A Primitive Protostegid from Australia and Early Sea Turtle Evolution

Total Page:16

File Type:pdf, Size:1020Kb

A Primitive Protostegid from Australia and Early Sea Turtle Evolution Downloaded from http://rsbl.royalsocietypublishing.org/ on May 18, 2015 Biol. Lett. (2006) 2, 116–119 Toxochelys and Ctenochelys (Gaffney & Meylan 1988) doi:10.1098/rsbl.2005.0406 as stem chelonioids; these taxa are currently placed Published online 15 November 2005 within crown-chelonioids, along the lineage leading to living cheloniids (see Hirayama 1994, 1997, 1998). A primitive protostegid 2. MATERIAL AND METHODS Bouliachelys suteri gen. et sp. nov. (figure 1a–g and electronic from Australia and early supplementary material) was added to the most comprehensive published phylogenetic data set of sea turtles (Hirayama 1998), sea turtle evolution which was revised as follows. The chimera taxon Osteopygis was separated into two taxa (the cranial Euclastes and postcranial 1,2, 1,2 Benjamin P. Kear * and Michael S. Y. Lee Osteopygis; Parham 2005), and additional postcranial characters for Euclastes scored from E.(Erquelinnesia) gosseleti (Lynch & Parham 1School of Earth and Environmental Sciences, University of Adelaide, 2003; Hirayama 1994). Modifications were also made to the Adelaide 5005, Australia codings and/or character state definitions of 12 characters. A full 2Earth Sciences Section, South Australian Museum, North Terrace, matrix and character list with annotations discussing these points is Adelaide 5000, Australia provided in electronic supplementary material. Maximum parsi- *Author and address for correspondence: Earth Sciences Section, mony trees, bootstrap frequencies (1000 replicates), and Bremer South Australian Museum, North Terrace, Adelaide 5000, Australia support were calculated using heuristic searches in phylogenetic ([email protected]). analysis using parsimony (PAUP; Swofford 2000) employing 1000 Sea turtles (Chelonioidea) are a prominent random-addition replicates. Analyses performed with multi-state group of modern marine reptiles whose early characters ordered or unordered (see electronic supplementary material) yielded similar results; the optimal tree (LZ211) from the history is poorly understood. Analysis of excep- unordered analysis is shown in figure 2. tionally well preserved fossils of Bouliachelys suteri gen. et sp. nov., a large-bodied basal protostegid (primitive chelonioid) from the 3. PHYLOGENETIC TAXONOMY Early Cretaceous (Albian) of Australia, indi- All higher taxon names sensu Joyce et al. 2004. cates that early sea turtles were both larger and Testudines Batsch, 1788; Chelonioidea Baur, 1893; more diverse than previously thought. The anal- Pandermochelys Joyce et al.(2004); Protostegidae ysis implies at least five distinct sea turtle Cope, 1872 lineages existed around 100 million years ago. B. suteri gen. et sp. nov. Currently, the postcranially primitive Cteno- chelys and Toxochelys are interpreted as crown- group sea turtles closely related to living chelo- (a) Etymology niids (e.g. Chelonia); in contrast, the new phylo- After Boulia township, the most productive locality geny suggests that they are transitional for this taxon (see below); and Richard and John (intermediate stem-taxa) between continental Suter who discovered many of the specimens. testudines and derived, pelagic chelonioids. Keywords: sea turtles; protostegidae; (b) Holotype, locality and horizon Early Cretaceous; Australia; stem chelonioids Holotype (figure 1a–c) QM F31669 (Queensland Museum, Brisbane, Australia) from Dunraven Station, near Hughenden, central-northern Queens- land, Australia; referred specimen (figure 1d–g)SAM 1. INTRODUCTION P41106 (South Australian