Epm 16511 Brodies Lookout

Total Page:16

File Type:pdf, Size:1020Kb

Epm 16511 Brodies Lookout Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” Investigator Resources Limited Suite 48, Level 3, Benson House 2 Benson Street, Toowong, Qld 4066 Tel: +61 (0)7 3870 0357 Fax: +61 (0)7 3876 0351 Email: [email protected] web: www.investres.com.au EPM 16511 BRODIES LOOKOUT SURRENDER AND FINAL REPORT for period 27 April 2009 to 26 April 2011 D G Jones and B R Willott Investigator Resources Limited 6 September 2011 Page | 1 Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” 2 TABLE OF CONTENTS 3. SUMMARY ...................................................................................................................................................... 4 4. INTRODUCTION ............................................................................................................................................ 5 4.1. TENURE ....................................................................................................................................................... 5 4.2. LOCATION ................................................................................................................................................... 6 4.3. LOCAL ACCESS ........................................................................................................................................... 7 4.4. EXPLORATION RATIONALE ......................................................................................................................... 8 4.5. PROGRAM UNDERTAKEN .......................................................................................................................... 10 4.6. PREVIOUS EXPLORATION .......................................................................................................................... 10 5. GEOLOGY ..................................................................................................................................................... 12 5.1 REGIONAL GEOLOGY ................................................................................................................................ 12 5.2. LOCAL GEOLOGY ..................................................................................................................................... 14 5.2.1. Proterozoic ....................................................................................................................................... 15 5.2.2. Mesozoic (Rolling Downs Group) ................................................................................................... 15 5.2.2.1. Gilbert River Formation (JKg) ..................................................................................................................... 15 5.2.2.2. Wallumbilla Formation (Ranmoor Member) (Klu) ..................................................................................... 17 5.2.2.3. Toolebuc Formation (Klo) ............................................................................................................................ 17 5.2.2.4. Allaru Mudstone (Kla) .................................................................................................................................. 17 5.2.2.5. Floraville Formation (Klf) ............................................................................................................................ 17 5.2.3. Structure ................................................................................................................................................. 18 6. EXPLORATION UNDERTAKEN .......................................................................................................... 18 7. CONCLUSIONS ........................................................................................................................................ 22 8. RECOMMENDATION ............................................................................................................................. 22 9. REFERENCES ........................................................................................................................................... 23 APPENDIX 1 .......................................................................................................................................................... 24 QDEX REPORTS ................................................................................................................................................... 24 APPENDIX 2 .......................................................................................................................................................... 25 WATER BORES ...................................................................................................................................................... 25 APPENDIX 3 .......................................................................................................................................................... 26 MRX PTY LTD DRILL HOLE DATA ...................................................................................................................... 26 Page | 2 Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” Figures FIGURE 1. EPM 16511 SUB-BLOCKS .......................................................................................................................... 5 FIGURE 2. LOCATION AND ACCESS TO EPM 16511 .................................................................................................... 6 FIGURE 3. LOCAL TOPOGRAPHY, EPM 16511 ............................................................................................................ 