Overview of Vicia (Fabaceae) of Mexico
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Removal of Tannins from Faba Bean Hull Using Subcritical Water Marleny D
Removal of Tannins from Faba Bean Hull using Subcritical Water Marleny D. A. Saldañaa, *, Alaleh Boroomanda aDepartment of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5 *[email protected] ABSTRACT Faba bean hull, a by-product of faba bean dehulling process is rich in bioactive compounds such as tannins and phenolics that can be extracted from the hull for nutraceutical applications. The main objective of this study was to remove tannins from faba bean hull using subcritical water (SCW) and compare its recovery value to the values obtained by conventional solid liquid (S-L) extraction. Treatment conditions for subcritical water extraction were 100-200°C and 50-100 bar at a constant flow rate of 5mL/min. The S-L extraction was carried out using different solvent systems (water, 70% acetone, 70% ethanol, and 50% ethanol) with solid to solvent ratios of 1:10, 1:15, and 1:20 w/v at 50-70℃ for 3h. Extract solutions were analyzed for total tannins, condensed tannins, and phenolics using spectrophotometer methods. Individual tannins were also analyzed by high pressure liquid chromatography (HPLC). The highest total tannin recovered by SCW was ~265mg tannic acid/g hull at 160°C and 50 or 100 bar. The increase of pressure from 50 to 100 bar had no significant effect on recovery of total tannins at 100-200°C. For condensed tannins, the highest recovery was 165mg catechin/g hull, which was obtained at 180°C and 50 bar. In addition, the highest recovery of total phenolics (~44.54 mg gallic acid/g hull) was obtained at 120°C and 50 bar. -
Ecogeographic, Genetic and Taxonomic Studies of the Genus Lathyrus L
ECOGEOGRAPHIC, GENETIC AND TAXONOMIC STUDIES OF THE GENUS LATHYRUS L. BY ALI ABDULLAH SHEHADEH A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences College of Life and Environmental Sciences University of Birmingham March 2011 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Lathyrus species are well placed to meet the increasing global demand for food and animal feed, at the time of climate change. Conservation and sustainable use of the genetic resources of Lathyrus is of significant importance to allow the regain of interest in Lathyrus species in world. A comprehensive global database of Lathyrus species originating from the Mediterranean Basin, Caucasus, Central and West Asia Regions is developed using accessions in major genebanks and information from eight herbaria in Europe. This Global Lathyrus database was used to conduct gap analysis to guide future collecting missions and in situ conservation efforts for 37 priority species. The results showed the highest concentration of Lathyrus priority species in the countries of the Fertile Crescent, France, Italy and Greece. -
Final Report
Final Report Final pre-release investigations of the gorse thrips (Sericothrips staphylinus) as a biocontrol agent for gorse (Ulex europaeus) in North America Date: August 31, 2012 Award Number: 10-CA-11420004-184 Report Period: June 1, 2010– May 31, 2012 Project Period: June 1, 2010– May 31, 2012 Recipient: Oregon State University Recipient Contact Person: Fritzi Grevstad Principal Investigator/ Project Director: Fritzi Grevstad Introduction Gorse (Ulex europaeus) is an environmental weed classified as noxious in the states of Washington, Oregon, California, and Hawaii. A classical biological control program has been applied in Hawaii with the introduction of 4 gorse-feeding arthropods, but only two of these (a mite and a seed weevil) have been introduced to the mainland U.S. The two insects that have not yet been introduced include the gorse thrips, Sericothips staphylinus (Thysanoptera: Thripidae), and the moth Agonopterix umbellana (Lepidoptera: Oecophoridae). With prior support from the U.S. Forest Service (joint venture agreement # 07-JV-281), we were able to complete host specificity testing of S. staphylinus on 44 North American plant species that were on the original test plant list. However, following review of the proposed Test Plant List, the Technical Advisory Group on Biocontrol of Weeds (TAG) recommended that we include an additional 18 plant species for testing. In this report, we present host specificity testing and related objectives necessary to bring the program to the implementation stage. Objectives (1) Acquire and grow the additional 18 species of plants recommended by the TAG. (2) Complete host specificity trials for the gorse thrips on the 18 plant species. -
