Technical Report Great Artesian Basin Resource Assessment Report 14/2012A

Total Page:16

File Type:pdf, Size:1020Kb

Technical Report Great Artesian Basin Resource Assessment Report 14/2012A Technical Report Great Artesian Basin Resource Assessment Report 14/2012A October 2012 Author: Simon Fulton Water Resources Division Department of Land Resource Management PO Box 496 Palmerston NT 0831 Email: [email protected] Web: http://www.lrm.nt.gov.au/water/ Copyright © 2012 Northern Territory of Australia This product and all material forming part of it is copyright belonging to the Northern Territory of Australia. You may use this material for your personal, non-commercial use or use it with your organisation for non-commercial purposes, provided that an appropriate acknowledgement is made and the material is not altered in any way. Subject to the fair dealing provisions of the Copyright Act 1968, you must not make any other use of this product (including copying or reproducing it or part of it in any way) unless you have the written permission of the Northern Territory of Australia to do so. Important Disclaimer The Northern Territory of Australia has tried to make the information in this report as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. No reliance or actions should be made on the information contained within the publication without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, the Northern Territory of Australia (including its employees and agents) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and other compensation, arising directly or indirectly from using, in part or in whole, any information or material contained in this publication. Bibliographic Reference: Fulton S. A., 2012. Technical Report Great Artesian Basin Resource Assessment, Department of Land Resource Management, Report 14/2012A, Darwin, October 2012 Cover Image:- McDills No. 1 Water Resources Branch drilling crew during the rehabilitation of McDills No. 1 Bore, 2001. Courtesy of Peter Jolly ii Contents List of Figures............................................................................................................................. v List of Tables ............................................................................................................................. vi 1. Introduction......................................................................................................................... 1 1.1. Background to the Report............................................................................................. 1 1.2. Scope and Objectives................................................................................................... 1 2. Characteristics of the Water Control District................................................................... 2 2.1. Overview of the Great Artesian Basin........................................................................... 2 2.2. Physiography and Biogeographic Regions................................................................... 3 2.3. Landuse........................................................................................................................ 5 2.4. Surface water hydrology ............................................................................................... 7 2.5. Climate........................................................................................................................ 10 2.6. Geology ...................................................................................................................... 13 2.6.1 Rolling Downs Group ..................................................................................................14 2.6.2 Cadna-owie Formation................................................................................................15 2.6.3 Algebuckina Sandstone ..............................................................................................15 2.6.4 Poolowanna Formation ...............................................................................................15 2.6.5 Peera Peera, Crown Point and Purni Formations........................................................16 2.7. Previous Work ............................................................................................................ 19 3. Hydrogeology ................................................................................................................... 20 3.1. J Aquifer...................................................................................................................... 20 3.2. Other Groundwater Resources................................................................................... 23 3.2.1 Quaternary and Tertiary Aquifers ................................................................................23 3.2.2 Rolling Downs Group ..................................................................................................23 3.2.3 Crown Point Formation and Finke Group Aquifers ......................................................23 3.3. Water Quality.............................................................................................................. 24 3.4. Potentiometry and Groundwater Flow Directions ....................................................... 26 3.5. Recharge .................................................................................................................... 29 3.5.1 Direct Infiltration ..........................................................................................................29 3.5.2 Ephemeral River Recharge.........................................................................................29 3.5.3 Recharge Rates to Other Aquifers in the WCD ...........................................................36 3.6. Discharge.................................................................................................................... 36 iii 3.7. Storage ....................................................................................................................... 36 4. Resource Management .................................................................................................... 38 4.1. Groundwater Bore Use and Estimated Extraction ...................................................... 38 4.2. Groundwater Monitoring Network ............................................................................... 41 4.3. Groundwater Dependant Ecosystems (GDEs) ........................................................... 