7 FIGURE 4. ACCESSIBLE TRACKS, GROUND COVER AND TOPOGRAPHY ........................................................................ 8 FIGURE 5. REGIONAL TOTAL COUNT RADIOMETRIC IMAGE (WHITE = STRONGEST RESPONSE) .................................. 9 FIGURE 6. EPM 16511 IN RELATION TO MT ISA INLIER ........................................................................................... 12 FIGURE 7. CHRONOSTRATIGRAPHIC CHART FOR THE MT ISA SUCCESSION IN THE VICINITY OF EPM 16511 .......... 15 FIGURE 8. LOCAL GEOLOGY, EPM 16511 ................................................................................................................ 16 FIGURE 9. CHRONOSTRATIGRAPHY AND LEGEND FOR FIGURE 8 ABOVE .................................................................. 16 FIGURE 10. CHARACTER SAMPLING, TOOLEBUC FORMATION ................................................................................. 18 FIGURE 11. LOCATION OF CROSS-SECTIONS ............................................................................................................. 19 FIGURE 12. SECTION C-D ......................................................................................................................................... 20 FIGURE 13. SECTION E-F .......................................................................................................................................... 21 FIGURE 14. SECTION G-H ......................................................................................................................................... 21 FIGURE 15. SECTION J-K .......................................................................................................................................... 22 Tables TABLE 1. EPM 16511 SUB-BLOCKS ........................................................................................................................... 5 Page | 3 Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” 3. SUMMARY Many of the granitic suites in the Mt Isa Inlier are anomalously high in uranium. Groundwater flowing out from the Mt Isa Inlier may carry oxidised uranium as a complex uranyl carbonate ion. Specific permeable units within the Mesozoic strata of the Great Australian Basin (formerly known as the Great Artesian Basin) carry most of the groundwater flowing to the south and east of the Mt Isa Inlier. Precipitation of uranium could occur if the migrating groundwater encountered reducing conditions such as the carbonaceous horizons found in the Mesozoic Toolebuc Formation. EPM 16511 targeted Toolebuc Formation mapped southwest of Nardoo homestead, located 200km due north of the city of Mt Isa. Reconnaissance traversing of EPM 16511 was carried out in August 2009. The objective was to verify that outcropping Toolebuc Formation was present. A detailed compilation of water bore data and previous exploration was completed. In November 2010 Southern Uranium Limited (ASX Code SNU) changed the name of the Company to Investigator Resources Limited (ASX Code IVR), reflecting a broader multi-commodity approach to its exploration strategy. This name change was then formalised by ASIC and Investigator Resources commenced trading on the ASX on 26 November 2010. Due to budget constraints and the low priority of EPM 16511 Investigator Resources Limited lodged an Application for Surrender of EPM 16511 tenure on 21 March 2011 that was accepted by the Department of Employment, Economic Development and Innovation (DEEDI) on 19 July 2011. The surrender coincides with the end of Year 2 and includes all 100 sub-blocks for EPM16511. Page | 4 Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” 4. INTRODUCTION 4.1. Tenure EPM 16511 was surrendered by Investigator Resources Limited on 21 March 2011 coinciding with the end of Year 2. The area surrendered comprised all
Recommended publications
  • John Hillier HYDROGEOLOGY Great Artesian Basin /Galilee Basin
    HYDROGEOLOGY Great Artesian Basin /Galilee Basin Presented by John Hillier Acknowledgement Part of this presentation includes some of the findings of a report commissioned by members of the Galilee Basin Operators Forum (GBOF). The report was compiled by RPS Australia East Pty Ltd. Some Maps and Figures form their report have been used in this presentation. Location of GAB & Galilee Basins The Galilee Basin partly underlies the Great Artesian Basin Both were deposited on a very uneven surface STRATIGRAPHY AGE BASIN FORMATION ROLLING DOWNS GROUP (e.g. Winton Formation, Wallumbilla Formation, etc) CRETACEOUS CADNA-OWIE FORMATION (66 – 145 Myr) EROMANGA HOORAY SANDSTONE (GREAT ARTESIAN WESTBOURNE FORMATION BASIN) ADORI SANDSTONE JURASSIC BIRKHEAD FORMATION (145 – 200 Myr) HUTTON SANDSTONE GALILEE MOOLAYEMBER FORMATION TRIASSIC (GREAT ARTESIAN CLEMATIS SANDSTONE (200 – 253 Myr) BASIN) REWAN FORMATION (includes Dundas Beds) BETTS CREEK BEDS (Includes Bandanna PERMIAN Formation and Colinlea Sandstone) GALILEE (253 – 299 Myr) JOE JOE FORMATION (Includes Aramac Coal Measures) GAB - Surface Geology Eastern Area Outcrop Galilee Basin Coal Coal is mainly in the Colinlea Sandstone and the overlying Bandana Formation Near outcrop, where it is to be mined for coal, the coal seams range up to 8m in thickness Seam thicknesses vary considerable throughout the Basin How does the GAB operate •Water is stored in sandstone aquifers •Recharge is from rainfall that enters the aquifers where they outcrop at the surface •Groundwater movement in the GAB
    [Show full text]
  • Poropat Et Al 2017 Reappraisal Of
    Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R.