Lathlati FABA FINAL
Lathyrus latifolius L. Common Names: Perennial Pea (1), Everlasting Pea (2), Broad-leaved Everlasting Pea (3). Etymology: Lathyrus comes from Lathyros, a leguminous plant of Ancient Greece classified by Theophrastus and believed to be an aphrodisiac. “The name is often said to be composed of the prefix, la, very, and thuros, passionate.” (1). Latifolius means broad-leaved (4). Botanical synonyms: Lathyrus latifolius L. var. splendens Groenl. & Rumper (5) FAMILY: Fabaceae (the pea family) Quick Notable Features: ¬ Winged stem and petioles ¬ Leaves with only 2 leaflets ¬ Branched leaf-tip tendril ¬ Pink papilionaceous corolla (butterfly- like) Plant Height: Stem height usually reaching 2 m (7). Subspecies/varieties recognized: Lathyrus latifolius f. albiflorus Moldenke L. latifolius f. lanceolatus Freyn (5, 6): Most Likely Confused with: Other species in the genus Lathyrus, but most closely resembles L. sylvestris (2). May also possibly be confused with species of the genera Vicia and Pisum. Habitat Preference: A non-native species that has been naturalized along roadsides and in waste areas (7). Geographic Distribution in Michigan: L. latifolius is scattered throughout Michigan, in both the Upper and Lower Peninsula. In the Upper Peninsula it is found in Baraga, Gogebic, Houghton, Keweenaw, Mackinac, Marquette, Ontonagon, and Schoolcraft counties. In the Lower Peninsula it is found in the following counties: Alpena, Antrim, Benzie, Berrien, Calhoun, Cass, Charlevoix, Cheboygan, Clinton, Emmet, Genesee, Hillsdale, Isabella, Kalamazoo, Kalkaska, Kent, Leelanau, Lenawee, Livingston, Monroe, Montmorency, Newaygo, Oakland, Oceana, Ostego, Saginaw, Sanilac, Van Buren, Washtenaw, and Wayne (2, 5). At least one quarter of the county records are newly recorded since 1985: 29 county records were present in 1985 and there are 38 county- level records as of 2014. -
Poisoning of Tained 1N Human Beings by Weeds Con- (Bread Poisoning.)
Onderstepo01·t Journal of Veterinary Science and A.111:mal I ndustry, Vol'ume I, Number 1. 1933. Poisoning of Human Beings by Weeds con tained 1n Cereals (Bread Poisoning.) By D. G. STEYN, B.Sc., Dr. Med. Vet., Veterinary Research Officer, Onderste poort. I. INTRODUCTION. '''II. PLANTS DISCUSSED IK THIS ARTICLE : A. Borraginaeeae. Lithospermum arvense L. B. Caryophyllaceae. (a) Ag1·ostemma Githayo L. (b) Silene gallica L. C. Compositae. (a) Centaurea picris DC. x(b) Senecio arenarius Thunb. x(c) Seneciv Bu1·chellii DC. x(d) Senecio ilicifolius Thunb. x(e) Senecio isatideus DO. x(j) Senecio laevigat1.ts Thnnb. x(g) Senecio rigidus L. x(h) Senecio rosma.rinifolius L . f. D. Cruciferae. (a) Raphanus raphanistrum L. E. Euphorbiaceac. (a) Euphorbia helioscopia L. (b) Eupho1·bia pepl1.ts L. (c) Ricinus communis L. F. Graminae. Loliv.m terrmlentum L. G. Legnminosae. Yicia sativa L . H. Polygonaceae. Rumex Acetosella L. * Only those plants marked with an x are indigenous. 219 POISONING BY WEEDS CONTATNED IN CEREALS. I. Solanaceae. (a) Datura Stramon·ium L. (b) Datum Tatula L. III. LEGAL ASPECT. TV. DISCUSSION. A. Plants Concerned in Bread Poisoning and in Poisoning by other Foodstuffs Cultivated on Lands. B. }.._re Senecio spp. Concerned in the so-called " Bread Poisoning " in Human Beings. C. Circumstances favouring Bread Poisoning. D. Effect of the Process of Preparation of Bread on the Toxicity of Weeds Contaminating the ::V1ea1. E. The Cause of Death in Senecio Poisoning. v. SUM:\fARY. VI. AcKNowr.EDGENIENTs. VII. LITERATURE. I. INTRODUCTION. fn this article the term " bread poisoning" signifies poisoning caused by the ingestion of bread prepared from wheat contaminated with extraneous seeds. -
Producción De Forraje Y Competencia Interespecífica Del Cultivo Asociado De Avena (Avena Sativa) Con Vicia (Vicia Sativa) En Condiciones De Secano Y Gran Altitud
