Geology and Mineral Resources of the Northern Territory

Total Page:16

File Type:pdf, Size:1020Kb

Geology and Mineral Resources of the Northern Territory Geology and mineral resources of the Northern Territory Ahmad M and Munson TJ (compilers) Northern Territory Geological Survey Special Publication 5 Chapter 41: Eromanga Basin BIBLIOGRAPHIC REFERENCE: Munson TJ, 2013. Chapter 41: Eromanga Basin: in Ahmad M and Munson TJ (compilers). ‘Geology and mineral resources of the Northern Territory’. Northern Territory Geological Survey, Special Publication 5. Disclaimer While all care has been taken to ensure that information contained in this publication is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of its information. The Northern Territory of Australia gives no warranty or assurance, and makes no representation as to the accuracy of any information or advice contained in this publication, or that it is suitable for your intended use. You should not rely upon information in this publication for the purpose of making any serious business or investment decisions without obtaining independent and/or professional advice in relation to your particular situation. The Northern Territory of Australia disclaims any liability or responsibility or duty of care towards any person for loss or damage caused by any use of, or reliance on the information contained in this publication. Eromanga Basin Current as of May 2012 Chapter 41: EROMANGA BASIN TJ Munson INTRODUCTION geology and regolith). However, the southwestern margins of the basin are exposed in SA and the northeastern part of The ௘Cambrian±"Devonian Warburton Basin, the basin in central Qld is also exposed and has been eroding Carboniferous±Triassic 3edirNa Basin and Jurassic± since the Late Cretaceous. The surface elevation of the basin Cretaceous Eromanga Basin are three stacNed basins in is highest over central Qld, where it is ca 300 m above present- the southeastern corner of the Northern Territory that also day sea-level, but elevations decrease towards the southwest extend over areas of adjoining Queensland, South Australia to below present-day sea level (Waschbusch et al 2009). and New South Wales (Figure 41.1). The Eromanga, Surat The stratigraphic nomenclature of the Eromanga Basin and Carpentaria basins together form the bulN of the Great is complex and has evolved over a century. Units of the Australian Basin1 (Green 1997, Draper 2002b) of central same lithology and in the same stratigraphic position have and northeastern Australia. Other interconnected eastern been given different names in different parts of the basin. Australian basins (eg Clarence-Moreton, Nambour and The stratigraphic succession in the Northern Territory is Laura basins) could also be considered to be a part of this summarised in Table 41.1 and a correlation chart that includes vast depositional system. The Northern Territory part of successions from other portions of the Great Australian the Eromanga Basin contains about 2300 m of Jurassic to Basin is presented in Figure 41.2. The Jurassic succession is Cretaceous strata overlying 3rotero]oic (Aileron 3rovince mainly terrestrial and comprises Àuviatile Tuart] sandstone and Musgrave 3rovince), 3alaeo]oic (AmadeusWarburton interbedded with carbonaceous shale. The Early Cretaceous and Georgina basins, ,rindina 3rovince) and 3ermian±Triassic succession is largely marine, whereas late Early Cretaceous (3edirNa Basin) successions. Elsewhere, the Eromanga strata were deposited in a regressive sea. The early Late Basin also overlies the Bowen, Cooper, Galilee, ArcNaringa Cretaceous part of the Eromanga Basin succession was laid and older basins, and crystalline basement rocNs. Most of down in a mix of environments, including shallow marine, the succession is in the subsurface and in the NT is largely paralic, lacustrine, paludal and Àuviatile. overlain by Ceno]oic and 5ecent sedimentary rocNs of the Numerous studies have been published on the Eromanga LaNe Eyre Basin and other sur¿cial deposits (see Cenozoic Basin, of which some of the more signi¿cant include Whitehouse (1955), Day (1964, 1966, 1967, 1968, 1969), 1 These basins were originally de¿ned by Mott (1952) as portions Vine and Day (1965), Vine et al (1967), Senior et al (1969, of the Great Artesian Basin, a term best restricted to hydrogeology as portions of the artesian system are within sedimentary rocNs of 1978), Casey (1970), Exon and Senior (1976), Haig and other basins (eg Bowen, Galilee basins). Barnbaum 1978, Burger and Senior (1979), Habermehl 133° 135° 137° 139 ° Aileron Province Georgina 23° Basin Ngalia Irindina Basin Province Warumpi Province Alice Springs Aileron NT Amadeus QLD Province (Warburton Basin) Basin Pedirka 25° Basin (Pedirka ? Basin) NT QLD SA SA Musgrave (Warburton Figure 41.1. 