44 4.3.1 J Aquifer......................................................................................................................44 4.3.2 Other...........................................................................................................................44 5. Conclusions and Recommendations ............................................................................. 46 5.1. Conclusions ................................................................................................................ 46 5.2. Uncertainty/Limitations ............................................................................................... 47 5.3. Recommendations...................................................................................................... 48 6. References ........................................................................................................................ 49 Appendix A Hantush Mounding Recharge Rates ........................................................... 52 Appendix B Vogel Recharge Rates .................................................................................. 55 iv List of Figures Figure 1-1 Great Artesian Basin Water Control District............................................................. 1 Figure 2-1 Regional map of the Great Artesian Basin............................................................... 3 Figure 2-2 Physiography and Bioregions .................................................................................. 4 Figure 2-3 Landuse ...................................................................... ............................................ 6 Figure 2-4 Surface Water Basins and gauging stations (active and historic)............................ 8 Figure 2-5 Hydrographs for Finke and Todd River Gauging Stations ....................................... 9 Figure 2-6 A. Average monthly rainfall and potential evaporation, Atula (14214) and B. New Crown (15600) see Figure 2-8 for station locations. .............................................. 10 Figure 2-7 Cumulative difference from average rainfall for New Crown (15600) .................... 11 Figure 2-8 Climate and Rainfall............................................................................................... 12 Figure 2-9 Regional Geological Setting (Basin extents).......................................................... 13 Figure 2-10 Cross section A-B-C .............................................................................................. 17 Figure 2-11 Surface Geology .................................................................................................... 18 Figure 3-1 J Aquifer Boundary Conditions .............................................................................. 22 Figure 3-2 Groundwater quality range in the J aquifer and other aquifers in the WCD........... 25 Figure 3-3 Trilinear piper diagram for GAB WCD aquifers.....................................................
Recommended publications
  • Regolith-Landform Evolution on Cape York Peninsula
    REGOLITH-LANDFORM EVOLUTION ON CAPE YORK PENINSULA REGOLITH-LANDFORM EVOLUTION ON CAPE YORK PENINSULA: IMPLICATIONS FOR MINERAL EXPLORATION C F PAIN 1, J R WILFORD 1 AND J C DOHRENWEND2 1 Cooperative Research Centre for Landscape Evolution and Mineral Exploration, c/- Australian Geological Survey Organisation, PO Box 378, Canberra ACT 2601, Australia 25755 East River Road #3207, Tucson, AZ 85750, USA A number of landform features on Cape York Peninsula (CYP) contain important clues for the development of landforms and regolith in the area The Great Escarpment, up to 200 m high, separates old landforms and regolith on the westem side from younger landforms and regolith on the eastem side West of the Great Escarpment there are smaller less continuous scarps which also form important boundaries between different regolith types There is clear eVidence for superimposed drainage, river capture and reversal, and inversion of relief on CYP Formation of the Carpentaria and Laura Basins during Middle to Late Jurassic and Early Cretaceous time covered the Palaeozoic and Proterozoic rocks of the Coen Inlier with coarse terrestrial to fine marine sediment The uplift and emergence of these basin sediments in the Late Cretaceous marks the beginning of the latest stage of landform and regolith evolution on CYP The sediments probably covered most, if not all, of the Coen Inlier, and post-Mesozoic erosion subsequently uncovered the basement to form the Inlier Substantial erosion and surface lowering in the area followed emergence at the end of the Cretaceous,
    [Show full text]
  • From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
    Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n.
    [Show full text]
  • Poropat Et Al 2017 Reappraisal Of
    Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R.
    [Show full text]
  • Geology and Mineral Resources of the Northern Territory
    Geology and mineral resources of the Northern Territory Ahmad M and Munson TJ (compilers) Northern Territory Geological Survey Special Publication 5 Chapter 41: Eromanga Basin BIBLIOGRAPHIC REFERENCE: Munson TJ, 2013. Chapter 41: Eromanga Basin: in Ahmad M and Munson TJ (compilers). ‘Geology and mineral resources of the Northern Territory’. Northern Territory Geological Survey, Special Publication 5. Disclaimer While all care has been taken to ensure that information contained in this publication is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of its information. The Northern Territory of Australia gives no warranty or assurance, and makes no representation as to the accuracy of any information or advice contained in this publication, or that it is suitable for your intended use. You should not rely upon information in this publication for the purpose of making any serious business or investment decisions without obtaining independent and/or professional advice in relation to your particular situation. The Northern Territory of Australia disclaims any liability or responsibility or duty of care towards any person for loss or damage caused by any use of, or reliance on the information contained in this publication. Eromanga Basin Current as of May 2012 Chapter 41: EROMANGA BASIN TJ Munson INTRODUCTION geology and regolith). However, the southwestern margins of the basin are exposed in SA and the northeastern part of The ௘Cambrian±"Devonian Warburton Basin, the basin in central Qld is also exposed and has been eroding Carboniferous±Triassic 3edirNa Basin and Jurassic± since the Late Cretaceous.
