Appendix D Surat Basin Geological Model Surat Basin Stratigraphic Framework April 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regolith-Landform Evolution on Cape York Peninsula
REGOLITH-LANDFORM EVOLUTION ON CAPE YORK PENINSULA REGOLITH-LANDFORM EVOLUTION ON CAPE YORK PENINSULA: IMPLICATIONS FOR MINERAL EXPLORATION C F PAIN 1, J R WILFORD 1 AND J C DOHRENWEND2 1 Cooperative Research Centre for Landscape Evolution and Mineral Exploration, c/- Australian Geological Survey Organisation, PO Box 378, Canberra ACT 2601, Australia 25755 East River Road #3207, Tucson, AZ 85750, USA A number of landform features on Cape York Peninsula (CYP) contain important clues for the development of landforms and regolith in the area The Great Escarpment, up to 200 m high, separates old landforms and regolith on the westem side from younger landforms and regolith on the eastem side West of the Great Escarpment there are smaller less continuous scarps which also form important boundaries between different regolith types There is clear eVidence for superimposed drainage, river capture and reversal, and inversion of relief on CYP Formation of the Carpentaria and Laura Basins during Middle to Late Jurassic and Early Cretaceous time covered the Palaeozoic and Proterozoic rocks of the Coen Inlier with coarse terrestrial to fine marine sediment The uplift and emergence of these basin sediments in the Late Cretaceous marks the beginning of the latest stage of landform and regolith evolution on CYP The sediments probably covered most, if not all, of the Coen Inlier, and post-Mesozoic erosion subsequently uncovered the basement to form the Inlier Substantial erosion and surface lowering in the area followed emergence at the end of the Cretaceous, -
The Dashanpu Dinosaur Fauna of Zigong Sichuan Short Report V - Labyrinthodont Amphibia
The Dashanpu Dinosaur Fauna of Zigong Sichuan Short Report V - Labyrinthodont Amphibia Zhiming Dong (Institute of Vertebrate Paleontology, Paleoanthropology, Academia Sinica) Vertebrata PalAsiatica Volume XXIII, No. 4 October, 1985 pp. 301-305 Translated by Will Downs Department of Geology Bilby Research Center Northern Arizona University December, 1990 Abstract A brief discussion is presented on the morphological characteristics and phylogenetic position of Sinobrachyops placenticephalus (gen. et sp. nov.). The specimen is derived from the well-known Middle Jurassic Dashanpu dinosaur quarries of Zigong County, Sichaun Province. Sinobrachyops is the youngest geological occurrence of a labyrinthodont amphibian known to date. Its discovery extends the upper geochronological limit for the Labyrinthodontia into the Middle Jurassic. Introduction The first fossils collected from Dashanpu, Zigong, in 1979, were a pair of rhachitomous vertebrae. This discovery created a sense of perplexity among the workers, for the morphology of these pleurocentra and intercentra suggested an assignment to the Labyrinthodontia. This group of amphibians, however, was traditionally believed to have become extinct in the Late Triassic, a traditional concept that must be abandoned if scientific investigation is to be advanced and left unfettered. In 1983 the Institute of Vertebrate Paleontology, Paleoanthropology Academia Sinica launched a paleontological expedition in the Shishugou Formation (Middle-Late Jurassic) from the Kelameili region, northeast Jungar Basin, Xinjiang Autonomous Region, where several rhachitomous vertebrae were discovered. Later, a fragmentary skull of a labyrinthodont amphibian was collected, confirming that this group extended into the Middle Jurassic. The discovery from the Shishugou Formation convinced the workers that the rhachitomous vertebrae at Dashanpu belonged to the Labyrinthodontia. -
John Hillier HYDROGEOLOGY Great Artesian Basin /Galilee Basin