Museum, Adelaide, Aus- Sea turtles (Chelonioidea) have a long fossil record tralia) from Boulia region, western Queensland, stretching back to the late Early Cretaceous (late Australia. Both localities are Toolebuc Formation Aptian/early Albian, ca 105 Myr ago; see Hirayama (Rolling Downs Group), Eromanga Basin, latest 1998). However, their early evolutionary history middle to late Albian, P. l u d b r o o k i a e Zone/upper remains largely unknown, as recent phylogenies do C. paradoxa–P. pannosus Zone (McMinn & Burger not recognize any definitive stem-group taxa. At 1986; Alexander & Sansome 1996). present, all fossil sea turtles are assigned to one of two extant lineages within crown chelonioids (c) Diagnosis (Hirayama 1994, 1997, 1998; Joyce et al.2004; Identical for genus and species due to monotypy. Lehman & Tomlinson 2004): one leads to living Bouliachelys possesses the unique derived features cheloniids (Pancheloniidae: Joyce et al. 2004), and (within chelonioids) of highly sculpted skull roof the other to living Dermochelys (Pandermochelys: bones, a rugose boss anterior to each orbit, and Joyce et al. 2004). The latter group includes the double longitudinal keels (formed by the basisphe- extinct Protostegidae, a diverse Cretaceous clade noid and pterygoids) on the ventral surface of the containing some spectacular Late Cretaceous giants basicranium and palate. Bouliachelys differs from (e.g. Archelon, possibly up to 4 m maximum length; Notochelone (the only other Australian fossil sea turtle Wieland 1896). The cranial morphology of protoste- known from cranial remains) in several additional gids is poorly known (Hooks 1998). However, here traits: it is larger, lacks a jugal-quadrate contact9, we report on several exceptionally well preserved possesses hooked premaxillae13, and an upper tritur- skulls belonging to one of the stratigraphically oldest ating surface incorporating the palatine15 but not and most primitive protostegids yet found. A re- vomer16, a pterygoid excluded from the mandibular evaluation of sea turtle phylogeny incorporating these condyle24, and a basiphenoid-pterygoid with a new fossils (re)establishes the primitive, shallow-water V-shaped crest31 (character subscript numbering follows the data matrix in the electronic supplemen- The electronic supplementary material is available at http://dx.doi. org/10.1098/rsbl.2005.0406 or via http://www.journals.royalsoc.ac. tary material, where distributions are scored across all uk. chelonioids). Bouliachelys is distinguished from all Received 21 July 2005 116 q 2005 The Royal Society Accepted 10 October 2005 Downloaded from http://rsbl.royalsocietypublishing.org/ on May 18, 2015 Primitive sea turtle B. P. Kear & M. S. Y. Lee 117 (a) (c) 20mm (b) (d) pm pa fr ( f ) (g) pm pf na po mx so pf vo q fr 40mm pm qj pt pal ju mx pa ju cor po pr (e) pr q qj q pt art den op bs sur bo ang so ex so Figure 1. Skulls of Bouliachelys suteri gen. et sp. nov. (a) Holotype (QM F31669) skull, (b) parietal section, and (c) mandible in dorsal view. Referred (SAM P41106) (d ) skull and (e) mandible in lateral, ( f ) dorsal and (g) ventral views (sutures highlighted). Additional photos can be found in the electronic supplementary material. Abbreviations: ang, angular; art, articular; bo, basioccipital; bs, basisphenoid; cor, coronoid; den, dentary; ex, exoccipital; fr, fontal; ju, jugal; mx, maxilla; na, nasal; op, opisthotic; pa, parietal; pal, palatine; pf, postfrontal; pm, premaxilla; po, postorbital; pr, prootic; pt, pterygoid; q, quadrate; qj, quadratojugal; so, supraoccipital; sur, surangular; vo, vomer. other chelonioids in displaying a unique mosaic of (an arrangement proposed elsewhere on braincase