    [Show full text]
  • Land Zones of Queensland
    P.R. Wilson and P.M. Taylor§, Queensland Herbarium, Department of Science, Information Technology, Innovation and the Arts. © The State of Queensland (Department of Science, Information Technology, Innovation and the Arts) 2012. Copyright inquiries should be addressed to <[email protected]> or the Department of Science, Information Technology, Innovation and the Arts, 111 George Street, Brisbane QLD 4000. Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3224 8412. This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3224 8412 or email <[email protected]>. ISBN: 978-1-920928-21-6 Citation This work may be cited as: Wilson, P.R. and Taylor, P.M. (2012) Land Zones of Queensland. Queensland Herbarium, Queensland Department of Science, Information Technology, Innovation and the Arts, Brisbane. 79 pp. Front Cover: Design by Will Smith Images – clockwise from top left: ancient sandstone formation in the Lawn Hill area of the North West Highlands bioregion – land zone 10 (D.
    [Show full text]
  • A Hydrogeological and Ecological Characterisation of Springs Near Lake Blanche, Lake Eyre Basin, South Australia
    LAKE EYRE BASIN SPRINGS ASSESSMENT PROJECT A HYDROGEOLOGICAL AND ECOLOGICAL CHARACTERISATION OF SPRINGS NEAR LAKE BLANCHE, LAKE EYRE BASIN, SOUTH AUSTRALIA DEWNR TECHNICAL REPORT 2016/03 Funding for these projects has been provided by the Australian Government through the Bioregional Assessment Programme. A hydrogeological and ecological characterisation of springs near Lake Blanche, Lake Eyre Basin, South Australia Mark Keppel1, Travis Gotch1, Kent Inverarity1, Darren Niejalke2 and Daniel Wohling1 1Department of Environment, Water and Natural Resources 2Yacca Environmental April 2016 DEWNR Technical report 2016/03 Department of Environment, Water and Natural Resources GPO Box 1047, Adelaide SA 5001 Telephone National (08) 8463 6946 International +61 8 8463 6946 Fax National (08) 8463 6999 International +61 8 8463 6999 Website www.environment.sa.gov.au Disclaimer The Department of Environment, Water and Natural Resources and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department of Environment, Water and Natural Resources and its employees expressly disclaims all liability or responsibility to any person using the information or advice. Information contained in this document is correct at the time of writing. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. ISBN 978-1-925369-34-2 Preferred way to cite this publication Keppel M, Gotch T, Inverarity K, Niejalke D and Wohling D, 2016, A hydrogeological and ecological characterisation of springs near Lake Blanche, Lake Eyre Basin, South Australia, DEWNR Technical report 2016/03, Government of South Australia, through the Department of Environment, Water and Natural Resources, Adelaide Download this document at www.waterconnect.sa.gov.au.
    [Show full text]
  • Hydrochemistry Highlights Potential Management Issues for Aquifers and Springs in the Lake Blanche and Lake Callabonna Region, South Australia
    Hydrochemistry Highlights Potential Management Issues for Aquifers and Springs in the Lake Blanche and Lake Callabonna Region, South Australia Mark Keppel1, Daniel Wohling2, Andrew Love3, and Travis Gotch1 Abstract A hydrochemistry-based study has highlighted potential management implications for selected aquifers and springs located within the Lake Blanche and Lake Callabonna region in the far north of South Australia. The interpretation of hydrochemical and environmental tracers from 14 springs and 17 water wells, as well as historically available data, were used to establish five hydrochemical-based aquifer types for the region: 1. Fractured rock crystalline basement aquifer. 2. Patchawarra Formation (Cooper Basin) aquifer. 3. J-K aquifer (Algebuckina Sandstone, Cadna-owie Formation and lateral equivalents) of the Great Artesian Basin. 4. A sandstone unit or units interpreted to occur within the Neocretaceous Rolling Downs Group, which is informally termed the ‘Rolling Downs Group sandstone (RDGS) aquifer’. 5. Cenozoic aquifer. Two key findings from this study have potential implications for ongoing resource management. First, artesian groundwater conditions were identified for the first time within sandstones found within the Neocretaceous confining layer (the RDGS aquifer). Although the exact stratigraphic nomenclature of this sandstone unit is not yet confirmed, groundwater sourced from this unit is currently being used for stock. Second, the RDGS aquifer may contribute to spring flow at Lake Blanche and Lake Callabonna. Similarly, the fractured rock aquifer may be a source of water for the Petermorra Springs complex. Beyond certain results from these three spring complexes, the majority of hydrochemical and environmental tracer analyses infer that the J-K aquifer is the primary source aquifer supporting spring flow.
