY. BY D. M. S. WATSON, M.Sc., LECTURER IN VERTEBRATE PALIEON- TOLOGY IN UNIVERSITY COLLEGE, LONDON. There are in the collections of the American Museum three skulls of Pelycosaurs which, although they are somewhat disarticulated, crushed and fragmentary, show the sutures with clearness. As they represent rare types, very incompletely known, and of special interest, it is desirable to make reconstructions of them. This paper explains in some detail the methods I adopt in treating such material and the resulting figures will I hope be useful because by the method of reconstruction on which they depend no errors of morphological impor- tance can be introduced, that is the contacts and relations of the individual bones will be correctly represented, although the general shape of the skull may not be very accurately reproduced. (1) EDAPHOSAURUS POGONIAS Cope. Cope's famous type specimen of Edaphosaurus has been the subject of restorations by Case and Broom and has recently been described by v. Huene, but the accounts of these authors differ so considerably that it seems advisa- ble to rediscuss it, especially as the new skull described by Professor Willis- ton does not show the sutures clearly although being uncrushed it gives a perfect knowledge of the shape. The very different proportions of the parietals and interorbital widths which can be directly measured on the top of the skull in these two specimens show that they belong to different species. Professor Williston's specimen shows that we shall not be far out in regarding the interorbital surface as flat.
    [Show full text]
  • Edaphosaurus Boanerges Edaphosaurus Was a Large Synapsid That Time: 250-300 Million Lived in North America and Europe 300 Years Ago Million Years Ago
    Crazy Creatures Edaphosaurus boanerges Edaphosaurus was a large synapsid that Time: 250-300 million lived in North America and Europe 300 years ago million years ago. Period: Carboniferous Edaphosaurus looked similar to a much and Permian more famous creature but was very different, with a tiny head and huge, The Sail-Backed unique teeth. Herbivore It had a huge sail on its back that remains a bit of a mystery to this day! Your task 1: Draw Edaphosaurus. It had: A small, square head A wide, thick body A large semicircle sail on its back Sprawling legs with big claws Your task 2: Edaphosaurus sail was made from skin stretched between spines of bone. There are lots of reasons an animal might have a big sail like this one. What do you think Edaphosaurus used its sail for? Creature Fact! Your task 3: Edaphosaurus looks similar to another famous creature. Do some Edaphosaurus research to find out which one! means “pavement lizard” it is named after its unusual teeth! Your task 4: Edaphosaurus had many smaller pointy teeth and two giant teeth almost as big as its entire mouth! Why do you think it had such big teeth? Your task 5: Edaphosaurus might have used its sail to show off! That means it would have really bright colours. Colour in the sail below with the colours you think it had! Your task 6: Edaphosaurus had a huge body and a tiny head. Lots of animals that eat plants have big bodies and small heads so they can fit in lots of stomach to digest their food.
    [Show full text]
  • Carboniferous-Permian Transition in Socorro County, New Mexico
    Lucas, S.G., DiMichele, W.A. and Krainer, K., eds., 2017, Carboniferous-Permian transition in Socorro County, New Mexico. New Mexico Museum of Natural History and Science Bulletin 77. 1 CARBONIFEROUS-PERMIAN TRANSITION IN SOCORRO COUNTY, NEW MEXICO, USA: AN OVERVIEW SPENCER G. LUCAS1, KARL KRAINER2, BRUCE D. ALLEN3 and WILLIAM A. DIMICHELE4 1New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, New Mexico M 87104; email: [email protected]; 2Institute of Geology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria ; 3New Mexico Bureau of Geology & Mineral Resources, 801 Leroy Place, Socorro, New Mexico 87801; 4Department of Paleobiology, NMNH Smithsonian Institution, Washington, DC 20560 Abstract— This volume documents the results of 20+ years of field, laboratory and museum research on the Pennsylvanian-Permian rocks and fossils of Socorro County, New Mexico. The articles in this volume report studies of the Pennsylvanian-Permian strata east of Socorro (Joyita Hills-Cerros de Amado-Carthage area), in the Los Pinos Mountains (Sepultura Canyon area), in the Little San Pascual Mountains and at Bell Hill in the Southern San Mateo Mountains. Lithostratigraphy, sedimentary petrography, microfacies analysis and sedimentological interpretation as well as diverse paleontological studies (fossil plants, calcareous microfossils, conodonts, fossil insects, tetrapod footprints, coprolites and fossil fishes) are presented. The entire Pennsylvanian-Permian stratigraphic section in Socorro County is about 2 km thick. The Pennsylvanian strata are a complex succession of sedimentary rocks of marine and nonmarine origin deposited during the Middle-Late Pennsylvanian. These are synorogenic deposits of the ancestral Rocky Mountain (ARM) orogeny and associated marine carbonates of shallow seaways along the western periphery of equatorial Pangea.
    [Show full text]