primitive and derived features that suggest it is a basal traits; see Gaffney and Meylan 1988; Hooks 1998). protostegid (figure 2). All protostegids can be diag- This hypothesis is further supported here by limb and nosed by presence of nasal bones2, palatines meeting girdle morphology, with Toxochelys and Ctenochelys medially20,foramenpalatinum posterius open retaining primitive postcranial features lost in crown posteriorly21, biconvex second or third cervical chelonioids (figure 2): ischium with a well developed vertebra50, lateral process restricted to anterior sur- lateral process64, humerus with a capitellum that is face of humerus shaft71, and a curved radius75 (c.f. upturned and shouldered68, first and second digits Hirayama 1998). Santanachelys is the most basal incorporated into paddle78, and femur with distinct known protostegid; Bouliachelys and later forms share trochanters79. The derived states of these postcranial the loss of the ventral cheek emargination12, and a characters—functionally related to pelagic natatory strong lingual ridge of the maxilla19. Finally, proto- habits—thus appear only once and were present in stegids above Santanchelys and Bouliachelys are united the ancestor of crown chelonioids; consequently they in having a triturating surface that excludes the do not need to evolve convergently in the lineages palatine15 but includes the vomer16. leading to living cheloniids and dermochelyids. The dorsally oriented orbits5 of Toxochelys and Ctenochelys also suggest that they retained the primitive condition 4. EVOLUTIONARY IMPLICATIONS of shallow-water and/or benthic habits (and poten- A phylogenetic analysis of major sea turtle lineages, tially a less pelagic existence; c.f. Hirayama 1997); in including Bouliachelys, was conducted (see electronic contrast, the orbits of most crown chelonioids face supplementary material). The traits discussed above laterally, implying a more ‘pelagic-adapted’ skull. robustly place Bouliachelys within crown (living) This new data clarifies other evolutionary trends Chelonioidea, Pandermochelys and Protostegidae; within sea turtles. (i) The Australian fossil taxa are and (with less certainty) suggest it is the most basal amongst the largest known before the Late Cretac- protostegid after Santanachelys (figure 2). While eous; the skull of Bouliachelys
Recommended publications
  • Regolith-Landform Evolution on Cape York Peninsula
    REGOLITH-LANDFORM EVOLUTION ON CAPE YORK PENINSULA REGOLITH-LANDFORM EVOLUTION ON CAPE YORK PENINSULA: IMPLICATIONS FOR MINERAL EXPLORATION C F PAIN 1, J R WILFORD 1 AND J C DOHRENWEND2 1 Cooperative Research Centre for Landscape Evolution and Mineral Exploration, c/- Australian Geological Survey Organisation, PO Box 378, Canberra ACT 2601, Australia 25755 East River Road #3207, Tucson, AZ 85750, USA A number of landform features on Cape York Peninsula (CYP) contain important clues for the development of landforms and regolith in the area The Great Escarpment, up to 200 m high, separates old landforms and regolith on the westem side from younger landforms and regolith on the eastem side West of the Great Escarpment there are smaller less continuous scarps which also form important boundaries between different regolith types There is clear eVidence for superimposed drainage, river capture and reversal, and inversion of relief on CYP Formation of the Carpentaria and Laura Basins during Middle to Late Jurassic and Early Cretaceous time covered the Palaeozoic and Proterozoic rocks of the Coen Inlier with coarse terrestrial to fine marine sediment The uplift and emergence of these basin sediments in the Late Cretaceous marks the beginning of the latest stage of landform and regolith evolution on CYP The sediments probably covered most, if not all, of the Coen Inlier, and post-Mesozoic erosion subsequently uncovered the basement to form the Inlier Substantial erosion and surface lowering in the area followed emergence at the end of the Cretaceous,