5egional geological Province setting of Eromanga Basin. NT Basin) geological regions slightly modi¿ed 27° from NTGS 1:2.5M geological regions GIS dataset. Queensland geological Officer regions simpli¿ed and slightly modi¿ed Basin (Arckaringa (Cooper Basin) from Denaro and Dhnaram (2009) and Basin) Geoscience Australia (GA) Geological 5egions National Geoscience Dataset. Mesozoic–Cenozoic Basins (under cover): SA geological regions simpli¿ed and Neoproterozoic– (Pedirka Basin); Carpentaria Palaeozoic Basin slightly modi¿ed from Department for (Amadeus Basin) Euroka Manufacturing, Innovation, Trade, Palaeo–Mesoproterozoic Arch 5esources and Energy (DMIT5E), orogens (Warburton Basin); Eromanga Basin (other – as labelled) South Australia 5esources Information EROMANGA BASIN Nebine Geoserver (SA5IG: http://www. Road Ridge Location of Figure 40.941.9 Surat sarig.dmitre.sa.gov.au/) and from GA Rail Basin Geological 5egions National Geoscience State boundary Dataset. Ceno]oic covering strata (eg 02125 50 km Alice Locality LaNe Eyre Basin) not shown. Springs A12-097.ai Geology and mineral resources of the Northern Territory 41:1 Special publication 5 Eromanga Basin (1980, 1986), papers in Moore and Mount (1982), Burger Eromanga Basin in that area (Gray et al 2002). Elsewhere, it (1986), papers in GravestocN et al (1986), John and Almond unconformably overlies earlier 3alaeo]oic sedimentary and (1987), papers in O’Neil (1989), Questa (1990), Green et al metasedimentary basement rocNs. In the western Eromanga (1991, 1992), Krieg et al (1995), Draper (2002a, b), Gray Basin in the NT and northern SA, the 3oolowanna Formation et al (2002), Gray and Draper (2002), McKellar (2002), intertongues with and is conformably overlain by the Ambrose et al (2002, 2007), Ambrose (2006), Cotton et al AlgebucNina Sandstone. To the east on the Birdsville TracN (2006), Waschbusch et al (2009) and Ambrose and Heugh 5idge, it is conformably overlain by the Hutton Sandstone, (2010, 2011). The distribution of outcrops in the NT portion which is a lateral eTuivalent of the lower AlgebucNina of the basin is shown in Figure 41.3. Sandstone, and in the Cooper Basin area further to the east, it intertongues with and is conformably overlain by JURASSIC–EARLY CRETACEOUS the Hutton Sandstone (Krieg et al 1995, Gray et al 2002). The 3oolowanna Formation is a lateral eTuivalent of the In the NT portion of the Eromanga Basin, the Jurassic and 3recipice Sandstone and overlying Evergreen Formation older part of the Early Cretaceous succession is divided of the northeastern Eromanga Basin and Surat Basin into two units (Figure 41.2, Table 41.1), the 3oolowanna (McKellar 2002). The main depocentre for the formation )ormation and AlgebucNina Sandstone. is the 3oolowanna Trough, where it reaches a maximum thicNness of 206 m in drillhole 3oolowanna-1 in SA (Krieg Poolowanna Formation et al 1995). ThicN sections are also present to the east and The entirely subsurface 3oolowanna )ormation (Moore northeast of the trough in southwestern Qld, where the 1986b µ3oolowanna beds’ of Wiltshire 1978) is the basal formation reaches a thicNness of 165 m in drillhole DIO unit in the Eromanga Basin succession in the NT in the Curalle-1 (Gray et al 2002). In the NT, the 3oolowanna 3oolowanna, Madigan and Eringa troughs. However, it Formation reaches maximum thicNnesses of 205 m in thins to the west and is absent along the western ÀanNs of Thomas-1 (Wiltshire 1982) and 193 m in 3oeppels Corner-1 the latter two depocentres, where it is overlapped by the (Arco Australia 1985), but it thins to the north and west to AlgebucNina Sandstone (Figure 41.4). The 3oolowanna be 109.4 m thicN in Colson-1 (Beach 3etroleum 1979), 39 m )ormation unconformably overlies 3ermian and Triassic in Simpson-1 (Central 3etroleum 2009a) and less than 10 m sedimentary rocNs of the 3edirNa Basin in the NT and in Blamore-1 (Central 3etroleum 2008, Figure 41.5). SA and the Cooper Basin in SA and Qld. In the Cooper An informal two-fold division of the 3oolowanna Basin, it also unconformably overlies the Late Triassic Formation is recognised in Qld, where a lower interval Cuddapan Formation, which is the lowermost unit of the of medium to very coarse sandstone, grading in places to Unit, max thickness Lithology Depositional environment Stratigraphic relationship Cretaceous ROLLING DOWNS GROUP MANUKA SUBGROUP Winton Formation Claystone, siltstone and mudstone with Fluviatile to paludal to Conformable on MacNunda Formation. 