    [Show full text]
  • Hydrogeology of the Cooper GBA Region. Technical Appendix for the Geological and Bioregional Assessment Program: Stage 2
    Hydrogeology of the Cooper GBA region Technical appendix for the Geological and Bioregional Assessment: Stage 2 2020 A scientific collaboration between the Department of Agriculture, Water and the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia The Geological and Bioregional Assessment Program The Geological and Bioregional Assessment Program will provide independent scientific advice on the potential impacts from development of selected unconventional hydrocarbon plays on water and the environment. The geological and environmental data and tools produced by the Program will assist governments, industry, landowners and the community to help inform decision making and enhance the coordinated management of potential impacts. The Program is funded by the Australian Government Department of the Environment and Energy. The Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia are collaborating to undertake geological and bioregional assessments. For more information, visit http://www.bioregionalassessments.gov.au. Department of the Environment and Energy The Department designs and implements Australian Government policy and programs to protect and conserve the environment, water and heritage, promote climate action, and provide adequate, reliable and affordable energy. For more information visit http://www.environment.gov.au. Bureau of Meteorology The Bureau of Meteorology is Australia’s national weather, climate and water agency. Under the Water Act 2007, the Bureau is responsible for compiling and disseminating Australia's water information. The Bureau is committed to increasing access to water information to support informed decision making about the management of water resources. For more information, visit http://www.bom.gov.au/water/. CSIRO Australia is founding its future on science and innovation.
    [Show full text]
  • From the Lower Cretaceous of Lightning Ridge, New South Wales, Australia
    Isolated teeth of Anhangueria (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia Tom Brougham1, Elizabeth T. Smith2 and Phil R. Bell1 1 School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia 2 Australian Opal Centre, Lightning Ridge, New South Wales, Australia ABSTRACT The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of `ornithocheirid' and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. Subjects Paleontology, Taxonomy Keywords Pterosauria, Cretaceous, Australia, Teeth Submitted 11 January 2017 Accepted 31 March 2017 Published 3 May 2017 INTRODUCTION Corresponding author Tom Brougham, Pterosaurs first appeared in the Late Triassic and diversified rapidly into the Jurassic. [email protected] At the peak of their diversity in the Cretaceous, pterosaurs where present on all Academic editor Andrew Farke continents, including Antarctica (Barrett et al., 2008; Upchurch et al., 2015).
    [Show full text]
  • Hydrogeological Overview of Springs in the Great Artesian Basin
    Hydrogeological Overview of Springs in the Great Artesian Basin M. A. (Rien) Habermehl1 Abstract The Great Artesian Basin (GAB) is a regional groundwater system consisting of aquifers and confining beds within the sedimentary Eromanga, Surat and Carpentaria Basins. They under- lie arid to semi-arid regions across 1.7 million km2, or one-fifth of the Australian continent. Artesian springs of the GAB are naturally occurring outlets of groundwater from the confined aquifers. Springs predominantly occur near the eastern recharge margins and the south-western and western discharge margins of the GAB. These zones of natural groundwater discharge represent areas of permanent water, with widely recognised cultural, spiritual and subsistence importance to Indigenous people for tens of thousands of years. The unique hydrogeological environments – discharge, hydrochemistry and substrate – support a range of endemic flora and fauna protected under the EPBC Act (1999). Springs have formed in many areas across the GAB; however, the largest concentrations occur near the south-western margins of the basin. Supporting these flowing artesian springs is a multi-layered aquifer system, comprising Jurassic- to Cretaceous-age sandstones and siltstone, and confining beds of mudstones. Hydrogeological, hydrochemical and isotope hydrology studies show that most artesian springs and flowing water bores in the GAB derive their water from the main Jurassic–Lower Cretaceous Cadna-owie Formation – Hooray Sandstone aquifer and its equivalents. Focusing on springs in South Australia, this paper provides a summary of the hydrogeology of the GAB, including zones of recharge and regional groundwater flow directions, with a major focus on summarising under- standing of the occurrence and formation of springs.