HYDROGEOLOGY Great Artesian Basin /Galilee Basin Presented by John Hillier Acknowledgement Part of this presentation includes some of the findings of a report commissioned by members of the Galilee Basin Operators Forum (GBOF). The report was compiled by RPS Australia East Pty Ltd. Some Maps and Figures form their report have been used in this presentation. Location of GAB & Galilee Basins The Galilee Basin partly underlies the Great Artesian Basin Both were deposited on a very uneven surface STRATIGRAPHY AGE BASIN FORMATION ROLLING DOWNS GROUP (e.g. Winton Formation, Wallumbilla Formation, etc) CRETACEOUS CADNA-OWIE FORMATION (66 – 145 Myr) EROMANGA HOORAY SANDSTONE (GREAT ARTESIAN WESTBOURNE FORMATION BASIN) ADORI SANDSTONE JURASSIC BIRKHEAD FORMATION (145 – 200 Myr) HUTTON SANDSTONE GALILEE MOOLAYEMBER FORMATION TRIASSIC (GREAT ARTESIAN CLEMATIS SANDSTONE (200 – 253 Myr) BASIN) REWAN FORMATION (includes Dundas Beds) BETTS CREEK BEDS (Includes Bandanna PERMIAN Formation and Colinlea Sandstone) GALILEE (253 – 299 Myr) JOE JOE FORMATION (Includes Aramac Coal Measures) GAB - Surface Geology Eastern Area Outcrop Galilee Basin Coal Coal is mainly in the Colinlea Sandstone and the overlying Bandana Formation Near outcrop, where it is to be mined for coal, the coal seams range up to 8m in thickness Seam thicknesses vary considerable throughout the Basin How does the GAB operate •Water is stored in sandstone aquifers •Recharge is from rainfall that enters the aquifers where they outcrop at the surface •Groundwater movement in the GAB -
From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n. -
Western Downs
Image courtesy of Shell's QGC business “We have a strong and diverse economy that is enhanced by the resource sector through employment, Traditional Resources - infrastructure and Western Downs improved services." The Western Downs is known as the “Queensland has the youngest coal- Paul McVeigh, Mayor Energy Capital of Queensland and is fired power fleet in Australia including Western Downs now emerging as the Energy Capital of the Kogan Creek Power Station, and an Regional Council. Australia. abundance of gas which will ensure the State has a reliable source of base load This reputation is due to strong energy for decades to come.” investment over the past 15 years by the Energy Production Industry - Ian Macfarlane, CEO, Mining is the second most productive (EPI) into large scale resource sector Queensland Resources Council industry in the Western Downs after developments in coal seam gas (CSG) As at June 2018, the Gross Regional construction, generating an output of 2 and coal. Product (GRP) of the Western Downs 2.23 billion in 2017/18. Gas and coal-fired power stations region has grown by 26.3% over a In 2017/18, the total value of local sales 2 feature prominently in the region with twelve-month period to reach $4 billion. was $759.2 million. Of these sales, oil a total of six active thermal power The resource industry paid $58 million and gas extraction was the highest, at 2 stations. in wages to 412 full time jobs (2017-18). 3 $615.7 million. Kogan Creek Power Station is one of The industry spent $136 million on In 2017/18 mining had the largest Australia's most efficient and technically goods and services purchased locally total exports by industry, generating advanced coal-fired power stations. -
Analysis of Groundwater Level Trends in the Hutton Sandstone, Springbok Sandstone and Condamine Alluvium
Analysis of groundwater level trends in the Hutton Sandstone, Springbok Sandstone and Condamine Alluvium Surat Cumulative Management Area December 2019 Original version, authorised release in December 2019 by Sanjeev Pandey, Executive Director, Office of Groundwater Impact Assessment. This publication has been compiled by the Office of Groundwater Impact Assessment, Department of Natural Resources, Mines and Energy. Bibliographic reference: OGIA, 2019. Analysis of groundwater level trends in the Hutton Sandstone, Springbok Sandstone and Condamine Alluvium – Surat Cumulative Management Area. OGIA, Brisbane. Copyright statement: © State of Queensland, 2019 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence, you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Interpreter statement: The Queensland Government is committed to providing accessible services to Queenslanders from all culturally and linguistically diverse backgrounds. If you have difficulty in understanding this document, you can contact us within Australia on 13QGOV (13 74 68) and we will arrange an interpreter to effectively communicate the report to you. -