620 m interbedded sandstone and minor coal lacustrine. 3aralic, estuarine, Unconformable beneath Ceno]oic sediments, seams. deltaic and Àuviatile near base. including those of LaNe Eyre Basin. Mackunda Formation Labile lithic sandstone, siltstone Shallow marine and paralic. Conformable on Allaru Mudstone. 144 m and mudstone, lesser mud-clast intraformational
Recommended publications
  • Regolith-Landform Evolution on Cape York Peninsula
    REGOLITH-LANDFORM EVOLUTION ON CAPE YORK PENINSULA REGOLITH-LANDFORM EVOLUTION ON CAPE YORK PENINSULA: IMPLICATIONS FOR MINERAL EXPLORATION C F PAIN 1, J R WILFORD 1 AND J C DOHRENWEND2 1 Cooperative Research Centre for Landscape Evolution and Mineral Exploration, c/- Australian Geological Survey Organisation, PO Box 378, Canberra ACT 2601, Australia 25755 East River Road #3207, Tucson, AZ 85750, USA A number of landform features on Cape York Peninsula (CYP) contain important clues for the development of landforms and regolith in the area The Great Escarpment, up to 200 m high, separates old landforms and regolith on the westem side from younger landforms and regolith on the eastem side West of the Great Escarpment there are smaller less continuous scarps which also form important boundaries between different regolith types There is clear eVidence for superimposed drainage, river capture and reversal, and inversion of relief on CYP Formation of the Carpentaria and Laura Basins during Middle to Late Jurassic and Early Cretaceous time covered the Palaeozoic and Proterozoic rocks of the Coen Inlier with coarse terrestrial to fine marine sediment The uplift and emergence of these basin sediments in the Late Cretaceous marks the beginning of the latest stage of landform and regolith evolution on CYP The sediments probably covered most, if not all, of the Coen Inlier, and post-Mesozoic erosion subsequently uncovered the basement to form the Inlier Substantial erosion and surface lowering in the area followed emergence at the end of the Cretaceous,
    [Show full text]
  • The Dashanpu Dinosaur Fauna of Zigong Sichuan Short Report V - Labyrinthodont Amphibia
    The Dashanpu Dinosaur Fauna of Zigong Sichuan Short Report V - Labyrinthodont Amphibia Zhiming Dong (Institute of Vertebrate Paleontology, Paleoanthropology, Academia Sinica) Vertebrata PalAsiatica Volume XXIII, No. 4 October, 1985 pp. 301-305 Translated by Will Downs Department of Geology Bilby Research Center Northern Arizona University December, 1990 Abstract A brief discussion is presented on the morphological characteristics and phylogenetic position of Sinobrachyops placenticephalus (gen. et sp. nov.). The specimen is derived from the well-known Middle Jurassic Dashanpu dinosaur quarries of Zigong County, Sichaun Province. Sinobrachyops is the youngest geological occurrence of a labyrinthodont amphibian known to date. Its discovery extends the upper geochronological limit for the Labyrinthodontia into the Middle Jurassic. Introduction The first fossils collected from Dashanpu, Zigong, in 1979, were a pair of rhachitomous vertebrae. This discovery created a sense of perplexity among the workers, for the morphology of these pleurocentra and intercentra suggested an assignment to the Labyrinthodontia. This group of amphibians, however, was traditionally believed to have become extinct in the Late Triassic, a traditional concept that must be abandoned if scientific investigation is to be advanced and left unfettered. In 1983 the Institute of Vertebrate Paleontology, Paleoanthropology Academia Sinica launched a paleontological expedition in the Shishugou Formation (Middle-Late Jurassic) from the Kelameili region, northeast Jungar Basin, Xinjiang Autonomous Region, where several rhachitomous vertebrae were discovered. Later, a fragmentary skull of a labyrinthodont amphibian was collected, confirming that this group extended into the Middle Jurassic. The discovery from the Shishugou Formation convinced the workers that the rhachitomous vertebrae at Dashanpu belonged to the Labyrinthodontia.