    [Show full text]
  • Geology and Mineral Resources of the Northern Territory
    Geology and mineral resources of the Northern Territory Ahmad M and Munson TJ (compilers) Northern Territory Geological Survey Special Publication 5 Chapter 41: Eromanga Basin BIBLIOGRAPHIC REFERENCE: Munson TJ, 2013. Chapter 41: Eromanga Basin: in Ahmad M and Munson TJ (compilers). ‘Geology and mineral resources of the Northern Territory’. Northern Territory Geological Survey, Special Publication 5. Disclaimer While all care has been taken to ensure that information contained in this publication is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of its information. The Northern Territory of Australia gives no warranty or assurance, and makes no representation as to the accuracy of any information or advice contained in this publication, or that it is suitable for your intended use. You should not rely upon information in this publication for the purpose of making any serious business or investment decisions without obtaining independent and/or professional advice in relation to your particular situation. The Northern Territory of Australia disclaims any liability or responsibility or duty of care towards any person for loss or damage caused by any use of, or reliance on the information contained in this publication. Eromanga Basin Current as of May 2012 Chapter 41: EROMANGA BASIN TJ Munson INTRODUCTION geology and regolith). However, the southwestern margins of the basin are exposed in SA and the northeastern part of The ௘Cambrian±"Devonian Warburton Basin, the basin in central Qld is also exposed and has been eroding Carboniferous±Triassic 3edirNa Basin and Jurassic± since the Late Cretaceous.
    [Show full text]
  • Context Statement for the Central West Subregion, PDF, 14.08 MB
    1 Context statement for the Central West subregion Product 1.1 for the Northern Inland Catchments Bioregional Assessment 29 August 2014 A scientific collaboration between the Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia The Bioregional Assessment Programme The Bioregional Assessment Programme is a transparent and accessible programme of baseline assessments that increase the available science for decision making associated with coal seam gas and large coal mines. A bioregional assessment is a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. This Programme draws on the best available scientific information and knowledge from many sources, including government, industry and regional communities, to produce bioregional assessments that are independent, scientifically robust, and relevant and meaningful at a regional scale. The Programme is funded by the Australian Government Department of the Environment. The Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia are collaborating to undertake bioregional assessments. For more information, visit <http://www.bioregionalassessments.gov.au>. Department of the Environment The Office of Water Science, within the Australian Government Department of the Environment, is strengthening the regulation of coal seam gas and large coal mining development by ensuring that future decisions are informed by substantially improved science and independent expert advice about the potential water related impacts of those developments. For more information, visit <http://www.environment.gov.au/coal-seam-gas-mining/>. Bureau of Meteorology The Bureau of Meteorology is Australia’s national weather, climate and water agency.