Poropat Et Al 2017 Reappraisal Of
Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R. -
A Novel Model to Estimate the Impact of Coal Seam Gas Extraction on Agro-Economic Returns
Land Use Policy 59 (2016) 351–365 Contents lists available at ScienceDirect Land Use Policy journal homepage: www.elsevier.com/locate/landusepol A novel model to estimate the impact of Coal Seam Gas extraction on agro-economic returns ∗ O. Marinoni , J. Navarro Garcia CSIRO Land and Water, Brisbane Qld 4001, Australia a r t i c l e i n f o a b s t r a c t Article history: There is an ever growing demand for energy worldwide and the demand for gas alone is predicted to Received 1 February 2016 double between 2010 and 2035. This demand together with concurrent advances in drilling technologies Received in revised form 11 July 2016 caused the production of unconventional natural gas such as shale gas and coal seam gas (CSG), which is Accepted 23 August 2016 in the focus of this paper, to grow rapidly in the last decades. With the gas bearing coal seams extending across vast areas within their respective basins and with CSG production having to follow these seams Keywords: through a network of production wells, pipelines and access roads, CSG activity affects large areas and Coal seam gas therefore interferes with existing land uses, predominantly agriculture. For the eastern Australian Surat Agro-economic returns GIS Basin and the southern Bowen Basin alone there are projected well numbers in excess of 15,000 to 20,000 between the years 2020 and 2030. The interference of CSG with agriculture on a large scale has raised Spatial analysis Impact analysis concerns about the impact of CSG on farmland, food security, water resources and the socio-economic environment within the affected regions and beyond. -
Surat Basin Non-Resident Population Projections, 2021 to 2025
Queensland Government Statistician’s Office Surat Basin non–resident population projections, 2021 to 2025 Introduction The resource sector in regional Queensland utilises fly-in/fly-out Figure 1 Surat Basin region and drive-in/drive-out (FIFO/DIDO) workers as a source of labour supply. These non-resident workers live in the regions only while on-shift (refer to Notes, page 9). The Australian Bureau of Statistics’ (ABS) official population estimates and the Queensland Government’s population projections for these areas only include residents. To support planning for population change, the Queensland Government Statistician’s Office (QGSO) publishes annual non–resident population estimates and projections for selected resource regions. This report provides a range of non–resident population projections for local government areas (LGAs) in the Surat Basin region (Figure 1), from 2021 to 2025. The projection series represent the projected non-resident populations associated with existing resource operations and future projects in the region. Projects are categorised according to their standing in the approvals pipeline, including stages of In this publication, the Surat Basin region is defined as the environmental impact statement (EIS) process, and the local government areas (LGAs) of Maranoa (R), progress towards achieving financial close. Series A is based Western Downs (R) and Toowoomba (R). on existing operations, projects under construction and approved projects that have reached financial close. Series B, C and D projections are based on projects that are at earlier stages of the approvals process. Projections in this report are derived from surveys conducted by QGSO and other sources. Data tables to supplement the report are available on the QGSO website (www.qgso.qld.gov.au). -
Bowen Basin Coalfields of Central Queensland (Figure 1)