    [Show full text]
  • John Hillier HYDROGEOLOGY Great Artesian Basin /Galilee Basin
    HYDROGEOLOGY Great Artesian Basin /Galilee Basin Presented by John Hillier Acknowledgement Part of this presentation includes some of the findings of a report commissioned by members of the Galilee Basin Operators Forum (GBOF). The report was compiled by RPS Australia East Pty Ltd. Some Maps and Figures form their report have been used in this presentation. Location of GAB & Galilee Basins The Galilee Basin partly underlies the Great Artesian Basin Both were deposited on a very uneven surface STRATIGRAPHY AGE BASIN FORMATION ROLLING DOWNS GROUP (e.g. Winton Formation, Wallumbilla Formation, etc) CRETACEOUS CADNA-OWIE FORMATION (66 – 145 Myr) EROMANGA HOORAY SANDSTONE (GREAT ARTESIAN WESTBOURNE FORMATION BASIN) ADORI SANDSTONE JURASSIC BIRKHEAD FORMATION (145 – 200 Myr) HUTTON SANDSTONE GALILEE MOOLAYEMBER FORMATION TRIASSIC (GREAT ARTESIAN CLEMATIS SANDSTONE (200 – 253 Myr) BASIN) REWAN FORMATION (includes Dundas Beds) BETTS CREEK BEDS (Includes Bandanna PERMIAN Formation and Colinlea Sandstone) GALILEE (253 – 299 Myr) JOE JOE FORMATION (Includes Aramac Coal Measures) GAB - Surface Geology Eastern Area Outcrop Galilee Basin Coal Coal is mainly in the Colinlea Sandstone and the overlying Bandana Formation Near outcrop, where it is to be mined for coal, the coal seams range up to 8m in thickness Seam thicknesses vary considerable throughout the Basin How does the GAB operate •Water is stored in sandstone aquifers •Recharge is from rainfall that enters the aquifers where they outcrop at the surface •Groundwater movement in the GAB
    [Show full text]
  • From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
    Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n.
    [Show full text]
  • Analysis of Groundwater Level Trends in the Hutton Sandstone, Springbok Sandstone and Condamine Alluvium
    Analysis of groundwater level trends in the Hutton Sandstone, Springbok Sandstone and Condamine Alluvium Surat Cumulative Management Area December 2019 Original version, authorised release in December 2019 by Sanjeev Pandey, Executive Director, Office of Groundwater Impact Assessment. This publication has been compiled by the Office of Groundwater Impact Assessment, Department of Natural Resources, Mines and Energy. Bibliographic reference: OGIA, 2019. Analysis of groundwater level trends in the Hutton Sandstone, Springbok Sandstone and Condamine Alluvium – Surat Cumulative Management Area. OGIA, Brisbane. Copyright statement: © State of Queensland, 2019 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence, you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Interpreter statement: The Queensland Government is committed to providing accessible services to Queenslanders from all culturally and linguistically diverse backgrounds. If you have difficulty in understanding this document, you can contact us within Australia on 13QGOV (13 74 68) and we will arrange an interpreter to effectively communicate the report to you.
    [Show full text]
  • Hydrodynamics in the Queensland Sector of The
    SPE 64281 Hydrodynamics in the Queensland Sector of the Cooper/Eromanga Basins: Identifying Non-Conventional Exploration Plays Using Water Pressure and Chemistry Data Webster M.A.*, Brew J., Grimison A.G.* * Santos Ltd. Copyright 2000, Society of Petroleum Engineers Inc. As exploration programmes in these basins mature and reserve This paper was prepared for presentation at the SPE Asia Pacific Oil and Gas Conference and additions from conventional plays reach a plateau, Exhibition held in Brisbane, Australia, 16–18 October 2000. complementary or alternative techniques are required to This paper was selected for presentation by an SPE Program Committee following review of identify new exploration plays and non-conventional traps and information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the Society of Petroleum Engineers and are subject to to provide insights into the petroleum systems operating correction by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Papers presented at within these basins. Hydrodynamics is one such technique by SPE meetings are subject to publication review by Editorial Committees of the Society of which water pressure and chemistry data can be used to Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of the Society of Petroleum Engineers is identify flow barriers, which may reflect hydrocarbon traps, prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied.