    [Show full text]
  • The Northwestern Gulf of Mexico
    78 CuEI-oNten CousenvertoN axl BIot-ocv, Volmne 2, Ntunber I - 1996 Moll. D. 1991. The ecology of sea beach nesting in slider turtles (Truc'herl.\'.r sc'r'iptct venustct) from Caribbean Costa Rica. Chelon. o, ee6 n, .,1'Jill,i;X'fJ:J:fi loun,rn,ion Conserv. Biol . l(2): 107- I 16. Moll. E.O. 1978. Drumming along the Perak. Nat. Hist. 87:36-43. Occurrence and Diet of Juvenile MoRluER. J.A. 1982. Factors influencing beach selection by Loggerhead Sea Turtl es, Caretta caretta, in nesting sea turtles. In: Biorndal, K. (Ed.). Biology and Conser- vation of Sea Turtles. Washington D.C.: Smithsonian Institution the Northwestern Gulf of Mexico Press. pp. 45-5 I . MullEn. G.B., AND WRGNER, G.P. 1991. Novelty in evolution: PaunlA T. Plorxtnl restructuring the concept. Ann. Rev. Ecol. Syst. 22:229-256. AND 1980. rnigrations of the I Oeeano, M.E.., Bnoors, R.J. Nesting Depu rtment o,f Bictsc'iertc'e urrcl B iotet'ltnol og\,, snapping tr-rrtle (Chelydro serpentina). Herpetologica 36: 158- D rexe I (J nit,e rs i'l, 32ucl uncl C lte stnut St re et s, P lti I crcl e I p lt i u, t62. Penns\lvmicr 191 04 USA IFu.r: 2 I 5-895- ] 273l Ossr, F.J. 1986. Turtles, Tortises and Terrapins. New York: Saint Martin's Press 231 pp. , Subadult loggerheads (Ca rettct carettcr) are the most PnlnnrNo, F.V.., O'CoNNoR, M.P., AND Sporlla, J.R. 1990. Metabo- common sea turtles in the northwestern Gr,rlf of Mexico lism of leatherback turtles, gigantothermy, and thermoregula- (Hildebrand, where feed tion of dinosaurs.
    [Show full text]
  • Interpreting Character Variation in Turtles: [I]Araripemys Barretoi
    A peer-reviewed version of this preprint was published in PeerJ on 29 September 2020. View the peer-reviewed version (peerj.com/articles/9840), which is the preferred citable publication unless you specifically need to cite this preprint. Limaverde S, Pêgas RV, Damasceno R, Villa C, Oliveira GR, Bonde N, Leal MEC. 2020. Interpreting character variation in turtles: Araripemys barretoi (Pleurodira: Pelomedusoides) from the Araripe Basin, Early Cretaceous of Northeastern Brazil. PeerJ 8:e9840 https://doi.org/10.7717/peerj.9840 Interpreting character variation in turtles: Araripemys barretoi (Pleurodira: Pelomedusoides) from the Araripe Basin, Early Cretaceous of Northeastern Brazil Saulo Limaverde 1 , Rodrigo Vargas Pêgas 2 , Rafael Damasceno 3 , Chiara Villa 4 , Gustavo Oliveira 3 , Niels Bonde 5, 6 , Maria E. C. Leal Corresp. 1, 5 1 Centro de Ciências, Departamento de Geologia, Universidade Federal do Ceará, Fortaleza, Brazil 2 Department of Geology and Paleontology, Museu Nacional/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 3 Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil 4 Department of Forensic Medicine, Copenhagen University, Copenhagen, Denmark 5 Section Biosystematics, Zoological Museum (SNM, Copenhagen University), Copenhagen, Denmark 6 Fur Museum (Museum Saling), Fur, DK-7884, Denmark Corresponding Author: Maria E. C. Leal Email address: [email protected] The Araripe Basin (Northeastern Brazil) has yielded a rich Cretaceous fossil fauna of both vertebrates and invertebrates found mainly in the Crato and Romualdo Formations, of Aptian and Albian ages respectively. Among the vertebrates, the turtles were proved quite diverse, with several specimens retrieved and five valid species described to this date for the Romualdo Fm.