    [Show full text]
  • Combined Analysis of Different Logs in Quantification of Exhumation and Its Implications for Hydrocarbon Exploration, a Case Study from Australia
    Geologica Acta, Vol.4, Nº 3, 2006, 355-370 Available online at www.geologica-acta.com Combined analysis of different logs in quantification of exhumation and its implications for hydrocarbon exploration, a case study from Australia A. MAVROMATIDIS Petroleum Development LLC P.O. Box 81, Muscat, 113 Oman. E-mail: [email protected] ABSTRACT Exhumation in the Eromanga Basin of South Australia and Queensland has been quantified using the com- paction methodology. The standard method of estimating exhumation using the sonic log has been modified and the adjusted sonic, the bulk density and neutron logs, have been used to estimate exhumation. Additionally the use of a single shale has not been adopted, and seven units, ranging in age from Cretaceous to Jurassic have been analysed. All units yield similar results; and burial at depth greater than currently observed is the most likely cause of overcompaction. The use of the adjusted sonic, bulk and neutron logs have been justified. This study has major implications for hydrocarbon exploration since predicted maturation of source rocks will be greater for any given geothermal history if exhumation is incorporated in maturation modelling. KEYWORDS Eromanga basin. Compaction. Adjusted sonic log. Density log. Neutron log. Source rock maturity. INTRODUCTION in the Eromanga Basin, using the adjusted sonic log, the bulk density and the neutron log from 195 The Eromanga Basin of South Australia and Queens- released wells and compare the results with compac- land is not at its maximum burial-depth due to Late Creta- tion studies using the sonic log (Mavromatidis and ceous - Tertiary exhumation.
    [Show full text]
  • From the Lower Cretaceous of Lightning Ridge, New South Wales, Australia
    Isolated teeth of Anhangueria (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia Tom Brougham1, Elizabeth T. Smith2 and Phil R. Bell1 1 School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia 2 Australian Opal Centre, Lightning Ridge, New South Wales, Australia ABSTRACT The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of `ornithocheirid' and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. Subjects Paleontology, Taxonomy Keywords Pterosauria, Cretaceous, Australia, Teeth Submitted 11 January 2017 Accepted 31 March 2017 Published 3 May 2017 INTRODUCTION Corresponding author Tom Brougham, Pterosaurs first appeared in the Late Triassic and diversified rapidly into the Jurassic. [email protected] At the peak of their diversity in the Cretaceous, pterosaurs where present on all Academic editor Andrew Farke continents, including Antarctica (Barrett et al., 2008; Upchurch et al., 2015).
    [Show full text]
  • Predation of the Early Cretaceous (Late Albian) Pachycormiform, Australopachycormus Hurleyi Kear, in Queensland’S Eromanga Basin
    Memoirs of the Queensland Museum | Nature 59 © Queensland Museum 2015 PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 2204-1478 (Online) ISSN 0079-8835 (Print) NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Hard copies of the journal can be purchased from the Queensland Museum Shop or are freely available online through the museum website. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au A Queensland Government Project Typeset at the Queensland Museum Predation of the Early Cretaceous (Late Albian) pachycormiform, Australopachycormus hurleyi Kear, in Queensland’s Eromanga Basin Alan BARTHOLOMAI Director Emeritus, Queensland Museum, PO Box 3300, South Brisbane, Qld 4101, Australia. Citation: Bartholomai, A. 2015. Predation of the Early Cretaceous (Late Albian) pachycormiform, Australopachycormus hurleyi Kear, in Queensland’s Eromanga Basin. Memoirs of the Queensland Museum – Nature 59: 245–255. Brisbane. ISSN 2204-1478 (Online) ISSN 0079-8835 (Print): Accepted 18 Dec 2014. First published online: 30 November 2015. http://dx.doi.org/10.17082/j.2204-1478.59.2015.2014-04 LSID - urn:lsid:zoobank.org:pub:D351FC80-BDBA-47C6-BEB4-1A9C0A2FB4D0 ABSTRACT Additional remains of the marine pachycormiform fish, Australopachycormus hurleyi Kear, 2007, have been located in collections of the Queensland Museum from the Early Cretaceous (Late Albian) Toolebuc Formation of the Eromanga Basin, near Boulia in central western Queensland.