The South African Institute of Mining and Metallurgy International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering John V Simmons and Peter J Simpson COMPOSITE FAILURE MECHANISMS IN COAL MEASURES ROCK MASSES – MYTHS AND REALITY John V Simmons Sherwood Geotechnical and Research Services Peter J Simpson BMA Coal Pty Ltd Central Queensland Office 1. INTRODUCTION Excavated slopes in open pit coal mines are designed to be as steep as possible consistent with stability and safety requirements. Slope failures occur for many reasons, including oversteepening. This paper is concerned with slope design and excavation experience in the Bowen Basin coalfields of central Queensland (Figure 1), Bowen Basin Coalfields Figure 1 Location of Bowen Basin open pit coal mines in eastern Australia Page 31 The South African Institute of Mining and Metallurgy International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering John V Simmons and Peter J Simpson but it deals with many issues that are common to open pit coal mining generally. After more than three decades of operational experience and technological advances in the Bowen Basin mines, sudden rock slope failures still occur in circumstances where personnel and equipment are at extreme risk. The circumstances of a selection of these sudden failures are reviewed in this paper, and some concerning trends emerge. Classical structurally-controlled slope failures occur quite rarely in the Bowen Basin, but rock mass structures appear to exert important controls on the sudden failures that are more widely experienced. The term "composite" is used in this paper to describe failures involving combinations of intact rock material fracture and shear movement on defects (Baczynski, 2000). -
6. Groundwater Resources
6. Groundwater Resources Contents 6 Groundwater Resources 6-1 6.1 Regulatory Framework 6-1 6.1.1 Queensland Legislation 6-1 6.2 Existing Environment 6-4 6.2.1 Project Location 6-4 6.2.2 Hydrology and Landforms 6-4 6.2.3 Geology 6-4 6.2.4 Hydrogeology 6-11 6.2.5 Groundwater Use 6-16 6.2.6 Existing Mine Groundwater Monitoring 6-25 6.2.7 Revised Project Baseline Groundwater Monitoring 6-27 6.2.8 Groundwater Levels 6-31 6.2.9 Groundwater Movement 6-35 6.2.10 Inter-aquifer Connectivity 6-38 6.2.11 Surface Water and Groundwater Interaction 6-39 6.2.12 Groundwater Quality 6-39 6.2.13 Environmental Values in the EPP Water 6-47 6.2.14 Conceptual Hydrogeological Model 6-49 6.3 Impact Assessment 6-53 6.3.1 Effects on Groundwater Levels 6-55 6.3.2 Effects on Groundwater Quality 6-72 6.3.3 Effects on Groundwater Users 6-75 6.3.4 Effects on Groundwater Dependent Ecosystems 6-77 6.4 Mitigation Measures 6-77 6.4.1 Groundwater Monitoring Program 6-77 6.4.2 Landholder Bores 6-83 6.4.3 Groundwater Impact Prediction, Validation and Review 6-83 6.4.4 Mitigation Measures for affected Groundwater Users 6-84 6.5 Conclusions 6-84 New Acland Coal Mine Stage 3 Project – Environmental Impact Statement PAGE i 6 Groundwater Resources This Chapter describes the groundwater resources that may be affected by the revised Project, how they might be affected, and the measures required for the mitigation of potential negative effects. -
Epm 16511 Brodies Lookout
Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” Investigator Resources Limited Suite 48, Level 3, Benson House 2 Benson Street, Toowong, Qld 4066 Tel: +61 (0)7 3870 0357 Fax: +61 (0)7 3876 0351 Email: [email protected] web: www.investres.com.au EPM 16511 BRODIES LOOKOUT SURRENDER AND FINAL REPORT for period 27 April 2009 to 26 April 2011 D G Jones and B R Willott Investigator Resources Limited 6 September 2011 Page | 1 Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” 2 TABLE OF CONTENTS 3. SUMMARY ...................................................................................................................................................... 4 4. INTRODUCTION ............................................................................................................................................ 5 4.1. TENURE ....................................................................................................................................................... 5 4.2. LOCATION ................................................................................................................................................... 6 4.3. LOCAL ACCESS ........................................................................................................................................... 7 4.4. EXPLORATION RATIONALE ......................................................................................................................... 8 4.5. PROGRAM UNDERTAKEN