    [Show full text]
  • Uranium Exploration in Queensland, 1967-71
    QUEENSLAND DEPARTMENT OF MINES URANIUM EXPLORATION IN QUEENSLAND, 1967-71 by J. H. Brooks ! „ REPORT No. 69 GEOLOGICAL! SURVEY OF QUEENSLAND J. T. Woods Chief Government Geologist QUEENSLAND DEPARTMENT OF MINES URANIUM EXPLORATION IN QUEENSLAND, 1967-71 by J. H. Brooks ^..•Vi-.V-.-;., REPORT No. 69 GEOLOGICAL SURVEY OF QUEENSLAND J. T. Woods Chief Government Geologist WF * Co W2 TABLE OF CONTENTS Page SUMMARY 1 INTRODUCTION 1 HISTORY OF EXPLORATION I AIRBORNE R2VDIOMETRIC SURVEYS 2 DRILLING 2 RESERVES 4 DISTRIBUTION 6 EXPLORATION 6 Westmoreland 6 Caltor. Hills 8 Paroo Creek 8 Gorge Creek 10 Spear Creek 10 Mary Kathi'een 10 Georgina Basin 11 Georgetown 11 Mesozoic Sedimentary Basins 12 FUTURE OUTLOOK 14 REFERENCES 15 TABLES Table 1 Drilling for uranium in Queensland - annual footages 3 Table 2 Queensland uranium reserves 5 Table 3A Uranium exploration under Authority to Prospect, 1965-71 16 Table 3B Uranium exploration by the Bureau of Mineral Resources 19 Table 4 Drilling for uranium in Queensland - individual deposits 20 FIGURES Figure 1 Areas of Queensland covered by airborne radiometric surveys Opposite 1 Figure 2 Drilling for uranium in Queensland, annual totals 4 Figure 3 Locality plan, uranium occurrences, Westmoreland area 7 Figure 4 Locality plan, uranium occurrences, Mount Isa area 9 Figure 5 Post-Triassic sedimentary basins in Queensland 13 QUEENSLAND SHOWING URANIUM EXPLORATION IN QUEENSLAND 1967-71 by J, H. Brooks Geolot ical Survey of Queensland SUMMARY Exploration for uranium revived in 1967 after a period of little activity, and a peak was reached in 1970, when drilling for uranium totalled 143, 920 feet, and numerous airborne and gronnd ra-iiometric surveys were carried out.
    [Show full text]
  • UQ678964 OA.Pdf
    ÔØ ÅÒÙ×Ö ÔØ Investigating the stratigraphy and palaeoenvironments for a suite of newly dis- covered mid-Cretaceous vertebrate fossil-localities in the Winton Formation, Queensland, Australia Ryan T. Tucker, Eric M. Roberts, Vikie Darlington, Steven W. Salis- bury PII: S0037-0738(17)30124-0 DOI: doi:10.1016/j.sedgeo.2017.05.004 Reference: SEDGEO 5195 To appear in: Sedimentary Geology Received date: 23 March 2017 Revised date: 18 May 2017 Accepted date: 21 May 2017 Please cite this article as: Tucker, Ryan T., Roberts, Eric M., Darlington, Vikie, Sal- isbury, Steven W., Investigating the stratigraphy and palaeoenvironments for a suite of newly discovered mid-Cretaceous vertebrate fossil-localities in the Winton Formation, Queensland, Australia, Sedimentary Geology (2017), doi:10.1016/j.sedgeo.2017.05.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Investigating the stratigraphy and palaeoenvironments for a suite of newly discovered mid-Cretaceous vertebrate fossil- localities in the Winton Formation, Queensland, Australia Ryan T. Tucker*a,b, Eric M. Robertsb, Vikie Darlingtonb, Steven W. Salisburyc a Department
    [Show full text]