Rev Inv Vet Perú 2018; 29(4): 1237-1248 http://dx.doi.org/10.15381/rivep.v29i4.15202 Producción de forraje y competencia interespecífica del cultivo asociado de avena (Avena sativa) con vicia (Vicia sativa) en condiciones de secano y gran altitud Forage production and interspecific competition of oats (Avena sativa) and common vetch (Vicia sativa) association under dry land and high-altitude conditions Francisco Espinoza-Montes1,2,4, Wilfredo Nuñez-Rojas1, Iraida Ortiz-Guizado3, David Choque-Quispe2 RESUMEN Se experimentó el cultivo asociado de avena (Avena sativa) y vicia común (Vicia sativa) en condiciones de secano, a 4035 m sobre el nivel del mar, para conocer su comportamiento y efectos en el rendimiento, calidad de forraje y competencia interespecífica. En promedio, el rendimiento de forraje verde, materia seca y calidad de forraje fueron superiores al del monocultivo de avena (p<0.05). El porcentaje de proteína cruda se incrementó en la medida que creció la proporción de vicia común en la asocia- ción, acompañado de una disminución del contenido de fibra. En cuanto a los índices de competencia, el cultivo asociado de avena con vicia favorece el rendimiento relativo total de forraje (LERtotal>1). Ninguna de las especies manifestó comportamiento agresivo (A=0). Se observó mayor capacidad competitiva de la vicia común (CR>1) comparado con la capacidad competitiva de la avena. Palabras clave: cultivo asociado; rendimiento; calidad de forraje; competencia interespecífica ABSTRACT The oats (Avena sativa) and common vetch (Vicia sativa) cultivated in association was evaluated under dry land conditions at 4035 m above sea level to determine its performance and effects on yield, forage quality and interspecific competition. -
Davis Expedition Fund Report on Expedition / Project
DAVIS EXPEDITION FUND REPORT ON EXPEDITION / PROJECT Expedition/Project Title: Biogeography and Systematics of South American Vicia (Leguminosae) Travel Dates: 28/09/2010 – 12/11/2010 Location: Northern Chile and northern Argentina Group Members: Paulina Hechenleitner Collection of research material of Vicia in the form of Aims: herbarium specimens, habitat data, digital images, silica- dried leaf samples, and base-line data on the IUCN conservation status of Vicia. Outcome (not less than 300 words):- See attached report. Report for the Davis Expedition Fund Biogeography and Systematics of South American Vicia (Leguminosae) Botanical fieldwork to northern Chile and northern Argentina 28th of Sep to 12th of November 2010 Paulina Hechenleitner January 2011 Introduction Vicia is one of five genera in tribe Fabeae, and contains some of humanity's oldest crop plants, and is thus of great economic importance. The genus contains around 160 spp. (Lewis et al. 2005) distributed throughout temperate regions of the northern hemisphere and in temperate S America. Its main centre of diversity is the Mediterranean with smaller centres in North and South America (Kupicha, 1976). The South American species are least known taxonomically. Vicia, together with Lathyrus and a number of other temperate plant genera share an anti- tropical disjunct distribution. This biogeographical pattern is intriguing (Raven, 1963): were the tropics bridged by long distance dispersal between the temperate regions of the hemispheres, or were once continuous distributions through the tropics severed in a vicariance event? Do the similar patterns seen in other genera reflect similar scenarios or does the anti-tropical distribution arise in many different ways? The parallels in distribution, species numbers and ecology between Lathyrus and Vicia are particularly striking. -
Lathyrus Bijugatus
Fire Effects Information System (FEIS) FEIS Home Page Lathyrus bijugatus Table of Contents SUMMARY INTRODUCTION DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE ECOLOGY AND MANAGEMENT OTHER MANAGEMENT CONSIDERATIONS APPENDIX REFERENCES Figure 1—Drypark pea in flower. Photo by Tara Luna, used with permission. SUMMARY This Species Review summarizes the scientific information that was available on drypark pea as of February 2021. Drypark pea is a rare, leguminous forb that occurs in eastern Washington and Oregon, northern Idaho, and northwestern Montana. Within that distribution, it grows in a broad range of biogeoclimatic zones and elevations. As its common name "drypark pea" suggests, it prefers dry soils and open sites. Drypark pea grows in sagebrush-conifer and sagebrush-grassland transition zones; in ponderosa pine, Douglas-fir, and subalpine fir-Engelmann spruce woodlands and forests; and subalpine fir parklands. In conifer communities, it