    [Show full text]
  • Tagged Kemp's Ridley Sea Turtle
    Opinions expressedherein are those of the individual authors and do not necessar- ily representthe views of the TexasARM UniversitySea Grant College Program or the National SeaGrant Program.While specificproducts have been identified by namein various papers,this doesnot imply endorsementby the publishersor the sponsors. $20.00 TAMU-SG-89-1 05 Copies available from: 500 August 1989 Sca Grant College Program NA85AA-D-SG128 Texas ARM University A/I-I P.O. Box 1675 Galveston, Tex. 77553-1675 Proceedings of the First International Symposium on Kemp's Ridley Sea Turtle Biology, Conservation and Management ~88<!Mgpgyp Sponsors- ~88gf-,-.g,i " ' .Poslfpq National Marine Fisheries Service Southeast Fisheries Center Galveston Laboratory Departmentof Marine Biology Texas A&M University at Galveston October 1-4, 1985 Galveston, Texas Edited and updated by Charles W. Caillouet, Jr. National Marine Fisheries Service and Andre M. Landry, Jr. Texas A&M University at Galveston NATIONALSEA GRANT DEPOSITORY PELLLIBRARY BUILDING TAMU-~9 I05 URI,NARRAGANSETT BAYCAMPUS August 7989 NARRAGANSETI, R I02882 Publicationof this documentpartially supportedby Institutional GrantNo. NA85AA-D-SGI28to the TexasARM UniversitySea Grant CollegeProgram by the NationalSea Grant Program,National Oceanicand AtmosphericAdministration, Department of Commerce. jbr Carole Hoover Allen and HEART for dedicatedefforts tmuard Kemp'sridley sea turtle conservation Table of Conteuts .v Preface CharlesW. Caillouet,jr. and Andre M. Landry, Jr, Acknowledgements. vl SessionI -Historical
    [Show full text]
  • The Endoskeletal Origin of the Turtle Carapace
    ARTICLE Received 7 Dec 2012 | Accepted 3 Jun 2013 | Published 9 Jul 2013 DOI: 10.1038/ncomms3107 OPEN The endoskeletal origin of the turtle carapace Tatsuya Hirasawa1, Hiroshi Nagashima2 & Shigeru Kuratani1 The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endos- keletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell. 1 Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. 2 Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Niigata University, Niigata 951-8510, Japan. Correspondence and requests for materials should be addressed to T.H. (email: [email protected]). NATURE COMMUNICATIONS | 4:2107 | DOI: 10.1038/ncomms3107 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3107 wo types of skeletal systems are recognized in vertebrates, exoskeletal components into the costal and neural plates (Fig.
    [Show full text]
  • From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
    Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n.
    [Show full text]
  • Membros Da Comissão Julgadora Da Dissertação
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA Evolution of the skull shape in extinct and extant turtles Evolução da forma do crânio em tartarugas extintas e viventes Guilherme Hermanson Souza Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Mestre em Ciências, obtido no Programa de Pós- Graduação em Biologia Comparada Ribeirão Preto - SP 2021 UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA Evolution of the skull shape in extinct and extant turtles Evolução da forma do crânio em tartarugas extintas e viventes Guilherme Hermanson Souza Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Mestre em Ciências, obtido no Programa de Pós- Graduação em Biologia Comparada. Orientador: Prof. Dr. Max Cardoso Langer Ribeirão Preto - SP 2021 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte. I authorise the reproduction and total or partial disclosure of this work, via any conventional or electronic medium, for aims of study and research, with the condition that the source is cited. FICHA CATALOGRÁFICA Hermanson, Guilherme Evolution of the skull shape in extinct and extant turtles, 2021. 132 páginas. Dissertação de Mestrado, apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP – Área de concentração: Biologia Comparada.
    [Show full text]
  • Paleobios 33: 1–13, March 8, 2016 Paleobios
    PaleoBios 33: 1–13, March 8, 2016 PaleoBios OFFICIAL PUBLICATION OF THE UNIVERSITY OF CALIFORNIA MUSEUM OF PALEONTOLOGY Jacob Biewer, Julia Sankey, Howard Hutchison, Dennis Garber (2016). A fossil giant tortoise from the Mehrten Formation of Northern California. Cover illustration: Artistic rendering by Jacob Biewer of the giant tortoise, Hesperotestudo orthopygia (Cope, 1878), from the Miocene of northern California. Citation: Biewer, J., J. Sankey, H. Hutchison, and D. Garber. 2016. A fossil giant tortoise from the Mehrten Formation of Northern California. PaleoBios 33. ucmp_paleobios_30312. PaleoBios 33:1–13, March 8, 2016 A fossil giant tortoise from the Mehrten Formation of Northern California JACOB BIEWER1*, JULIA SANKEY1, HOWARD HUTCHISON2, DENNIS GARBER3 1Department of Geology, California State University Stanislaus, 1 University Circle, Turlock, California 95382, USA; [email protected]; [email protected]. 2 University of California Museum of Paleontology, Berkeley, California, USA: [email protected], California, USA: [email protected] Hesperotestudo is a genus of giant tortoise that existed from the Oligocene to the Pleistocene of North and Central America. Recorded occurrences in the United States are plentiful; however, California seems to be an exception. Literature on Hesperotestudo in California is limited to faunal lists in papers, with few detailed descriptions. Here we review the literature on the genus, describe and identify specimens found in the upper Mehrten Formation (late Miocene-early Pliocene) exposed in the Central Valley of California at Turlock and Modesto Reservoirs, Stanislaus County, and address their implications for early Pliocene California biogeography and climate. All fossils described are from the collections of the University of California Museum of Paleontology (UCMP).