    [Show full text]
  • Unconventional Gas Production
    Engineering Energy: Unconventional Gas Production A study of shale gas in Australia. FINAL REPORT PROJECT AUSTRALIAN ACADEMY OF THE HUMANITIES AUSTRALIAN ACADEMY OF SCIENCE ACADEMY OF THE SOCIAL SCIENCES IN AUSTRALIA AUSTRALIAN ACADEMY OF TECHNOLOGICAL SCIENCES AND ENGINEERING SECURING EXPERT AUSTRALIA’S WORKING FUTURE GROUP – PROJECT 6 A three-year research Professor Peter Cook CBE, FTSE (Chair) program funded by the Dr Vaughan Beck FTSE (Deputy Chair) Australian Research Professor David Brereton Council and conducted Professor Robert Clark AO, FAA, FRSN Dr Brian Fisher AO, PSM, FASSA by the four Learned Professor Sandra Kentish Academies through Mr John Toomey FTSE the Australian Council Dr John Williams FTSE of Learned Academies for PMSEIC, through AUTHORS the Office of the Chief Professor Peter Cook CBE, FTSE Scientist. Securing Dr Vaughan Beck FTSE Australia’s Future delivers Professor David Brereton research-based evidence Professor Robert Clark AO, FAA, FRSN and findings to support Dr Brian Fisher AO, PSM, FASSA policy development in Professor Sandra Kentish areas of importance to Mr John Toomey FTSE Australia’s future. Dr John Williams FTSE © Australian Council of Learned Academies (ACOLA) ISBN 978 0 9875798 1 2 This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of it may be reproduced by any process without written permission from the publisher. Requests and inquiries concerning reproduction rights should be directed to the publisher. DATE OF PUBLICATION May 2013 PUBLISHER Australian Council of Learned Academies Level 1, 1 Bowen Crescent Melbourne Victoria 3004 Australia Telephone: +61 (0)3 98640923 www.acola.org.au SUGGESTED CITATION Cook, P, Beck, V, Brereton, D, Clark, R, Fisher, B, Kentish, S, Toomey, J and Williams, J (2013).
    [Show full text]
  • Poropat Et Al 2017 Reappraisal Of
    Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R.
    [Show full text]
  • Friends of Mound Springs
    Friends of Mound Springs I S S U E 2 , D E C E M B E R 2 0 0 6 A B N 9 6 5 8 3 7 6 0 2 6 6 D A T E S O F I N T E R E S T : · Next FOMS Presidents Message Meeting early Following the inaugural Meeting of the Friends of Mound Springs (FOMS) on 29 June this March 2007. year the group has since been established as a formal entity under the DEH Friends of Final Date, Parks network. I am particularly grateful for the efforts of Simon Lewis and Tony Latz, Sec- Venue & Time retary and Treasurer respectively, in shouldering the burden of this work. to be advised. A second meeting was held on 16 November and it was pleasing to be able to welcome to · Friends of the meeting Geoff Axford and Mike Hinsliff from DEH. Geoff and Mike have important re- Parks Group gional responsibilities for mound springs management both within and outside of the formal Forum 3-5 parks and reserves system of the Far North and it was most useful to hear from them about August 2007, some of their work. It was also instructive to hear from FOMS Vice President Travis Gotch Port Lincoln about his continuing work on springs. SA. Also discussed at the meeting was the need for more interpretative signage to better inform · GAB Consul- the large number of visitors to mound springs, particular in Wabma Kadarbu Mound Springs Conservation Park near Coward Springs. Signage which had been in place at the tative Com- Park faded and was removed some time ago, but has not been replaced and Mike indicated mittee Next that he would follow this up.