    [Show full text]
  • Palaeoenvironmental and Climatic Changes
    Chapter 4 EARLY APTIAN AND ALBIAN (MID-CRETACEOUS) GEOCHEMICAL AND PALYNOLOGICAL RECORDS FROM THE EROMANGA BASIN (AUSTRALIA): INDICATION OF THE TOOLEBUC FORMATION BEING AN EXPRESSION OF OAE 1C Abstract The GSQ Hughenden-7, GSQ Manuka-1, and GSQ Eromanga-1 cores from the Eromanga Basin 13 were studied for palynology, organic-carbon-isotope (δ Corg) stratigraphy and total organic carbon 13 (TOC) content. The dinocyst events combined with the δ Corg records inferred an Early Aptian to Late Albian age for the studied sections. Comparison of the data with information from the Carpentaria Basin reveals that the start of the mid-Cretaceous marine incursion into the Eromanga Basin is related to the earliest Aptian sea-level rise. Further comparison with time-equivalent Tethyan records shows that the Toolebuc Formation within the three cores is linked with oceanic anoxic event (OAE) 1c in the earliest Late Albian. The Toolebuc Fm reflects three depositional modes: firstly, a sea-level rise caused leaching of nutrients and primary productivity strated to increase; secondly, a sudden short-term sea-level fall associated with the highest primary productivity observed for the Toolebuc Fm; and thirdly, a sea-level rise with increased influx of terrestrial derived material. Further palaeoenvironmental reconstructions, based on selected groups within the dinoflagellate cysts and sporomorph assemblages, indicate relatively cooler and drier conditions at the onset of the Toolebuc than for the later part when conditions become warmer and more humid. 1. Introduction In sedimentary sections Oceanic Anoxic Events (OAEs) are generally characterized by enrichment of organic matter, lamination, the absence or strong impoverishment of benthic faunas, and rising 13C /12C values of inorganic and organic carbon (Kuypers, 2001).
    [Show full text]
  • Queensland Geological Framework
    Geological framework (Compiled by I.W. Withnall & L.C. Cranfield) The geological framework outlined here provides a basic overview of the geology of Queensland and draws particularly on work completed by Geoscience Australia and the Geological Survey of Queensland. Queensland contains mineralisation in rocks as old as Proterozoic (~1880Ma) and in Holocene sediments, with world-class mineral deposits as diverse as Proterozoic sediment-hosted base metals and Holocene age dune silica sand. Potential exists for significant mineral discoveries in a range of deposit styles, particularly from exploration under Mesozoic age shallow sedimentary cover fringing prospective older terranes. The geology of Queensland is divided into three main structural divisions: the Proterozoic North Australian Craton in the north-west and north, the Paleozoic–Mesozoic Tasman Orogen (including the intracratonic Permian to Triassic Bowen and Galilee Basins) in the east, and overlapping Mesozoic rocks of the Great Australian Basin (Figure 1). The structural framework of Queensland has recently been revised in conjunction with production of a new 1:2 million-scale geological map of Queensland (Geological Survey of Queensland, 2012), and also the volume on the geology of Queensland (Withnall & others, 2013). In some cases the divisions have been renamed. Because updating of records in the Mineral Occurrence database—and therefore the data sheets that accompany this product—has not been completed, the old nomenclature as shown in Figure 1 is retained here, but the changes are indicated in the discussion below. North Australian Craton Proterozoic rocks crop out in north-west Queensland in the Mount Isa Province as well as the McArthur and South Nicholson Basins and in the north as the Etheridge Province in the Georgetown, Yambo and Coen Inliers and Savannah Province in the Coen Inlier.
    [Show full text]
  • Appendix D Surat Basin Geological Model Surat Basin Stratigraphic Framework April 2012
    Appendix D Surat Basin geological model Surat Basin Stratigraphic Framework April 2012 Surat Basin Stratigraphic Framework April 2012 – Surat Basin Stratigraphic Framework April 2012 Table of Contents 1. Introduction .................................................................................................................................... 4 2. Methodology ................................................................................................................................... 8 2.1. Area of Interest ....................................................................................................................... 8 2.2. Datasets .................................................................................................................................. 8 2.3. Geological Modelling ............................................................................................................ 10 3. Regional Structure ........................................................................................................................ 12 4. Geological Descriptions ................................................................................................................. 17 4.1. Base Jurassic Unconformity .................................................................................................. 17 4.2. Precipice Sandstone .............................................................................................................. 17 4.3. Evergreen Formation ...........................................................................................................