is most common in open stands. Drypark pea has rhizomes that grow out from its taproot. Its roots host nitrogen-fixing Rhizobium bacteria. Drypark pea regenerates from seed and has a soil-stored seed bank; however, information on seed dispersal, viability, and seedling establishment of drypark pea was not available in the literature. Fire probably top-kills drypark pea, and it likely sprouts from its rhizomes and/or caudex after top-kill; however, these responses are undocumented. Only one study provided information on the response of drypark pea to fire. In ponderosa pine forest in northern Idaho, cover and frequency of drypark pea were similar on unburned plots and plots burned under low or high intensity, when 1 averaged across 3 postfire years. -
Atlas of the Flora of New England: Fabaceae
Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
COVER CROPS and SOIL-BORNE FUNGI DANGEROUS TOWARDS the CULTIVATION of SALSIFY (Tragopogon Porrifolius Var
Acta Sci. Pol., Hortorum Cultus 10(2) 2011, 167-181 COVER CROPS AND SOIL-BORNE FUNGI DANGEROUS TOWARDS THE CULTIVATION OF SALSIFY (Tragopogon porrifolius var. sativus (Gaterau) Br.) Elbieta Patkowska, Mirosaw Konopiski University of Life Sciences in Lublin Abstract. Salsify has a remarkable taste and nutritious values. It is a rich source of inulin – a glycoside which has a positive effect on human and animal organisms. The paper pre- sents studies on the species composition of soil-borne fungi infecting the roots of Tragopogon porrifolius var. sativus cultivated with the use of oats, tansy phacelia and spring vetch as cover crops. In a field experiment the cover crops formed abundant green mass before winter and it constituted a natural mulch on the surface of the plough land. It was managed in two ways: 1) mixed with the soil as a result of spring ploughing, or 2) mixed with the soil as a result of pre-winter ploughing. The conventional cultivation of salsify, i.e. without cover crops, constituted the control. The studies established the number and health status of four-week-old salsify seedlings and roots with necrotic signs. A laboratory mycological analysis made it possible to determine the quantitative and qualitative composition of fungi infecting the underground parts of Tragopogon porri- folius var. sativus. The emergences and the proportion of infected salsify seedlings varied and depended on the species of the mulching plant. The smallest number of infected seed- lings was obtained after the mulch with oats, slightly more after the application of spring vetch or tansy phacelia as cover crops, and the most in the control. -
3-Web SC Plant List
Wild Plants of Shadow Cliffs Regional Recreation Area Grouped by Growth Form Alphabetical by Scientific Name September 5, 2003 Wild Plants of Shadow Cliffs Regional Recreation Area Grouped by Growth Form Alphabetical by Scientific Name This document contains a comprehensive list of the wild plants reported to be found in Shadow Cliffs Regional Recreation Area. The plants are grouped according to their growth form for easy accessibility. These four groups are: Ferns & Horsetails, Grasses & Grasslike, Herbaceous, and Woody. The plants within each group are listed alphabetically by scientific name. Other information on each plant includes the common name, family, whether the plant is native or introduced, and its longevity. For quick reference, the upper left corner of each page displays both the group name (based on growth form) and the genus of the first scientific name. The abbreviations used: Checklist column for marking off the plants you observe Scientific Name According to The Jepson Manual: Higher Plants of California, 1993 Common Name According to Jepson and other references (highly variable) Family The scientific plant family name according to Jepson L Longevity: Annual (a), Biennial (b), Perennial (p), or a combination N/I Native (n) or Introduced (i) according to Jepson The listing of plants included in this document is by no means complete. The intent is to maintain an ongoing inventory to which additional plants can be added over time. Readers are encouraged to report any corrections or additions to this list by emailing the District Botanist (Wilde Legard, [email protected]). This welcomed assistance will help facilitate improved management of the Park District’s natural resources.