    [Show full text]
  • Epm 16511 Brodies Lookout
    Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” Investigator Resources Limited Suite 48, Level 3, Benson House 2 Benson Street, Toowong, Qld 4066 Tel: +61 (0)7 3870 0357 Fax: +61 (0)7 3876 0351 Email: [email protected] web: www.investres.com.au EPM 16511 BRODIES LOOKOUT SURRENDER AND FINAL REPORT for period 27 April 2009 to 26 April 2011 D G Jones and B R Willott Investigator Resources Limited 6 September 2011 Page | 1 Investigator Resources Limited: Surrender and Final Report EPM 16511 “Brodies Lookout” 2 TABLE OF CONTENTS 3. SUMMARY ...................................................................................................................................................... 4 4. INTRODUCTION ............................................................................................................................................ 5 4.1. TENURE ....................................................................................................................................................... 5 4.2. LOCATION ................................................................................................................................................... 6 4.3. LOCAL ACCESS ........................................................................................................................................... 7 4.4. EXPLORATION RATIONALE ......................................................................................................................... 8 4.5. PROGRAM UNDERTAKEN
    [Show full text]
  • Hydrocarbon Prospectivity of the Cooper Basin, Australia
    Hydrocarbon prospectivity of the AUTHORS Cooper Basin, Australia Lisa S. Hall ~ Geoscience Australia, Symonston, Australian Capital Territory, Australia; [email protected] Lisa S. Hall, Tehani J. Palu, Andrew P. Murray, Lisa Hall is a senior research scientist at Christopher J. Boreham, Dianne S. Edwards, Geoscience Australia. She holds an M.Sc. in Anthony J. Hill, and Alison Troup geology and geophysics from Cambridge University and a D.Phil. in structural geology and neotectonics from Oxford University. Her current research is focused on hydrocarbon ABSTRACT prospectivity assessments and petroleum The Pennsylvanian–Middle Triassic Cooper Basin is Australia’s systems analysis in a variety of Australian premier conventional onshore hydrocarbon-producing prov- basins. ince. The basin also hosts a range of unconventional gas play Tehani J. Palu ~ Geoscience Australia, types, including basin-centered gas and tight gas accumula- Symonston, Australian Capital Territory, tions, deep dry coal gas associated with the Patchawarra and Australia; [email protected] Toolachee Formations, and the Murteree and Roseneath shale Tehani Palu is a geoscientist at Geoscience gas plays. Australia. She holds an M.Sc. from the This study used petroleum systems analysis to investigate University of Waikato. She has been involved the maturity and generation potential of 10 Permian source with various projects including greenhouse rocks in the Cooper Basin. A deterministic petroleum systems gas monitoring for carbon capture, and model was used to quantify the volume of expelled and retained storage and petroleum acreage release. Tehani has been in her current role since hydrocarbons, estimated at 1272 billion BOE (512 billion bbl 2013 which sees her undertaking petroleum and 760 billion BOE) and 977 billion BOE (362 billion bbl systems analysis within Australian basins.
    [Show full text]
  • And Early Jurassic Sediments, and Patterns of the Triassic-Jurassic
    and Early Jurassic sediments, and patterns of the Triassic-Jurassic PAUL E. OLSEN AND tetrapod transition HANS-DIETER SUES Introduction parent answer was that the supposed mass extinc- The Late Triassic-Early Jurassic boundary is fre- tions in the tetrapod record were largely an artifact quently cited as one of the thirteen or so episodes of incorrect or questionable biostratigraphic corre- of major extinctions that punctuate Phanerozoic his- lations. On reexamining the problem, we have come tory (Colbert 1958; Newell 1967; Hallam 1981; Raup to realize that the kinds of patterns revealed by look- and Sepkoski 1982, 1984). These times of apparent ing at the change in taxonomic composition through decimation stand out as one class of the great events time also profoundly depend on the taxonomic levels in the history of life. and the sampling intervals examined. We address Renewed interest in the pattern of mass ex- those problems in this chapter. We have now found tinctions through time has stimulated novel and com- that there does indeed appear to be some sort of prehensive attempts to relate these patterns to other extinction event, but it cannot be examined at the terrestrial and extraterrestrial phenomena (see usual coarse levels of resolution. It requires new fine- Chapter 24). The Triassic-Jurassic boundary takes scaled documentation of specific faunal and floral on special significance in this light. First, the faunal transitions. transitions have been cited as even greater in mag- Stratigraphic correlation of geographically dis- nitude than those of the Cretaceous or the Permian junct rocks and assemblages predetermines our per- (Colbert 1958; Hallam 1981; see also Chapter 24).
    [Show full text]