    [Show full text]
  • From Western Queensland, Australia
    “main” — 2011/2/10 — 17:57 — page 301 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 301-308 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Short note on a pteranodontoid pterosaur (Pterodactyloidea) from western Queensland, Australia , , , , ALEXANDER W.A. KELLNER1 2 3, TAISSA RODRIGUES1 2 and FABIANA R. COSTA1 4 1Setor de Paleovertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista s/n São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brasil 2Fellow CNPq 3Fellow FAPERJ 4Fellow CAPES Manuscript received on December 9, 2010; accepted for publication on January 5, 2011 ABSTRACT Flying reptiles from Australia are very rare, represented mostly by isolated bones coming from the Early Creta- ceous (Albian) Toolebuc Formation, which crops out in western Queensland. Among the first pterosaur specimens discovered from this deposit is a mandibular symphysis that some authors thought to have a particular affinity to species found in the Cambridge Greensand (Cenomanian) of England. It was further referred as a member of or closely related to one of the genera Ornithocheirus, Lonchodectes or Anhanguera. Here we redescribe this specimen, showing that it cannot be referred to the aforementioned genera, but represents a new species of pteranodontoid (sensu Kellner 2003), here named Aussiedraco molnari gen. et sp. nov. It is the second named pterosaur from Australia and confirms that the Toolebuc deposits are so far the most important for our understanding of the flying reptile fauna of this country. Key words: Pteranodontoidea, Pterosauria, Toolebuc Formation, Cretaceous, Australia. INTRODUCTION a species closely related to Ornithocheirus Seeley, 1869 (Molnar and Thulborn 1980).
    [Show full text]
  • Unusual Gut Contents in a Cretaceous Ichthyosaur B
    deposits of Lyme Regis and Whitby in England and Holtz- maden in Germany. One of the earliest accounts (Buckland 1836) described coprolitic masses containing fish scales, within the body cavities of several ichthyosaurs from Lyme Regis. Later re-examination showed that the Unusual gut contents in a fish remains to belong to the Liassic holostean Pholido- phorus, and identified numerous dibranchiate cephalopod Cretaceous ichthyosaur hooklets (Pollard 1968). Large vertebrate remains includ- ing fish and small ichthyosaurs have been recorded as gut Benjamin P. Kear1,2*, Walter E. Boles2,3 contents in some Jurassic ichthyosaur specimens and Elizabeth T. Smith2 (McGowan 1974). Cephalopods, however, represent the 1South Australian Museum, North Terrace, Adelaide 5000, Australia dominant component of most ichthyosaur gastric residues 2Vertebrate Palaeontology Laboratory, School of Biological, Earth and from Lyme Regis and Holtzmaden (see Pollard 1968; Environmental Science, University of New South Wales, Sydney 2052, Keller 1976; Massare 1987; Bo¨ttcher 1989). Australia 3Australian Museum, 6 College Street, Sydney 2010, Australia The partial ichthyosaur skeleton (QM F16811, Queens- * Author and address for correspondence: South Australian Museum, land Museum, Brisbane, Queensland, Australia) discussed North Terrace, Adelaide 5000, Australia ([email protected]). here is assigned to Platypterygius longmani, a large (ca.7m in total length) ichthyosaur known primarily from the Recd 03.04.03; Accptd 21.05.03; Online 21.07.03 Upper Albian (Lower Cretaceous) of Queensland, Aus- Despite ichthyosaurs being one of the most exten- tralia (Wade 1990). An exceptionally preserved foetal skull sively studied Mesozoic marine reptile groups, there and fragmentary skeleton are preserved within the body is little documented direct evidence of dietary habits cavity.
    [Show full text]