    [Show full text]
  • Poropat Et Al 2017 Reappraisal Of
    Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R.
    [Show full text]
  • On Certain Portions of the Skeleton of Protostega Gigas
    f %VJ*p^V;^.:H ^^BSdm^% ''Sv ; ^^v;Vv: , ^ ^fc;iS^^ BS^HK9|%^-S-r^ jftaming anb jt'alior. LIBRARY I University "of Illinois. m?; 1&:. mT"-g&K y r r * ^-v^wuiiii uiio w\ji\. mi \ji UCiUl'T^ tile * Latest Date stamped below. A i charge is made on all overdue b kS - U. of I. Library FIELD COLUMBIAN MUSEUM PUBLICATION 7. ZOOLOGICAL SERIES. VOL. i, No. 2. ON CERTAIN PORTIONS OF THE SKELETON OF PROTOSTEGA GIGAS. BY O. P. HAY, PH. D., Assistant Curator of Ichthyology. D. G. ELLIOT, F. R. S. E., Curator of Department. CHICAGO, U. S. A. November 21, 1895, ON CERTAIN PORTIONS OF THE SKELETON OF PROTOS- TEGA GIGAS COPE. O. P. HAY. The Dermochelyoid turtle, Protostega gigas, was first described by Professor E. D. Cope in Proc. Amer. Phil. Soc., 1-871, page 172, and again in the same publication in 1872, page 403. In 1875, m n ^ s ''Cretaceous Vertebrata," pp. 99-113, pis. IX-XIII, the same writer more fully described and illustrated the structure of this remarkable reptile. The materials which were in Professor Cope's hands consisted of a number of vertebrae, ten ribs, some marginal bones, certain por- tions of the skull, some limb bones, and some large plates. Of the lat- ter there were what the describer regarded as two entire and parts of one or two others. These plates he considered as belonging to the carapace, and this was supposed to be free from the ribs, as the pecu- liar carapace otDermochelys is free from the ribs of that turtle.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • WAVE on Wheels Outreach Turtle Time Presentation Grades 9-12
    WAVE on Wheels Outreach Turtle Time Presentation Grades 9-12 Time requirement 1 Hour Group size and grade Up to 50 students maximum Materials 3 species of turtle & tortoise Turtle Artifacts Bin WAVE Tablecloth Goal Through live turtle and tortoise encounters, students will be excited, engaged, and educated about the wonders of turtle life and the importance of conservation. Objectives 1. Students will be able to list 5 adaptations a turtle has including a combination of internal and external body parts as well as behaviors. 2. Students will be able to define natural selection and discuss its effects on shark adaptations. 3. Students will be able to list at least 5 species of turtle and tortoise and identify a unique characteristic to that species. 4. Students will be able to discuss biological factors relating to turtle population numbers, individual growth rates, and reproduction success. 5. Students will be able to discuss social behavior strategies among turtles. WAVE Foundation • One Aquarium Way • Newport, KY 41071 • www.wavefoundation.org • (859) 815-1442 Rev 3/16 6. Students will be able to discuss turtle conservation efforts as well as how they can help save turtles and other aquatic animals. 7. Students will be able to design and describe a method for monitoring and minimizing human impacts on turtle environments. Theme Turtles and tortoises have similar but distinct adaptations to survive in their environment. Kentucky Core Academic Standards – Science High School. Interdependent Relationships in Ecosystems HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
    [Show full text]